Commit 396700dd authored by chenzk's avatar chenzk
Browse files

v1.0

parents
Pipeline #2603 failed with stages
in 0 seconds
[system]
# Load language from environment variable(It is set by the hook)
language = "${env:DBGPT_LANG:-zh}"
api_keys = []
encrypt_key = "your_secret_key"
# Server Configurations
[service.web]
host = "0.0.0.0"
port = 5670
[service.web.database]
type = "sqlite"
path = "pilot/meta_data/dbgpt.db"
[rag.storage]
[rag.storage.vector]
type = "chroma"
persist_path = "pilot/data"
# Model Configurations
[models]
[[models.llms]]
name = "DeepSeek-R1-Distill-Qwen-1.5B"
provider = "llama.cpp"
# If not provided, the model will be downloaded from the Hugging Face model hub
# uncomment the following line to specify the model path in the local file system
# https://huggingface.co/bartowski/DeepSeek-R1-Distill-Qwen-1.5B-GGUF
# path = "the-model-path-in-the-local-file-system"
path = "models/DeepSeek-R1-Distill-Qwen-1.5B-Q4_K_M.gguf"
[[models.embeddings]]
name = "BAAI/bge-large-zh-v1.5"
provider = "hf"
# If not provided, the model will be downloaded from the Hugging Face model hub
# uncomment the following line to specify the model path in the local file system
# path = "the-model-path-in-the-local-file-system"
path = "models/BAAI/bge-large-zh-v1.5"
[system]
# Load language from environment variable(It is set by the hook)
language = "${env:DBGPT_LANG:-zh}"
api_keys = []
encrypt_key = "your_secret_key"
# Server Configurations
[service.web]
host = "0.0.0.0"
port = 5670
[service.web.database]
type = "sqlite"
path = "pilot/meta_data/dbgpt.db"
[rag.storage]
[rag.storage.vector]
type = "chroma"
persist_path = "pilot/data"
# Model Configurations
[models]
[[models.llms]]
name = "Qwen2.5-Coder-0.5B-Instruct"
provider = "hf"
# If not provided, the model will be downloaded from the Hugging Face model hub
# uncomment the following line to specify the model path in the local file system
# path = "the-model-path-in-the-local-file-system"
path = "models/Qwen2.5-Coder-0.5B-Instruct"
[[models.embeddings]]
name = "BAAI/bge-large-zh-v1.5"
provider = "hf"
# If not provided, the model will be downloaded from the Hugging Face model hub
# uncomment the following line to specify the model path in the local file system
# path = "the-model-path-in-the-local-file-system"
path = "models/BAAI/bge-large-zh-v1.5"
[system]
# Load language from environment variable(It is set by the hook)
language = "${env:DBGPT_LANG:-zh}"
api_keys = []
encrypt_key = "your_secret_key"
# Server Configurations
[service.web]
host = "0.0.0.0"
port = 5670
[service.web.database]
type = "sqlite"
path = "pilot/meta_data/dbgpt.db"
[rag.storage]
[rag.storage.vector]
type = "chroma"
persist_path = "pilot/data"
# Model Configurations
[models]
[[models.llms]]
name = "Qwen/QwQ-32B"
provider = "hf"
# If not provided, the model will be downloaded from the Hugging Face model hub
# uncomment the following line to specify the model path in the local file system
# path = "the-model-path-in-the-local-file-system"
path = "models/Qwen/QwQ-32B"
[[models.embeddings]]
name = "BAAI/bge-large-zh-v1.5"
provider = "hf"
# If not provided, the model will be downloaded from the Hugging Face model hub
# uncomment the following line to specify the model path in the local file system
# path = "the-model-path-in-the-local-file-system"
path = "models/BAAI/bge-large-zh-v1.5"
[system]
# Load language from environment variable(It is set by the hook)
language = "${env:DBGPT_LANG:-zh}"
api_keys = []
encrypt_key = "your_secret_key"
# Server Configurations
[service.web]
host = "0.0.0.0"
port = 5670
[service.web.database]
type = "sqlite"
path = "pilot/meta_data/dbgpt.db"
[rag.storage]
[rag.storage.vector]
type = "chroma"
persist_path = "pilot/data"
# Model Configurations
[models]
[[models.llms]]
name = "DeepSeek-R1-Distill-Qwen-1.5B"
provider = "vllm"
# If not provided, the model will be downloaded from the Hugging Face model hub
# uncomment the following line to specify the model path in the local file system
# path = "the-model-path-in-the-local-file-system"
path = "models/DeepSeek-R1-Distill-Qwen-1.5B"
# dtype = "float32"
[[models.embeddings]]
name = "BAAI/bge-large-zh-v1.5"
provider = "hf"
# If not provided, the model will be downloaded from the Hugging Face model hub
# uncomment the following line to specify the model path in the local file system
# path = "the-model-path-in-the-local-file-system"
path = "/data/models/bge-large-zh-v1.5"
[system]
# Load language from environment variable(It is set by the hook)
language = "${env:DBGPT_LANG:-zh}"
api_keys = []
encrypt_key = "your_secret_key"
# Server Configurations
[service.web]
host = "0.0.0.0"
port = 5670
[service.web.database]
type = "sqlite"
path = "pilot/meta_data/dbgpt.db"
[service.model.worker]
host = "127.0.0.1"
[rag.storage]
[rag.storage.vector]
type = "chroma"
persist_path = "pilot/data"
# Model Configurations
[models]
[[models.llms]]
name = "deepseek-reasoner"
# name = "deepseek-chat"
provider = "proxy/deepseek"
api_key = "your_deepseek_api_key"
[[models.embeddings]]
name = "BAAI/bge-large-zh-v1.5"
provider = "hf"
# If not provided, the model will be downloaded from the Hugging Face model hub
# uncomment the following line to specify the model path in the local file system
# path = "the-model-path-in-the-local-file-system"
path = "models/bge-large-zh-v1.5"
[system]
# Load language from environment variable(It is set by the hook)
language = "${env:DBGPT_LANG:-en}"
api_keys = []
encrypt_key = "your_secret_key"
# Server Configurations
[service.web]
host = "0.0.0.0"
port = 5670
[service.web.database]
type = "sqlite"
path = "pilot/meta_data/dbgpt.db"
[rag.storage]
[rag.storage.vector]
type = "chroma"
persist_path = "pilot/data"
# Model Configurations
[models]
[[models.llms]]
name = "deepseek-r1:1.5b"
provider = "proxy/ollama"
api_base = "http://localhost:11434"
api_key = ""
[[models.embeddings]]
name = "bge-m3:latest"
provider = "proxy/ollama"
api_url = "http://localhost:11434"
api_key = ""
[system]
# Load language from environment variable(It is set by the hook)
language = "${env:DBGPT_LANG:-en}"
api_keys = []
encrypt_key = "your_secret_key"
# Server Configurations
[service.web]
host = "0.0.0.0"
port = 5670
[service.web.database]
type = "sqlite"
path = "pilot/meta_data/dbgpt.db"
[rag.storage]
[rag.storage.vector]
type = "chroma"
persist_path = "pilot/data"
# Model Configurations
[models]
[[models.llms]]
name = "${env:LLM_MODEL_NAME:-gpt-4o}"
provider = "${env:LLM_MODEL_PROVIDER:-proxy/openai}"
api_base = "${env:OPENAI_API_BASE:-https://api.openai.com/v1}"
api_key = "${env:OPENAI_API_KEY}"
[[models.embeddings]]
name = "${env:EMBEDDING_MODEL_NAME:-text-embedding-3-small}"
provider = "${env:EMBEDDING_MODEL_PROVIDER:-proxy/openai}"
api_url = "${env:EMBEDDING_MODEL_API_URL:-https://api.openai.com/v1/embeddings}"
api_key = "${env:OPENAI_API_KEY}"
[system]
# Load language from environment variable(It is set by the hook)
language = "${env:DBGPT_LANG:-zh}"
api_keys = []
encrypt_key = "your_secret_key"
# Server Configurations
[service.web]
host = "0.0.0.0"
port = 5670
[service.web.database]
type = "mysql"
host = "${env:MYSQL_HOST:-127.0.0.1}"
port = "${env:MYSQL_PORT:-3306}"
database = "${env:MYSQL_DATABASE:-dbgpt}"
user = "${env:MYSQL_USER:-root}"
password ="${env:MYSQL_PASSWORD:-aa123456}"
[service.model.worker]
host = "127.0.0.1"
[rag.storage]
[rag.storage.vector]
type = "chroma"
persist_path = "pilot/data"
# Model Configurations
[models]
[[models.llms]]
name = "Qwen/Qwen2.5-Coder-32B-Instruct"
provider = "proxy/siliconflow"
api_key = "${env:SILICONFLOW_API_KEY}"
[[models.embeddings]]
name = "BAAI/bge-large-zh-v1.5"
provider = "proxy/openai"
api_url = "https://api.siliconflow.cn/v1/embeddings"
api_key = "${env:SILICONFLOW_API_KEY}"
[[models.rerankers]]
type = "reranker"
name = "BAAI/bge-reranker-v2-m3"
provider = "proxy/siliconflow"
api_key = "${env:SILICONFLOW_API_KEY}"
[system]
# Load language from environment variable(It is set by the hook)
language = "${env:DBGPT_LANG:-zh}"
api_keys = []
encrypt_key = "your_secret_key"
# Server Configurations
[service.web]
host = "0.0.0.0"
port = 5670
[service.web.database]
type = "sqlite"
path = "pilot/meta_data/dbgpt.db"
[service.model.worker]
host = "127.0.0.1"
[rag.storage]
[rag.storage.vector]
type = "chroma"
persist_path = "pilot/data"
# Model Configurations
[models]
[[models.llms]]
name = "Qwen/Qwen2.5-Coder-32B-Instruct"
provider = "proxy/siliconflow"
api_key = "${env:SILICONFLOW_API_KEY}"
[[models.embeddings]]
name = "BAAI/bge-large-zh-v1.5"
provider = "proxy/openai"
api_url = "https://api.siliconflow.cn/v1/embeddings"
api_key = "${env:SILICONFLOW_API_KEY}"
[[models.rerankers]]
type = "reranker"
name = "BAAI/bge-reranker-v2-m3"
provider = "proxy/siliconflow"
api_key = "${env:SILICONFLOW_API_KEY}"
[system]
# Load language from environment variable(It is set by the hook)
language = "${env:DBGPT_LANG:-en}"
api_keys = []
encrypt_key = "your_secret_key"
# Server Configurations
[service.web]
host = "0.0.0.0"
port = 5670
[service.web.database]
type = "sqlite"
path = "pilot/meta_data/dbgpt.db"
[rag.storage]
[rag.storage.vector]
type = "chroma"
persist_path = "pilot/data"
# Model Configurations
[models]
[[models.llms]]
name = "qwen-plus"
provider = "${env:LLM_MODEL_PROVIDER:proxy/tongyi}"
api_base = "https://dashscope.aliyuncs.com/compatible-mode/v1"
api_key = "${env:DASHSCOPE_API_KEY}"
[[models.embeddings]]
name = "text-embedding-v3"
provider = "${env:EMBEDDING_MODEL_PROVIDER:proxy/tongyi}"
api_url = "https://dashscope.aliyuncs.com/compatible-mode/v1/embeddings"
api_key = "${env:DASHSCOPE_API_KEY}"
# To run current docker compose file, you should prepare the silliconflow api key in your environment.
# SILICONFLOW_API_KEY=${SILICONFLOW_API_KEY} docker compose up -d
services:
db:
image: mysql/mysql-server
environment:
MYSQL_USER: 'user'
MYSQL_PASSWORD: 'password'
MYSQL_ROOT_PASSWORD: 'aa123456'
ports:
- 3306:3306
volumes:
- dbgpt-myql-db:/var/lib/mysql
- ./docker/examples/my.cnf:/etc/my.cnf
- ./docker/examples/sqls:/docker-entrypoint-initdb.d
- ./assets/schema/dbgpt.sql:/docker-entrypoint-initdb.d/dbgpt.sql
restart: unless-stopped
networks:
- dbgptnet
webserver:
image: eosphorosai/dbgpt-openai:latest
command: dbgpt start webserver --config /app/configs/dbgpt-proxy-siliconflow-mysql.toml
environment:
- SILICONFLOW_API_KEY=${SILICONFLOW_API_KEY}
- MYSQL_PASSWORD=aa123456
- MYSQL_HOST=db
- MYSQL_PORT=3306
- MYSQL_DATABASE=dbgpt
- MYSQL_USER=root
volumes:
- ./configs:/app/configs
- /data:/data
# May be you can mount your models to container
- /data/models:/app/models
- dbgpt-data:/app/pilot/data
- dbgpt-message:/app/pilot/message
depends_on:
- db
ports:
- 5670:5670/tcp
# webserver may be failed, it must wait all sqls in /docker-entrypoint-initdb.d execute finish.
restart: unless-stopped
networks:
- dbgptnet
ipc: host
volumes:
dbgpt-myql-db:
dbgpt-data:
dbgpt-message:
dbgpt-alembic-versions:
networks:
dbgptnet:
driver: bridge
name: dbgptnet
\ No newline at end of file
FROM image.sourcefind.cn:5000/dcu/admin/base/pytorch:2.4.1-ubuntu22.04-dtk25.04-py3.10-fixpy
ENV DEBIAN_FRONTEND=noninteractive
# RUN yum update && yum install -y git cmake wget build-essential
# RUN source /opt/dtk-dtk25.04/env.sh
# # 安装pip相关依赖
COPY requirements.txt requirements.txt
RUN pip3 install -r requirements.txt -i http://mirrors.aliyun.com/pypi/simple/ --trusted-host mirrors.aliyun.com
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment