Commit 1d9ad5d4 authored by chenzk's avatar chenzk
Browse files

v1.0

parents
Pipeline #2728 failed with stages
in 0 seconds
<!--Copyright 2024 The HuggingFace Team. All rights reserved.
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
the License. You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on
an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the
specific language governing permissions and limitations under the License.
-->
# Text-guided depth-to-image generation
[[open-in-colab]]
The [`StableDiffusionDepth2ImgPipeline`] lets you pass a text prompt and an initial image to condition the generation of new images. In addition, you can also pass a `depth_map` to preserve the image structure. If no `depth_map` is provided, the pipeline automatically predicts the depth via an integrated [depth-estimation model](https://github.com/isl-org/MiDaS).
Start by creating an instance of the [`StableDiffusionDepth2ImgPipeline`]:
```python
import torch
from diffusers import StableDiffusionDepth2ImgPipeline
from diffusers.utils import load_image, make_image_grid
pipeline = StableDiffusionDepth2ImgPipeline.from_pretrained(
"stabilityai/stable-diffusion-2-depth",
torch_dtype=torch.float16,
use_safetensors=True,
).to("cuda")
```
Now pass your prompt to the pipeline. You can also pass a `negative_prompt` to prevent certain words from guiding how an image is generated:
```python
url = "http://images.cocodataset.org/val2017/000000039769.jpg"
init_image = load_image(url)
prompt = "two tigers"
negative_prompt = "bad, deformed, ugly, bad anatomy"
image = pipeline(prompt=prompt, image=init_image, negative_prompt=negative_prompt, strength=0.7).images[0]
make_image_grid([init_image, image], rows=1, cols=2)
```
| Input | Output |
|---------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------|
| <img src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/diffusers/coco-cats.png" width="500"/> | <img src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/diffusers/depth2img-tigers.png" width="500"/> |
<!--Copyright 2024 The HuggingFace Team. All rights reserved.
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
the License. You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on
an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the
specific language governing permissions and limitations under the License.
-->
# DiffEdit
[[open-in-colab]]
Image editing typically requires providing a mask of the area to be edited. DiffEdit automatically generates the mask for you based on a text query, making it easier overall to create a mask without image editing software. The DiffEdit algorithm works in three steps:
1. the diffusion model denoises an image conditioned on some query text and reference text which produces different noise estimates for different areas of the image; the difference is used to infer a mask to identify which area of the image needs to be changed to match the query text
2. the input image is encoded into latent space with DDIM
3. the latents are decoded with the diffusion model conditioned on the text query, using the mask as a guide such that pixels outside the mask remain the same as in the input image
This guide will show you how to use DiffEdit to edit images without manually creating a mask.
Before you begin, make sure you have the following libraries installed:
```py
# uncomment to install the necessary libraries in Colab
#!pip install -q diffusers transformers accelerate
```
The [`StableDiffusionDiffEditPipeline`] requires an image mask and a set of partially inverted latents. The image mask is generated from the [`~StableDiffusionDiffEditPipeline.generate_mask`] function, and includes two parameters, `source_prompt` and `target_prompt`. These parameters determine what to edit in the image. For example, if you want to change a bowl of *fruits* to a bowl of *pears*, then:
```py
source_prompt = "a bowl of fruits"
target_prompt = "a bowl of pears"
```
The partially inverted latents are generated from the [`~StableDiffusionDiffEditPipeline.invert`] function, and it is generally a good idea to include a `prompt` or *caption* describing the image to help guide the inverse latent sampling process. The caption can often be your `source_prompt`, but feel free to experiment with other text descriptions!
Let's load the pipeline, scheduler, inverse scheduler, and enable some optimizations to reduce memory usage:
```py
import torch
from diffusers import DDIMScheduler, DDIMInverseScheduler, StableDiffusionDiffEditPipeline
pipeline = StableDiffusionDiffEditPipeline.from_pretrained(
"stabilityai/stable-diffusion-2-1",
torch_dtype=torch.float16,
safety_checker=None,
use_safetensors=True,
)
pipeline.scheduler = DDIMScheduler.from_config(pipeline.scheduler.config)
pipeline.inverse_scheduler = DDIMInverseScheduler.from_config(pipeline.scheduler.config)
pipeline.enable_model_cpu_offload()
pipeline.enable_vae_slicing()
```
Load the image to edit:
```py
from diffusers.utils import load_image, make_image_grid
img_url = "https://github.com/Xiang-cd/DiffEdit-stable-diffusion/raw/main/assets/origin.png"
raw_image = load_image(img_url).resize((768, 768))
raw_image
```
Use the [`~StableDiffusionDiffEditPipeline.generate_mask`] function to generate the image mask. You'll need to pass it the `source_prompt` and `target_prompt` to specify what to edit in the image:
```py
from PIL import Image
source_prompt = "a bowl of fruits"
target_prompt = "a basket of pears"
mask_image = pipeline.generate_mask(
image=raw_image,
source_prompt=source_prompt,
target_prompt=target_prompt,
)
Image.fromarray((mask_image.squeeze()*255).astype("uint8"), "L").resize((768, 768))
```
Next, create the inverted latents and pass it a caption describing the image:
```py
inv_latents = pipeline.invert(prompt=source_prompt, image=raw_image).latents
```
Finally, pass the image mask and inverted latents to the pipeline. The `target_prompt` becomes the `prompt` now, and the `source_prompt` is used as the `negative_prompt`:
```py
output_image = pipeline(
prompt=target_prompt,
mask_image=mask_image,
image_latents=inv_latents,
negative_prompt=source_prompt,
).images[0]
mask_image = Image.fromarray((mask_image.squeeze()*255).astype("uint8"), "L").resize((768, 768))
make_image_grid([raw_image, mask_image, output_image], rows=1, cols=3)
```
<div class="flex gap-4">
<div>
<img class="rounded-xl" src="https://github.com/Xiang-cd/DiffEdit-stable-diffusion/raw/main/assets/origin.png"/>
<figcaption class="mt-2 text-center text-sm text-gray-500">original image</figcaption>
</div>
<div>
<img class="rounded-xl" src="https://github.com/Xiang-cd/DiffEdit-stable-diffusion/blob/main/assets/target.png?raw=true"/>
<figcaption class="mt-2 text-center text-sm text-gray-500">edited image</figcaption>
</div>
</div>
## Generate source and target embeddings
The source and target embeddings can be automatically generated with the [Flan-T5](https://huggingface.co/docs/transformers/model_doc/flan-t5) model instead of creating them manually.
Load the Flan-T5 model and tokenizer from the 🤗 Transformers library:
```py
import torch
from transformers import AutoTokenizer, T5ForConditionalGeneration
tokenizer = AutoTokenizer.from_pretrained("google/flan-t5-large")
model = T5ForConditionalGeneration.from_pretrained("google/flan-t5-large", device_map="auto", torch_dtype=torch.float16)
```
Provide some initial text to prompt the model to generate the source and target prompts.
```py
source_concept = "bowl"
target_concept = "basket"
source_text = f"Provide a caption for images containing a {source_concept}. "
"The captions should be in English and should be no longer than 150 characters."
target_text = f"Provide a caption for images containing a {target_concept}. "
"The captions should be in English and should be no longer than 150 characters."
```
Next, create a utility function to generate the prompts:
```py
@torch.no_grad()
def generate_prompts(input_prompt):
input_ids = tokenizer(input_prompt, return_tensors="pt").input_ids.to("cuda")
outputs = model.generate(
input_ids, temperature=0.8, num_return_sequences=16, do_sample=True, max_new_tokens=128, top_k=10
)
return tokenizer.batch_decode(outputs, skip_special_tokens=True)
source_prompts = generate_prompts(source_text)
target_prompts = generate_prompts(target_text)
print(source_prompts)
print(target_prompts)
```
<Tip>
Check out the [generation strategy](https://huggingface.co/docs/transformers/main/en/generation_strategies) guide if you're interested in learning more about strategies for generating different quality text.
</Tip>
Load the text encoder model used by the [`StableDiffusionDiffEditPipeline`] to encode the text. You'll use the text encoder to compute the text embeddings:
```py
import torch
from diffusers import StableDiffusionDiffEditPipeline
pipeline = StableDiffusionDiffEditPipeline.from_pretrained(
"stabilityai/stable-diffusion-2-1", torch_dtype=torch.float16, use_safetensors=True
)
pipeline.enable_model_cpu_offload()
pipeline.enable_vae_slicing()
@torch.no_grad()
def embed_prompts(sentences, tokenizer, text_encoder, device="cuda"):
embeddings = []
for sent in sentences:
text_inputs = tokenizer(
sent,
padding="max_length",
max_length=tokenizer.model_max_length,
truncation=True,
return_tensors="pt",
)
text_input_ids = text_inputs.input_ids
prompt_embeds = text_encoder(text_input_ids.to(device), attention_mask=None)[0]
embeddings.append(prompt_embeds)
return torch.concatenate(embeddings, dim=0).mean(dim=0).unsqueeze(0)
source_embeds = embed_prompts(source_prompts, pipeline.tokenizer, pipeline.text_encoder)
target_embeds = embed_prompts(target_prompts, pipeline.tokenizer, pipeline.text_encoder)
```
Finally, pass the embeddings to the [`~StableDiffusionDiffEditPipeline.generate_mask`] and [`~StableDiffusionDiffEditPipeline.invert`] functions, and pipeline to generate the image:
```diff
from diffusers import DDIMInverseScheduler, DDIMScheduler
from diffusers.utils import load_image, make_image_grid
from PIL import Image
pipeline.scheduler = DDIMScheduler.from_config(pipeline.scheduler.config)
pipeline.inverse_scheduler = DDIMInverseScheduler.from_config(pipeline.scheduler.config)
img_url = "https://github.com/Xiang-cd/DiffEdit-stable-diffusion/raw/main/assets/origin.png"
raw_image = load_image(img_url).resize((768, 768))
mask_image = pipeline.generate_mask(
image=raw_image,
- source_prompt=source_prompt,
- target_prompt=target_prompt,
+ source_prompt_embeds=source_embeds,
+ target_prompt_embeds=target_embeds,
)
inv_latents = pipeline.invert(
- prompt=source_prompt,
+ prompt_embeds=source_embeds,
image=raw_image,
).latents
output_image = pipeline(
mask_image=mask_image,
image_latents=inv_latents,
- prompt=target_prompt,
- negative_prompt=source_prompt,
+ prompt_embeds=target_embeds,
+ negative_prompt_embeds=source_embeds,
).images[0]
mask_image = Image.fromarray((mask_image.squeeze()*255).astype("uint8"), "L")
make_image_grid([raw_image, mask_image, output_image], rows=1, cols=3)
```
## Generate a caption for inversion
While you can use the `source_prompt` as a caption to help generate the partially inverted latents, you can also use the [BLIP](https://huggingface.co/docs/transformers/model_doc/blip) model to automatically generate a caption.
Load the BLIP model and processor from the 🤗 Transformers library:
```py
import torch
from transformers import BlipForConditionalGeneration, BlipProcessor
processor = BlipProcessor.from_pretrained("Salesforce/blip-image-captioning-base")
model = BlipForConditionalGeneration.from_pretrained("Salesforce/blip-image-captioning-base", torch_dtype=torch.float16, low_cpu_mem_usage=True)
```
Create a utility function to generate a caption from the input image:
```py
@torch.no_grad()
def generate_caption(images, caption_generator, caption_processor):
text = "a photograph of"
inputs = caption_processor(images, text, return_tensors="pt").to(device="cuda", dtype=caption_generator.dtype)
caption_generator.to("cuda")
outputs = caption_generator.generate(**inputs, max_new_tokens=128)
# offload caption generator
caption_generator.to("cpu")
caption = caption_processor.batch_decode(outputs, skip_special_tokens=True)[0]
return caption
```
Load an input image and generate a caption for it using the `generate_caption` function:
```py
from diffusers.utils import load_image
img_url = "https://github.com/Xiang-cd/DiffEdit-stable-diffusion/raw/main/assets/origin.png"
raw_image = load_image(img_url).resize((768, 768))
caption = generate_caption(raw_image, model, processor)
```
<div class="flex justify-center">
<figure>
<img class="rounded-xl" src="https://github.com/Xiang-cd/DiffEdit-stable-diffusion/raw/main/assets/origin.png"/>
<figcaption class="text-center">generated caption: "a photograph of a bowl of fruit on a table"</figcaption>
</figure>
</div>
Now you can drop the caption into the [`~StableDiffusionDiffEditPipeline.invert`] function to generate the partially inverted latents!
<!--Copyright 2024 The HuggingFace Team. All rights reserved.
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
the License. You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on
an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the
specific language governing permissions and limitations under the License.
-->
# Controlling image quality
The components of a diffusion model, like the UNet and scheduler, can be optimized to improve the quality of generated images leading to better details. These techniques are especially useful if you don't have the resources to simply use a larger model for inference. You can enable these techniques during inference without any additional training.
This guide will show you how to turn these techniques on in your pipeline and how to configure them to improve the quality of your generated images.
## Details
[FreeU](https://hf.co/papers/2309.11497) improves image details by rebalancing the UNet's backbone and skip connection weights. The skip connections can cause the model to overlook some of the backbone semantics which may lead to unnatural image details in the generated image. This technique does not require any additional training and can be applied on the fly during inference for tasks like image-to-image and text-to-video.
Use the [`~pipelines.StableDiffusionMixin.enable_freeu`] method on your pipeline and configure the scaling factors for the backbone (`b1` and `b2`) and skip connections (`s1` and `s2`). The number after each scaling factor corresponds to the stage in the UNet where the factor is applied. Take a look at the [FreeU](https://github.com/ChenyangSi/FreeU#parameters) repository for reference hyperparameters for different models.
<hfoptions id="freeu">
<hfoption id="Stable Diffusion v1-5">
```py
import torch
from diffusers import DiffusionPipeline
pipeline = DiffusionPipeline.from_pretrained(
"stable-diffusion-v1-5/stable-diffusion-v1-5", torch_dtype=torch.float16, safety_checker=None
).to("cuda")
pipeline.enable_freeu(s1=0.9, s2=0.2, b1=1.5, b2=1.6)
generator = torch.Generator(device="cpu").manual_seed(33)
prompt = ""
image = pipeline(prompt, generator=generator).images[0]
image
```
<div class="flex gap-4">
<div>
<img class="rounded-xl" src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/diffusers/sdv15-no-freeu.png"/>
<figcaption class="mt-2 text-center text-sm text-gray-500">FreeU disabled</figcaption>
</div>
<div>
<img class="rounded-xl" src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/diffusers/sdv15-freeu.png"/>
<figcaption class="mt-2 text-center text-sm text-gray-500">FreeU enabled</figcaption>
</div>
</div>
</hfoption>
<hfoption id="Stable Diffusion v2-1">
```py
import torch
from diffusers import DiffusionPipeline
pipeline = DiffusionPipeline.from_pretrained(
"stabilityai/stable-diffusion-2-1", torch_dtype=torch.float16, safety_checker=None
).to("cuda")
pipeline.enable_freeu(s1=0.9, s2=0.2, b1=1.4, b2=1.6)
generator = torch.Generator(device="cpu").manual_seed(80)
prompt = "A squirrel eating a burger"
image = pipeline(prompt, generator=generator).images[0]
image
```
<div class="flex gap-4">
<div>
<img class="rounded-xl" src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/diffusers/sdv21-no-freeu.png"/>
<figcaption class="mt-2 text-center text-sm text-gray-500">FreeU disabled</figcaption>
</div>
<div>
<img class="rounded-xl" src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/diffusers/sdv21-freeu.png"/>
<figcaption class="mt-2 text-center text-sm text-gray-500">FreeU enabled</figcaption>
</div>
</div>
</hfoption>
<hfoption id="Stable Diffusion XL">
```py
import torch
from diffusers import DiffusionPipeline
pipeline = DiffusionPipeline.from_pretrained(
"stabilityai/stable-diffusion-xl-base-1.0", torch_dtype=torch.float16,
).to("cuda")
pipeline.enable_freeu(s1=0.9, s2=0.2, b1=1.3, b2=1.4)
generator = torch.Generator(device="cpu").manual_seed(13)
prompt = "A squirrel eating a burger"
image = pipeline(prompt, generator=generator).images[0]
image
```
<div class="flex gap-4">
<div>
<img class="rounded-xl" src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/diffusers/sdxl-no-freeu.png"/>
<figcaption class="mt-2 text-center text-sm text-gray-500">FreeU disabled</figcaption>
</div>
<div>
<img class="rounded-xl" src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/diffusers/sdxl-freeu.png"/>
<figcaption class="mt-2 text-center text-sm text-gray-500">FreeU enabled</figcaption>
</div>
</div>
</hfoption>
<hfoption id="Zeroscope">
```py
import torch
from diffusers import DiffusionPipeline
from diffusers.utils import export_to_video
pipeline = DiffusionPipeline.from_pretrained(
"damo-vilab/text-to-video-ms-1.7b", torch_dtype=torch.float16
).to("cuda")
# values come from https://github.com/lyn-rgb/FreeU_Diffusers#video-pipelines
pipeline.enable_freeu(b1=1.2, b2=1.4, s1=0.9, s2=0.2)
prompt = "Confident teddy bear surfer rides the wave in the tropics"
generator = torch.Generator(device="cpu").manual_seed(47)
video_frames = pipeline(prompt, generator=generator).frames[0]
export_to_video(video_frames, "teddy_bear.mp4", fps=10)
```
<div class="flex gap-4">
<div>
<img class="rounded-xl" src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/diffusers/video-no-freeu.gif"/>
<figcaption class="mt-2 text-center text-sm text-gray-500">FreeU disabled</figcaption>
</div>
<div>
<img class="rounded-xl" src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/diffusers/video-freeu.gif"/>
<figcaption class="mt-2 text-center text-sm text-gray-500">FreeU enabled</figcaption>
</div>
</div>
</hfoption>
</hfoptions>
Call the [`pipelines.StableDiffusionMixin.disable_freeu`] method to disable FreeU.
```py
pipeline.disable_freeu()
```
<!--Copyright 2024 The HuggingFace Team. All rights reserved.
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
the License. You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on
an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the
specific language governing permissions and limitations under the License.
-->
# Image-to-image
[[open-in-colab]]
Image-to-image is similar to [text-to-image](conditional_image_generation), but in addition to a prompt, you can also pass an initial image as a starting point for the diffusion process. The initial image is encoded to latent space and noise is added to it. Then the latent diffusion model takes a prompt and the noisy latent image, predicts the added noise, and removes the predicted noise from the initial latent image to get the new latent image. Lastly, a decoder decodes the new latent image back into an image.
With 🤗 Diffusers, this is as easy as 1-2-3:
1. Load a checkpoint into the [`AutoPipelineForImage2Image`] class; this pipeline automatically handles loading the correct pipeline class based on the checkpoint:
```py
import torch
from diffusers import AutoPipelineForImage2Image
from diffusers.utils import load_image, make_image_grid
pipeline = AutoPipelineForImage2Image.from_pretrained(
"kandinsky-community/kandinsky-2-2-decoder", torch_dtype=torch.float16, use_safetensors=True
)
pipeline.enable_model_cpu_offload()
# remove following line if xFormers is not installed or you have PyTorch 2.0 or higher installed
pipeline.enable_xformers_memory_efficient_attention()
```
<Tip>
You'll notice throughout the guide, we use [`~DiffusionPipeline.enable_model_cpu_offload`] and [`~DiffusionPipeline.enable_xformers_memory_efficient_attention`], to save memory and increase inference speed. If you're using PyTorch 2.0, then you don't need to call [`~DiffusionPipeline.enable_xformers_memory_efficient_attention`] on your pipeline because it'll already be using PyTorch 2.0's native [scaled-dot product attention](../optimization/torch2.0#scaled-dot-product-attention).
</Tip>
2. Load an image to pass to the pipeline:
```py
init_image = load_image("https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/diffusers/cat.png")
```
3. Pass a prompt and image to the pipeline to generate an image:
```py
prompt = "cat wizard, gandalf, lord of the rings, detailed, fantasy, cute, adorable, Pixar, Disney, 8k"
image = pipeline(prompt, image=init_image).images[0]
make_image_grid([init_image, image], rows=1, cols=2)
```
<div class="flex gap-4">
<div>
<img class="rounded-xl" src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/diffusers/cat.png"/>
<figcaption class="mt-2 text-center text-sm text-gray-500">initial image</figcaption>
</div>
<div>
<img class="rounded-xl" src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/diffusers/img2img.png"/>
<figcaption class="mt-2 text-center text-sm text-gray-500">generated image</figcaption>
</div>
</div>
## Popular models
The most popular image-to-image models are [Stable Diffusion v1.5](https://huggingface.co/stable-diffusion-v1-5/stable-diffusion-v1-5), [Stable Diffusion XL (SDXL)](https://huggingface.co/stabilityai/stable-diffusion-xl-base-1.0), and [Kandinsky 2.2](https://huggingface.co/kandinsky-community/kandinsky-2-2-decoder). The results from the Stable Diffusion and Kandinsky models vary due to their architecture differences and training process; you can generally expect SDXL to produce higher quality images than Stable Diffusion v1.5. Let's take a quick look at how to use each of these models and compare their results.
### Stable Diffusion v1.5
Stable Diffusion v1.5 is a latent diffusion model initialized from an earlier checkpoint, and further finetuned for 595K steps on 512x512 images. To use this pipeline for image-to-image, you'll need to prepare an initial image to pass to the pipeline. Then you can pass a prompt and the image to the pipeline to generate a new image:
```py
import torch
from diffusers import AutoPipelineForImage2Image
from diffusers.utils import make_image_grid, load_image
pipeline = AutoPipelineForImage2Image.from_pretrained(
"stable-diffusion-v1-5/stable-diffusion-v1-5", torch_dtype=torch.float16, variant="fp16", use_safetensors=True
)
pipeline.enable_model_cpu_offload()
# remove following line if xFormers is not installed or you have PyTorch 2.0 or higher installed
pipeline.enable_xformers_memory_efficient_attention()
# prepare image
url = "https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/diffusers/img2img-init.png"
init_image = load_image(url)
prompt = "Astronaut in a jungle, cold color palette, muted colors, detailed, 8k"
# pass prompt and image to pipeline
image = pipeline(prompt, image=init_image).images[0]
make_image_grid([init_image, image], rows=1, cols=2)
```
<div class="flex gap-4">
<div>
<img class="rounded-xl" src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/diffusers/img2img-init.png"/>
<figcaption class="mt-2 text-center text-sm text-gray-500">initial image</figcaption>
</div>
<div>
<img class="rounded-xl" src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/diffusers/img2img-sdv1.5.png"/>
<figcaption class="mt-2 text-center text-sm text-gray-500">generated image</figcaption>
</div>
</div>
### Stable Diffusion XL (SDXL)
SDXL is a more powerful version of the Stable Diffusion model. It uses a larger base model, and an additional refiner model to increase the quality of the base model's output. Read the [SDXL](sdxl) guide for a more detailed walkthrough of how to use this model, and other techniques it uses to produce high quality images.
```py
import torch
from diffusers import AutoPipelineForImage2Image
from diffusers.utils import make_image_grid, load_image
pipeline = AutoPipelineForImage2Image.from_pretrained(
"stabilityai/stable-diffusion-xl-refiner-1.0", torch_dtype=torch.float16, variant="fp16", use_safetensors=True
)
pipeline.enable_model_cpu_offload()
# remove following line if xFormers is not installed or you have PyTorch 2.0 or higher installed
pipeline.enable_xformers_memory_efficient_attention()
# prepare image
url = "https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/diffusers/img2img-sdxl-init.png"
init_image = load_image(url)
prompt = "Astronaut in a jungle, cold color palette, muted colors, detailed, 8k"
# pass prompt and image to pipeline
image = pipeline(prompt, image=init_image, strength=0.5).images[0]
make_image_grid([init_image, image], rows=1, cols=2)
```
<div class="flex gap-4">
<div>
<img class="rounded-xl" src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/diffusers/img2img-sdxl-init.png"/>
<figcaption class="mt-2 text-center text-sm text-gray-500">initial image</figcaption>
</div>
<div>
<img class="rounded-xl" src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/diffusers/img2img-sdxl.png"/>
<figcaption class="mt-2 text-center text-sm text-gray-500">generated image</figcaption>
</div>
</div>
### Kandinsky 2.2
The Kandinsky model is different from the Stable Diffusion models because it uses an image prior model to create image embeddings. The embeddings help create a better alignment between text and images, allowing the latent diffusion model to generate better images.
The simplest way to use Kandinsky 2.2 is:
```py
import torch
from diffusers import AutoPipelineForImage2Image
from diffusers.utils import make_image_grid, load_image
pipeline = AutoPipelineForImage2Image.from_pretrained(
"kandinsky-community/kandinsky-2-2-decoder", torch_dtype=torch.float16, use_safetensors=True
)
pipeline.enable_model_cpu_offload()
# remove following line if xFormers is not installed or you have PyTorch 2.0 or higher installed
pipeline.enable_xformers_memory_efficient_attention()
# prepare image
url = "https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/diffusers/img2img-init.png"
init_image = load_image(url)
prompt = "Astronaut in a jungle, cold color palette, muted colors, detailed, 8k"
# pass prompt and image to pipeline
image = pipeline(prompt, image=init_image).images[0]
make_image_grid([init_image, image], rows=1, cols=2)
```
<div class="flex gap-4">
<div>
<img class="rounded-xl" src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/diffusers/img2img-init.png"/>
<figcaption class="mt-2 text-center text-sm text-gray-500">initial image</figcaption>
</div>
<div>
<img class="rounded-xl" src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/diffusers/img2img-kandinsky.png"/>
<figcaption class="mt-2 text-center text-sm text-gray-500">generated image</figcaption>
</div>
</div>
## Configure pipeline parameters
There are several important parameters you can configure in the pipeline that'll affect the image generation process and image quality. Let's take a closer look at what these parameters do and how changing them affects the output.
### Strength
`strength` is one of the most important parameters to consider and it'll have a huge impact on your generated image. It determines how much the generated image resembles the initial image. In other words:
- 📈 a higher `strength` value gives the model more "creativity" to generate an image that's different from the initial image; a `strength` value of 1.0 means the initial image is more or less ignored
- 📉 a lower `strength` value means the generated image is more similar to the initial image
The `strength` and `num_inference_steps` parameters are related because `strength` determines the number of noise steps to add. For example, if the `num_inference_steps` is 50 and `strength` is 0.8, then this means adding 40 (50 * 0.8) steps of noise to the initial image and then denoising for 40 steps to get the newly generated image.
```py
import torch
from diffusers import AutoPipelineForImage2Image
from diffusers.utils import make_image_grid, load_image
pipeline = AutoPipelineForImage2Image.from_pretrained(
"stable-diffusion-v1-5/stable-diffusion-v1-5", torch_dtype=torch.float16, variant="fp16", use_safetensors=True
)
pipeline.enable_model_cpu_offload()
# remove following line if xFormers is not installed or you have PyTorch 2.0 or higher installed
pipeline.enable_xformers_memory_efficient_attention()
# prepare image
url = "https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/diffusers/img2img-init.png"
init_image = load_image(url)
prompt = "Astronaut in a jungle, cold color palette, muted colors, detailed, 8k"
# pass prompt and image to pipeline
image = pipeline(prompt, image=init_image, strength=0.8).images[0]
make_image_grid([init_image, image], rows=1, cols=2)
```
<div class="flex flex-row gap-4">
<div class="flex-1">
<img class="rounded-xl" src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/diffusers/img2img-strength-0.4.png"/>
<figcaption class="mt-2 text-center text-sm text-gray-500">strength = 0.4</figcaption>
</div>
<div class="flex-1">
<img class="rounded-xl" src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/diffusers/img2img-strength-0.6.png"/>
<figcaption class="mt-2 text-center text-sm text-gray-500">strength = 0.6</figcaption>
</div>
<div class="flex-1">
<img class="rounded-xl" src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/diffusers/img2img-strength-1.0.png"/>
<figcaption class="mt-2 text-center text-sm text-gray-500">strength = 1.0</figcaption>
</div>
</div>
### Guidance scale
The `guidance_scale` parameter is used to control how closely aligned the generated image and text prompt are. A higher `guidance_scale` value means your generated image is more aligned with the prompt, while a lower `guidance_scale` value means your generated image has more space to deviate from the prompt.
You can combine `guidance_scale` with `strength` for even more precise control over how expressive the model is. For example, combine a high `strength + guidance_scale` for maximum creativity or use a combination of low `strength` and low `guidance_scale` to generate an image that resembles the initial image but is not as strictly bound to the prompt.
```py
import torch
from diffusers import AutoPipelineForImage2Image
from diffusers.utils import make_image_grid, load_image
pipeline = AutoPipelineForImage2Image.from_pretrained(
"stable-diffusion-v1-5/stable-diffusion-v1-5", torch_dtype=torch.float16, variant="fp16", use_safetensors=True
)
pipeline.enable_model_cpu_offload()
# remove following line if xFormers is not installed or you have PyTorch 2.0 or higher installed
pipeline.enable_xformers_memory_efficient_attention()
# prepare image
url = "https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/diffusers/img2img-init.png"
init_image = load_image(url)
prompt = "Astronaut in a jungle, cold color palette, muted colors, detailed, 8k"
# pass prompt and image to pipeline
image = pipeline(prompt, image=init_image, guidance_scale=8.0).images[0]
make_image_grid([init_image, image], rows=1, cols=2)
```
<div class="flex flex-row gap-4">
<div class="flex-1">
<img class="rounded-xl" src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/diffusers/img2img-guidance-0.1.png"/>
<figcaption class="mt-2 text-center text-sm text-gray-500">guidance_scale = 0.1</figcaption>
</div>
<div class="flex-1">
<img class="rounded-xl" src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/diffusers/img2img-guidance-3.0.png"/>
<figcaption class="mt-2 text-center text-sm text-gray-500">guidance_scale = 5.0</figcaption>
</div>
<div class="flex-1">
<img class="rounded-xl" src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/diffusers/img2img-guidance-7.5.png"/>
<figcaption class="mt-2 text-center text-sm text-gray-500">guidance_scale = 10.0</figcaption>
</div>
</div>
### Negative prompt
A negative prompt conditions the model to *not* include things in an image, and it can be used to improve image quality or modify an image. For example, you can improve image quality by including negative prompts like "poor details" or "blurry" to encourage the model to generate a higher quality image. Or you can modify an image by specifying things to exclude from an image.
```py
import torch
from diffusers import AutoPipelineForImage2Image
from diffusers.utils import make_image_grid, load_image
pipeline = AutoPipelineForImage2Image.from_pretrained(
"stabilityai/stable-diffusion-xl-refiner-1.0", torch_dtype=torch.float16, variant="fp16", use_safetensors=True
)
pipeline.enable_model_cpu_offload()
# remove following line if xFormers is not installed or you have PyTorch 2.0 or higher installed
pipeline.enable_xformers_memory_efficient_attention()
# prepare image
url = "https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/diffusers/img2img-init.png"
init_image = load_image(url)
prompt = "Astronaut in a jungle, cold color palette, muted colors, detailed, 8k"
negative_prompt = "ugly, deformed, disfigured, poor details, bad anatomy"
# pass prompt and image to pipeline
image = pipeline(prompt, negative_prompt=negative_prompt, image=init_image).images[0]
make_image_grid([init_image, image], rows=1, cols=2)
```
<div class="flex flex-row gap-4">
<div class="flex-1">
<img class="rounded-xl" src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/diffusers/img2img-negative-1.png"/>
<figcaption class="mt-2 text-center text-sm text-gray-500">negative_prompt = "ugly, deformed, disfigured, poor details, bad anatomy"</figcaption>
</div>
<div class="flex-1">
<img class="rounded-xl" src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/diffusers/img2img-negative-2.png"/>
<figcaption class="mt-2 text-center text-sm text-gray-500">negative_prompt = "jungle"</figcaption>
</div>
</div>
## Chained image-to-image pipelines
There are some other interesting ways you can use an image-to-image pipeline aside from just generating an image (although that is pretty cool too). You can take it a step further and chain it with other pipelines.
### Text-to-image-to-image
Chaining a text-to-image and image-to-image pipeline allows you to generate an image from text and use the generated image as the initial image for the image-to-image pipeline. This is useful if you want to generate an image entirely from scratch. For example, let's chain a Stable Diffusion and a Kandinsky model.
Start by generating an image with the text-to-image pipeline:
```py
from diffusers import AutoPipelineForText2Image, AutoPipelineForImage2Image
import torch
from diffusers.utils import make_image_grid
pipeline = AutoPipelineForText2Image.from_pretrained(
"stable-diffusion-v1-5/stable-diffusion-v1-5", torch_dtype=torch.float16, variant="fp16", use_safetensors=True
)
pipeline.enable_model_cpu_offload()
# remove following line if xFormers is not installed or you have PyTorch 2.0 or higher installed
pipeline.enable_xformers_memory_efficient_attention()
text2image = pipeline("Astronaut in a jungle, cold color palette, muted colors, detailed, 8k").images[0]
text2image
```
Now you can pass this generated image to the image-to-image pipeline:
```py
pipeline = AutoPipelineForImage2Image.from_pretrained(
"kandinsky-community/kandinsky-2-2-decoder", torch_dtype=torch.float16, use_safetensors=True
)
pipeline.enable_model_cpu_offload()
# remove following line if xFormers is not installed or you have PyTorch 2.0 or higher installed
pipeline.enable_xformers_memory_efficient_attention()
image2image = pipeline("Astronaut in a jungle, cold color palette, muted colors, detailed, 8k", image=text2image).images[0]
make_image_grid([text2image, image2image], rows=1, cols=2)
```
### Image-to-image-to-image
You can also chain multiple image-to-image pipelines together to create more interesting images. This can be useful for iteratively performing style transfer on an image, generating short GIFs, restoring color to an image, or restoring missing areas of an image.
Start by generating an image:
```py
import torch
from diffusers import AutoPipelineForImage2Image
from diffusers.utils import make_image_grid, load_image
pipeline = AutoPipelineForImage2Image.from_pretrained(
"stable-diffusion-v1-5/stable-diffusion-v1-5", torch_dtype=torch.float16, variant="fp16", use_safetensors=True
)
pipeline.enable_model_cpu_offload()
# remove following line if xFormers is not installed or you have PyTorch 2.0 or higher installed
pipeline.enable_xformers_memory_efficient_attention()
# prepare image
url = "https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/diffusers/img2img-init.png"
init_image = load_image(url)
prompt = "Astronaut in a jungle, cold color palette, muted colors, detailed, 8k"
# pass prompt and image to pipeline
image = pipeline(prompt, image=init_image, output_type="latent").images[0]
```
<Tip>
It is important to specify `output_type="latent"` in the pipeline to keep all the outputs in latent space to avoid an unnecessary decode-encode step. This only works if the chained pipelines are using the same VAE.
</Tip>
Pass the latent output from this pipeline to the next pipeline to generate an image in a [comic book art style](https://huggingface.co/ogkalu/Comic-Diffusion):
```py
pipeline = AutoPipelineForImage2Image.from_pretrained(
"ogkalu/Comic-Diffusion", torch_dtype=torch.float16
)
pipeline.enable_model_cpu_offload()
# remove following line if xFormers is not installed or you have PyTorch 2.0 or higher installed
pipeline.enable_xformers_memory_efficient_attention()
# need to include the token "charliebo artstyle" in the prompt to use this checkpoint
image = pipeline("Astronaut in a jungle, charliebo artstyle", image=image, output_type="latent").images[0]
```
Repeat one more time to generate the final image in a [pixel art style](https://huggingface.co/kohbanye/pixel-art-style):
```py
pipeline = AutoPipelineForImage2Image.from_pretrained(
"kohbanye/pixel-art-style", torch_dtype=torch.float16
)
pipeline.enable_model_cpu_offload()
# remove following line if xFormers is not installed or you have PyTorch 2.0 or higher installed
pipeline.enable_xformers_memory_efficient_attention()
# need to include the token "pixelartstyle" in the prompt to use this checkpoint
image = pipeline("Astronaut in a jungle, pixelartstyle", image=image).images[0]
make_image_grid([init_image, image], rows=1, cols=2)
```
### Image-to-upscaler-to-super-resolution
Another way you can chain your image-to-image pipeline is with an upscaler and super-resolution pipeline to really increase the level of details in an image.
Start with an image-to-image pipeline:
```py
import torch
from diffusers import AutoPipelineForImage2Image
from diffusers.utils import make_image_grid, load_image
pipeline = AutoPipelineForImage2Image.from_pretrained(
"stable-diffusion-v1-5/stable-diffusion-v1-5", torch_dtype=torch.float16, variant="fp16", use_safetensors=True
)
pipeline.enable_model_cpu_offload()
# remove following line if xFormers is not installed or you have PyTorch 2.0 or higher installed
pipeline.enable_xformers_memory_efficient_attention()
# prepare image
url = "https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/diffusers/img2img-init.png"
init_image = load_image(url)
prompt = "Astronaut in a jungle, cold color palette, muted colors, detailed, 8k"
# pass prompt and image to pipeline
image_1 = pipeline(prompt, image=init_image, output_type="latent").images[0]
```
<Tip>
It is important to specify `output_type="latent"` in the pipeline to keep all the outputs in *latent* space to avoid an unnecessary decode-encode step. This only works if the chained pipelines are using the same VAE.
</Tip>
Chain it to an upscaler pipeline to increase the image resolution:
```py
from diffusers import StableDiffusionLatentUpscalePipeline
upscaler = StableDiffusionLatentUpscalePipeline.from_pretrained(
"stabilityai/sd-x2-latent-upscaler", torch_dtype=torch.float16, variant="fp16", use_safetensors=True
)
upscaler.enable_model_cpu_offload()
upscaler.enable_xformers_memory_efficient_attention()
image_2 = upscaler(prompt, image=image_1, output_type="latent").images[0]
```
Finally, chain it to a super-resolution pipeline to further enhance the resolution:
```py
from diffusers import StableDiffusionUpscalePipeline
super_res = StableDiffusionUpscalePipeline.from_pretrained(
"stabilityai/stable-diffusion-x4-upscaler", torch_dtype=torch.float16, variant="fp16", use_safetensors=True
)
super_res.enable_model_cpu_offload()
super_res.enable_xformers_memory_efficient_attention()
image_3 = super_res(prompt, image=image_2).images[0]
make_image_grid([init_image, image_3.resize((512, 512))], rows=1, cols=2)
```
## Control image generation
Trying to generate an image that looks exactly the way you want can be difficult, which is why controlled generation techniques and models are so useful. While you can use the `negative_prompt` to partially control image generation, there are more robust methods like prompt weighting and ControlNets.
### Prompt weighting
Prompt weighting allows you to scale the representation of each concept in a prompt. For example, in a prompt like "Astronaut in a jungle, cold color palette, muted colors, detailed, 8k", you can choose to increase or decrease the embeddings of "astronaut" and "jungle". The [Compel](https://github.com/damian0815/compel) library provides a simple syntax for adjusting prompt weights and generating the embeddings. You can learn how to create the embeddings in the [Prompt weighting](weighted_prompts) guide.
[`AutoPipelineForImage2Image`] has a `prompt_embeds` (and `negative_prompt_embeds` if you're using a negative prompt) parameter where you can pass the embeddings which replaces the `prompt` parameter.
```py
from diffusers import AutoPipelineForImage2Image
import torch
pipeline = AutoPipelineForImage2Image.from_pretrained(
"stable-diffusion-v1-5/stable-diffusion-v1-5", torch_dtype=torch.float16, variant="fp16", use_safetensors=True
)
pipeline.enable_model_cpu_offload()
# remove following line if xFormers is not installed or you have PyTorch 2.0 or higher installed
pipeline.enable_xformers_memory_efficient_attention()
image = pipeline(prompt_embeds=prompt_embeds, # generated from Compel
negative_prompt_embeds=negative_prompt_embeds, # generated from Compel
image=init_image,
).images[0]
```
### ControlNet
ControlNets provide a more flexible and accurate way to control image generation because you can use an additional conditioning image. The conditioning image can be a canny image, depth map, image segmentation, and even scribbles! Whatever type of conditioning image you choose, the ControlNet generates an image that preserves the information in it.
For example, let's condition an image with a depth map to keep the spatial information in the image.
```py
from diffusers.utils import load_image, make_image_grid
# prepare image
url = "https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/diffusers/img2img-init.png"
init_image = load_image(url)
init_image = init_image.resize((958, 960)) # resize to depth image dimensions
depth_image = load_image("https://huggingface.co/lllyasviel/control_v11f1p_sd15_depth/resolve/main/images/control.png")
make_image_grid([init_image, depth_image], rows=1, cols=2)
```
Load a ControlNet model conditioned on depth maps and the [`AutoPipelineForImage2Image`]:
```py
from diffusers import ControlNetModel, AutoPipelineForImage2Image
import torch
controlnet = ControlNetModel.from_pretrained("lllyasviel/control_v11f1p_sd15_depth", torch_dtype=torch.float16, variant="fp16", use_safetensors=True)
pipeline = AutoPipelineForImage2Image.from_pretrained(
"stable-diffusion-v1-5/stable-diffusion-v1-5", controlnet=controlnet, torch_dtype=torch.float16, variant="fp16", use_safetensors=True
)
pipeline.enable_model_cpu_offload()
# remove following line if xFormers is not installed or you have PyTorch 2.0 or higher installed
pipeline.enable_xformers_memory_efficient_attention()
```
Now generate a new image conditioned on the depth map, initial image, and prompt:
```py
prompt = "Astronaut in a jungle, cold color palette, muted colors, detailed, 8k"
image_control_net = pipeline(prompt, image=init_image, control_image=depth_image).images[0]
make_image_grid([init_image, depth_image, image_control_net], rows=1, cols=3)
```
<div class="flex flex-row gap-4">
<div class="flex-1">
<img class="rounded-xl" src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/diffusers/img2img-init.png"/>
<figcaption class="mt-2 text-center text-sm text-gray-500">initial image</figcaption>
</div>
<div class="flex-1">
<img class="rounded-xl" src="https://huggingface.co/lllyasviel/control_v11f1p_sd15_depth/resolve/main/images/control.png"/>
<figcaption class="mt-2 text-center text-sm text-gray-500">depth image</figcaption>
</div>
<div class="flex-1">
<img class="rounded-xl" src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/diffusers/img2img-controlnet.png"/>
<figcaption class="mt-2 text-center text-sm text-gray-500">ControlNet image</figcaption>
</div>
</div>
Let's apply a new [style](https://huggingface.co/nitrosocke/elden-ring-diffusion) to the image generated from the ControlNet by chaining it with an image-to-image pipeline:
```py
pipeline = AutoPipelineForImage2Image.from_pretrained(
"nitrosocke/elden-ring-diffusion", torch_dtype=torch.float16,
)
pipeline.enable_model_cpu_offload()
# remove following line if xFormers is not installed or you have PyTorch 2.0 or higher installed
pipeline.enable_xformers_memory_efficient_attention()
prompt = "elden ring style astronaut in a jungle" # include the token "elden ring style" in the prompt
negative_prompt = "ugly, deformed, disfigured, poor details, bad anatomy"
image_elden_ring = pipeline(prompt, negative_prompt=negative_prompt, image=image_control_net, strength=0.45, guidance_scale=10.5).images[0]
make_image_grid([init_image, depth_image, image_control_net, image_elden_ring], rows=2, cols=2)
```
<div class="flex justify-center">
<img src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/diffusers/img2img-elden-ring.png">
</div>
## Optimize
Running diffusion models is computationally expensive and intensive, but with a few optimization tricks, it is entirely possible to run them on consumer and free-tier GPUs. For example, you can use a more memory-efficient form of attention such as PyTorch 2.0's [scaled-dot product attention](../optimization/torch2.0#scaled-dot-product-attention) or [xFormers](../optimization/xformers) (you can use one or the other, but there's no need to use both). You can also offload the model to the GPU while the other pipeline components wait on the CPU.
```diff
+ pipeline.enable_model_cpu_offload()
+ pipeline.enable_xformers_memory_efficient_attention()
```
With [`torch.compile`](../optimization/torch2.0#torchcompile), you can boost your inference speed even more by wrapping your UNet with it:
```py
pipeline.unet = torch.compile(pipeline.unet, mode="reduce-overhead", fullgraph=True)
```
To learn more, take a look at the [Reduce memory usage](../optimization/memory) and [Torch 2.0](../optimization/torch2.0) guides.
<!--Copyright 2024 The HuggingFace Team. All rights reserved.
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
the License. You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on
an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the
specific language governing permissions and limitations under the License.
-->
# Latent Consistency Model
[[open-in-colab]]
[Latent Consistency Models (LCMs)](https://hf.co/papers/2310.04378) enable fast high-quality image generation by directly predicting the reverse diffusion process in the latent rather than pixel space. In other words, LCMs try to predict the noiseless image from the noisy image in contrast to typical diffusion models that iteratively remove noise from the noisy image. By avoiding the iterative sampling process, LCMs are able to generate high-quality images in 2-4 steps instead of 20-30 steps.
LCMs are distilled from pretrained models which requires ~32 hours of A100 compute. To speed this up, [LCM-LoRAs](https://hf.co/papers/2311.05556) train a [LoRA adapter](https://huggingface.co/docs/peft/conceptual_guides/adapter#low-rank-adaptation-lora) which have much fewer parameters to train compared to the full model. The LCM-LoRA can be plugged into a diffusion model once it has been trained.
This guide will show you how to use LCMs and LCM-LoRAs for fast inference on tasks and how to use them with other adapters like ControlNet or T2I-Adapter.
> [!TIP]
> LCMs and LCM-LoRAs are available for Stable Diffusion v1.5, Stable Diffusion XL, and the SSD-1B model. You can find their checkpoints on the [Latent Consistency](https://hf.co/collections/latent-consistency/latent-consistency-models-weights-654ce61a95edd6dffccef6a8) Collections.
## Text-to-image
<hfoptions id="lcm-text2img">
<hfoption id="LCM">
To use LCMs, you need to load the LCM checkpoint for your supported model into [`UNet2DConditionModel`] and replace the scheduler with the [`LCMScheduler`]. Then you can use the pipeline as usual, and pass a text prompt to generate an image in just 4 steps.
A couple of notes to keep in mind when using LCMs are:
* Typically, batch size is doubled inside the pipeline for classifier-free guidance. But LCM applies guidance with guidance embeddings and doesn't need to double the batch size, which leads to faster inference. The downside is that negative prompts don't work with LCM because they don't have any effect on the denoising process.
* The ideal range for `guidance_scale` is [3., 13.] because that is what the UNet was trained with. However, disabling `guidance_scale` with a value of 1.0 is also effective in most cases.
```python
from diffusers import StableDiffusionXLPipeline, UNet2DConditionModel, LCMScheduler
import torch
unet = UNet2DConditionModel.from_pretrained(
"latent-consistency/lcm-sdxl",
torch_dtype=torch.float16,
variant="fp16",
)
pipe = StableDiffusionXLPipeline.from_pretrained(
"stabilityai/stable-diffusion-xl-base-1.0", unet=unet, torch_dtype=torch.float16, variant="fp16",
).to("cuda")
pipe.scheduler = LCMScheduler.from_config(pipe.scheduler.config)
prompt = "Self-portrait oil painting, a beautiful cyborg with golden hair, 8k"
generator = torch.manual_seed(0)
image = pipe(
prompt=prompt, num_inference_steps=4, generator=generator, guidance_scale=8.0
).images[0]
image
```
<div class="flex justify-center">
<img src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/diffusers/lcm/lcm_full_sdxl_t2i.png"/>
</div>
</hfoption>
<hfoption id="LCM-LoRA">
To use LCM-LoRAs, you need to replace the scheduler with the [`LCMScheduler`] and load the LCM-LoRA weights with the [`~loaders.StableDiffusionLoraLoaderMixin.load_lora_weights`] method. Then you can use the pipeline as usual, and pass a text prompt to generate an image in just 4 steps.
A couple of notes to keep in mind when using LCM-LoRAs are:
* Typically, batch size is doubled inside the pipeline for classifier-free guidance. But LCM applies guidance with guidance embeddings and doesn't need to double the batch size, which leads to faster inference. The downside is that negative prompts don't work with LCM because they don't have any effect on the denoising process.
* You could use guidance with LCM-LoRAs, but it is very sensitive to high `guidance_scale` values and can lead to artifacts in the generated image. The best values we've found are between [1.0, 2.0].
* Replace [stabilityai/stable-diffusion-xl-base-1.0](https://hf.co/stabilityai/stable-diffusion-xl-base-1.0) with any finetuned model. For example, try using the [animagine-xl](https://huggingface.co/Linaqruf/animagine-xl) checkpoint to generate anime images with SDXL.
```py
import torch
from diffusers import DiffusionPipeline, LCMScheduler
pipe = DiffusionPipeline.from_pretrained(
"stabilityai/stable-diffusion-xl-base-1.0",
variant="fp16",
torch_dtype=torch.float16
).to("cuda")
pipe.scheduler = LCMScheduler.from_config(pipe.scheduler.config)
pipe.load_lora_weights("latent-consistency/lcm-lora-sdxl")
prompt = "Self-portrait oil painting, a beautiful cyborg with golden hair, 8k"
generator = torch.manual_seed(42)
image = pipe(
prompt=prompt, num_inference_steps=4, generator=generator, guidance_scale=1.0
).images[0]
image
```
<div class="flex justify-center">
<img src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/diffusers/lcm/lcm_sdxl_t2i.png"/>
</div>
</hfoption>
</hfoptions>
## Image-to-image
<hfoptions id="lcm-img2img">
<hfoption id="LCM">
To use LCMs for image-to-image, you need to load the LCM checkpoint for your supported model into [`UNet2DConditionModel`] and replace the scheduler with the [`LCMScheduler`]. Then you can use the pipeline as usual, and pass a text prompt and initial image to generate an image in just 4 steps.
> [!TIP]
> Experiment with different values for `num_inference_steps`, `strength`, and `guidance_scale` to get the best results.
```python
import torch
from diffusers import AutoPipelineForImage2Image, UNet2DConditionModel, LCMScheduler
from diffusers.utils import load_image
unet = UNet2DConditionModel.from_pretrained(
"SimianLuo/LCM_Dreamshaper_v7",
subfolder="unet",
torch_dtype=torch.float16,
)
pipe = AutoPipelineForImage2Image.from_pretrained(
"Lykon/dreamshaper-7",
unet=unet,
torch_dtype=torch.float16,
variant="fp16",
).to("cuda")
pipe.scheduler = LCMScheduler.from_config(pipe.scheduler.config)
init_image = load_image("https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/diffusers/img2img-init.png")
prompt = "Astronauts in a jungle, cold color palette, muted colors, detailed, 8k"
generator = torch.manual_seed(0)
image = pipe(
prompt,
image=init_image,
num_inference_steps=4,
guidance_scale=7.5,
strength=0.5,
generator=generator
).images[0]
image
```
<div class="flex gap-4">
<div>
<img class="rounded-xl" src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/diffusers/img2img-init.png"/>
<figcaption class="mt-2 text-center text-sm text-gray-500">initial image</figcaption>
</div>
<div>
<img class="rounded-xl" src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/diffusers/lcm-img2img.png"/>
<figcaption class="mt-2 text-center text-sm text-gray-500">generated image</figcaption>
</div>
</div>
</hfoption>
<hfoption id="LCM-LoRA">
To use LCM-LoRAs for image-to-image, you need to replace the scheduler with the [`LCMScheduler`] and load the LCM-LoRA weights with the [`~loaders.StableDiffusionLoraLoaderMixin.load_lora_weights`] method. Then you can use the pipeline as usual, and pass a text prompt and initial image to generate an image in just 4 steps.
> [!TIP]
> Experiment with different values for `num_inference_steps`, `strength`, and `guidance_scale` to get the best results.
```py
import torch
from diffusers import AutoPipelineForImage2Image, LCMScheduler
from diffusers.utils import make_image_grid, load_image
pipe = AutoPipelineForImage2Image.from_pretrained(
"Lykon/dreamshaper-7",
torch_dtype=torch.float16,
variant="fp16",
).to("cuda")
pipe.scheduler = LCMScheduler.from_config(pipe.scheduler.config)
pipe.load_lora_weights("latent-consistency/lcm-lora-sdv1-5")
init_image = load_image("https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/diffusers/img2img-init.png")
prompt = "Astronauts in a jungle, cold color palette, muted colors, detailed, 8k"
generator = torch.manual_seed(0)
image = pipe(
prompt,
image=init_image,
num_inference_steps=4,
guidance_scale=1,
strength=0.6,
generator=generator
).images[0]
image
```
<div class="flex gap-4">
<div>
<img class="rounded-xl" src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/diffusers/img2img-init.png"/>
<figcaption class="mt-2 text-center text-sm text-gray-500">initial image</figcaption>
</div>
<div>
<img class="rounded-xl" src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/diffusers/lcm-lora-img2img.png"/>
<figcaption class="mt-2 text-center text-sm text-gray-500">generated image</figcaption>
</div>
</div>
</hfoption>
</hfoptions>
## Inpainting
To use LCM-LoRAs for inpainting, you need to replace the scheduler with the [`LCMScheduler`] and load the LCM-LoRA weights with the [`~loaders.StableDiffusionLoraLoaderMixin.load_lora_weights`] method. Then you can use the pipeline as usual, and pass a text prompt, initial image, and mask image to generate an image in just 4 steps.
```py
import torch
from diffusers import AutoPipelineForInpainting, LCMScheduler
from diffusers.utils import load_image, make_image_grid
pipe = AutoPipelineForInpainting.from_pretrained(
"runwayml/stable-diffusion-inpainting",
torch_dtype=torch.float16,
variant="fp16",
).to("cuda")
pipe.scheduler = LCMScheduler.from_config(pipe.scheduler.config)
pipe.load_lora_weights("latent-consistency/lcm-lora-sdv1-5")
init_image = load_image("https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/diffusers/inpaint.png")
mask_image = load_image("https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/diffusers/inpaint_mask.png")
prompt = "concept art digital painting of an elven castle, inspired by lord of the rings, highly detailed, 8k"
generator = torch.manual_seed(0)
image = pipe(
prompt=prompt,
image=init_image,
mask_image=mask_image,
generator=generator,
num_inference_steps=4,
guidance_scale=4,
).images[0]
image
```
<div class="flex gap-4">
<div>
<img class="rounded-xl" src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/diffusers/inpaint.png"/>
<figcaption class="mt-2 text-center text-sm text-gray-500">initial image</figcaption>
</div>
<div>
<img class="rounded-xl" src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/diffusers/lcm-lora-inpaint.png"/>
<figcaption class="mt-2 text-center text-sm text-gray-500">generated image</figcaption>
</div>
</div>
## Adapters
LCMs are compatible with adapters like LoRA, ControlNet, T2I-Adapter, and AnimateDiff. You can bring the speed of LCMs to these adapters to generate images in a certain style or condition the model on another input like a canny image.
### LoRA
[LoRA](../using-diffusers/loading_adapters#lora) adapters can be rapidly finetuned to learn a new style from just a few images and plugged into a pretrained model to generate images in that style.
<hfoptions id="lcm-lora">
<hfoption id="LCM">
Load the LCM checkpoint for your supported model into [`UNet2DConditionModel`] and replace the scheduler with the [`LCMScheduler`]. Then you can use the [`~loaders.StableDiffusionLoraLoaderMixin.load_lora_weights`] method to load the LoRA weights into the LCM and generate a styled image in a few steps.
```python
from diffusers import StableDiffusionXLPipeline, UNet2DConditionModel, LCMScheduler
import torch
unet = UNet2DConditionModel.from_pretrained(
"latent-consistency/lcm-sdxl",
torch_dtype=torch.float16,
variant="fp16",
)
pipe = StableDiffusionXLPipeline.from_pretrained(
"stabilityai/stable-diffusion-xl-base-1.0", unet=unet, torch_dtype=torch.float16, variant="fp16",
).to("cuda")
pipe.scheduler = LCMScheduler.from_config(pipe.scheduler.config)
pipe.load_lora_weights("TheLastBen/Papercut_SDXL", weight_name="papercut.safetensors", adapter_name="papercut")
prompt = "papercut, a cute fox"
generator = torch.manual_seed(0)
image = pipe(
prompt=prompt, num_inference_steps=4, generator=generator, guidance_scale=8.0
).images[0]
image
```
<div class="flex justify-center">
<img src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/diffusers/lcm/lcm_full_sdx_lora_mix.png"/>
</div>
</hfoption>
<hfoption id="LCM-LoRA">
Replace the scheduler with the [`LCMScheduler`]. Then you can use the [`~loaders.StableDiffusionLoraLoaderMixin.load_lora_weights`] method to load the LCM-LoRA weights and the style LoRA you want to use. Combine both LoRA adapters with the [`~loaders.UNet2DConditionLoadersMixin.set_adapters`] method and generate a styled image in a few steps.
```py
import torch
from diffusers import DiffusionPipeline, LCMScheduler
pipe = DiffusionPipeline.from_pretrained(
"stabilityai/stable-diffusion-xl-base-1.0",
variant="fp16",
torch_dtype=torch.float16
).to("cuda")
pipe.scheduler = LCMScheduler.from_config(pipe.scheduler.config)
pipe.load_lora_weights("latent-consistency/lcm-lora-sdxl", adapter_name="lcm")
pipe.load_lora_weights("TheLastBen/Papercut_SDXL", weight_name="papercut.safetensors", adapter_name="papercut")
pipe.set_adapters(["lcm", "papercut"], adapter_weights=[1.0, 0.8])
prompt = "papercut, a cute fox"
generator = torch.manual_seed(0)
image = pipe(prompt, num_inference_steps=4, guidance_scale=1, generator=generator).images[0]
image
```
<div class="flex justify-center">
<img src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/diffusers/lcm/lcm_sdx_lora_mix.png"/>
</div>
</hfoption>
</hfoptions>
### ControlNet
[ControlNet](./controlnet) are adapters that can be trained on a variety of inputs like canny edge, pose estimation, or depth. The ControlNet can be inserted into the pipeline to provide additional conditioning and control to the model for more accurate generation.
You can find additional ControlNet models trained on other inputs in [lllyasviel's](https://hf.co/lllyasviel) repository.
<hfoptions id="lcm-controlnet">
<hfoption id="LCM">
Load a ControlNet model trained on canny images and pass it to the [`ControlNetModel`]. Then you can load a LCM model into [`StableDiffusionControlNetPipeline`] and replace the scheduler with the [`LCMScheduler`]. Now pass the canny image to the pipeline and generate an image.
> [!TIP]
> Experiment with different values for `num_inference_steps`, `controlnet_conditioning_scale`, `cross_attention_kwargs`, and `guidance_scale` to get the best results.
```python
import torch
import cv2
import numpy as np
from PIL import Image
from diffusers import StableDiffusionControlNetPipeline, ControlNetModel, LCMScheduler
from diffusers.utils import load_image, make_image_grid
image = load_image(
"https://hf.co/datasets/huggingface/documentation-images/resolve/main/diffusers/input_image_vermeer.png"
).resize((512, 512))
image = np.array(image)
low_threshold = 100
high_threshold = 200
image = cv2.Canny(image, low_threshold, high_threshold)
image = image[:, :, None]
image = np.concatenate([image, image, image], axis=2)
canny_image = Image.fromarray(image)
controlnet = ControlNetModel.from_pretrained("lllyasviel/sd-controlnet-canny", torch_dtype=torch.float16)
pipe = StableDiffusionControlNetPipeline.from_pretrained(
"SimianLuo/LCM_Dreamshaper_v7",
controlnet=controlnet,
torch_dtype=torch.float16,
safety_checker=None,
).to("cuda")
pipe.scheduler = LCMScheduler.from_config(pipe.scheduler.config)
generator = torch.manual_seed(0)
image = pipe(
"the mona lisa",
image=canny_image,
num_inference_steps=4,
generator=generator,
).images[0]
make_image_grid([canny_image, image], rows=1, cols=2)
```
<div class="flex justify-center">
<img src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/diffusers/lcm/lcm_full_sdv1-5_controlnet.png"/>
</div>
</hfoption>
<hfoption id="LCM-LoRA">
Load a ControlNet model trained on canny images and pass it to the [`ControlNetModel`]. Then you can load a Stable Diffusion v1.5 model into [`StableDiffusionControlNetPipeline`] and replace the scheduler with the [`LCMScheduler`]. Use the [`~loaders.StableDiffusionLoraLoaderMixin.load_lora_weights`] method to load the LCM-LoRA weights, and pass the canny image to the pipeline and generate an image.
> [!TIP]
> Experiment with different values for `num_inference_steps`, `controlnet_conditioning_scale`, `cross_attention_kwargs`, and `guidance_scale` to get the best results.
```py
import torch
import cv2
import numpy as np
from PIL import Image
from diffusers import StableDiffusionControlNetPipeline, ControlNetModel, LCMScheduler
from diffusers.utils import load_image
image = load_image(
"https://hf.co/datasets/huggingface/documentation-images/resolve/main/diffusers/input_image_vermeer.png"
).resize((512, 512))
image = np.array(image)
low_threshold = 100
high_threshold = 200
image = cv2.Canny(image, low_threshold, high_threshold)
image = image[:, :, None]
image = np.concatenate([image, image, image], axis=2)
canny_image = Image.fromarray(image)
controlnet = ControlNetModel.from_pretrained("lllyasviel/sd-controlnet-canny", torch_dtype=torch.float16)
pipe = StableDiffusionControlNetPipeline.from_pretrained(
"stable-diffusion-v1-5/stable-diffusion-v1-5",
controlnet=controlnet,
torch_dtype=torch.float16,
safety_checker=None,
variant="fp16"
).to("cuda")
pipe.scheduler = LCMScheduler.from_config(pipe.scheduler.config)
pipe.load_lora_weights("latent-consistency/lcm-lora-sdv1-5")
generator = torch.manual_seed(0)
image = pipe(
"the mona lisa",
image=canny_image,
num_inference_steps=4,
guidance_scale=1.5,
controlnet_conditioning_scale=0.8,
cross_attention_kwargs={"scale": 1},
generator=generator,
).images[0]
image
```
<div class="flex justify-center">
<img src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/diffusers/lcm/lcm_sdv1-5_controlnet.png"/>
</div>
</hfoption>
</hfoptions>
### T2I-Adapter
[T2I-Adapter](./t2i_adapter) is an even more lightweight adapter than ControlNet, that provides an additional input to condition a pretrained model with. It is faster than ControlNet but the results may be slightly worse.
You can find additional T2I-Adapter checkpoints trained on other inputs in [TencentArc's](https://hf.co/TencentARC) repository.
<hfoptions id="lcm-t2i">
<hfoption id="LCM">
Load a T2IAdapter trained on canny images and pass it to the [`StableDiffusionXLAdapterPipeline`]. Then load a LCM checkpoint into [`UNet2DConditionModel`] and replace the scheduler with the [`LCMScheduler`]. Now pass the canny image to the pipeline and generate an image.
```python
import torch
import cv2
import numpy as np
from PIL import Image
from diffusers import StableDiffusionXLAdapterPipeline, UNet2DConditionModel, T2IAdapter, LCMScheduler
from diffusers.utils import load_image, make_image_grid
# detect the canny map in low resolution to avoid high-frequency details
image = load_image(
"https://hf.co/datasets/huggingface/documentation-images/resolve/main/diffusers/input_image_vermeer.png"
).resize((384, 384))
image = np.array(image)
low_threshold = 100
high_threshold = 200
image = cv2.Canny(image, low_threshold, high_threshold)
image = image[:, :, None]
image = np.concatenate([image, image, image], axis=2)
canny_image = Image.fromarray(image).resize((1024, 1216))
adapter = T2IAdapter.from_pretrained("TencentARC/t2i-adapter-canny-sdxl-1.0", torch_dtype=torch.float16, varient="fp16").to("cuda")
unet = UNet2DConditionModel.from_pretrained(
"latent-consistency/lcm-sdxl",
torch_dtype=torch.float16,
variant="fp16",
)
pipe = StableDiffusionXLAdapterPipeline.from_pretrained(
"stabilityai/stable-diffusion-xl-base-1.0",
unet=unet,
adapter=adapter,
torch_dtype=torch.float16,
variant="fp16",
).to("cuda")
pipe.scheduler = LCMScheduler.from_config(pipe.scheduler.config)
prompt = "the mona lisa, 4k picture, high quality"
negative_prompt = "extra digit, fewer digits, cropped, worst quality, low quality, glitch, deformed, mutated, ugly, disfigured"
generator = torch.manual_seed(0)
image = pipe(
prompt=prompt,
negative_prompt=negative_prompt,
image=canny_image,
num_inference_steps=4,
guidance_scale=5,
adapter_conditioning_scale=0.8,
adapter_conditioning_factor=1,
generator=generator,
).images[0]
```
<div class="flex justify-center">
<img src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/diffusers/lcm-t2i.png"/>
</div>
</hfoption>
<hfoption id="LCM-LoRA">
Load a T2IAdapter trained on canny images and pass it to the [`StableDiffusionXLAdapterPipeline`]. Replace the scheduler with the [`LCMScheduler`], and use the [`~loaders.StableDiffusionLoraLoaderMixin.load_lora_weights`] method to load the LCM-LoRA weights. Pass the canny image to the pipeline and generate an image.
```py
import torch
import cv2
import numpy as np
from PIL import Image
from diffusers import StableDiffusionXLAdapterPipeline, UNet2DConditionModel, T2IAdapter, LCMScheduler
from diffusers.utils import load_image, make_image_grid
# detect the canny map in low resolution to avoid high-frequency details
image = load_image(
"https://hf.co/datasets/huggingface/documentation-images/resolve/main/diffusers/input_image_vermeer.png"
).resize((384, 384))
image = np.array(image)
low_threshold = 100
high_threshold = 200
image = cv2.Canny(image, low_threshold, high_threshold)
image = image[:, :, None]
image = np.concatenate([image, image, image], axis=2)
canny_image = Image.fromarray(image).resize((1024, 1024))
adapter = T2IAdapter.from_pretrained("TencentARC/t2i-adapter-canny-sdxl-1.0", torch_dtype=torch.float16, varient="fp16").to("cuda")
pipe = StableDiffusionXLAdapterPipeline.from_pretrained(
"stabilityai/stable-diffusion-xl-base-1.0",
adapter=adapter,
torch_dtype=torch.float16,
variant="fp16",
).to("cuda")
pipe.scheduler = LCMScheduler.from_config(pipe.scheduler.config)
pipe.load_lora_weights("latent-consistency/lcm-lora-sdxl")
prompt = "the mona lisa, 4k picture, high quality"
negative_prompt = "extra digit, fewer digits, cropped, worst quality, low quality, glitch, deformed, mutated, ugly, disfigured"
generator = torch.manual_seed(0)
image = pipe(
prompt=prompt,
negative_prompt=negative_prompt,
image=canny_image,
num_inference_steps=4,
guidance_scale=1.5,
adapter_conditioning_scale=0.8,
adapter_conditioning_factor=1,
generator=generator,
).images[0]
```
<div class="flex justify-center">
<img src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/diffusers/lcm-lora-t2i.png"/>
</div>
</hfoption>
</hfoptions>
### AnimateDiff
[AnimateDiff](../api/pipelines/animatediff) is an adapter that adds motion to an image. It can be used with most Stable Diffusion models, effectively turning them into "video generation" models. Generating good results with a video model usually requires generating multiple frames (16-24), which can be very slow with a regular Stable Diffusion model. LCM-LoRA can speed up this process by only taking 4-8 steps for each frame.
Load a [`AnimateDiffPipeline`] and pass a [`MotionAdapter`] to it. Then replace the scheduler with the [`LCMScheduler`], and combine both LoRA adapters with the [`~loaders.UNet2DConditionLoadersMixin.set_adapters`] method. Now you can pass a prompt to the pipeline and generate an animated image.
```py
import torch
from diffusers import MotionAdapter, AnimateDiffPipeline, DDIMScheduler, LCMScheduler
from diffusers.utils import export_to_gif
adapter = MotionAdapter.from_pretrained("guoyww/animatediff-motion-adapter-v1-5")
pipe = AnimateDiffPipeline.from_pretrained(
"frankjoshua/toonyou_beta6",
motion_adapter=adapter,
).to("cuda")
# set scheduler
pipe.scheduler = LCMScheduler.from_config(pipe.scheduler.config)
# load LCM-LoRA
pipe.load_lora_weights("latent-consistency/lcm-lora-sdv1-5", adapter_name="lcm")
pipe.load_lora_weights("guoyww/animatediff-motion-lora-zoom-in", weight_name="diffusion_pytorch_model.safetensors", adapter_name="motion-lora")
pipe.set_adapters(["lcm", "motion-lora"], adapter_weights=[0.55, 1.2])
prompt = "best quality, masterpiece, 1girl, looking at viewer, blurry background, upper body, contemporary, dress"
generator = torch.manual_seed(0)
frames = pipe(
prompt=prompt,
num_inference_steps=5,
guidance_scale=1.25,
cross_attention_kwargs={"scale": 1},
num_frames=24,
generator=generator
).frames[0]
export_to_gif(frames, "animation.gif")
```
<div class="flex justify-center">
<img src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/diffusers/lcm-lora-animatediff.gif"/>
</div>
<!--Copyright 2024 The HuggingFace Team. All rights reserved.
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
the License. You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on
an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the
specific language governing permissions and limitations under the License.
-->
[[open-in-colab]]
# Trajectory Consistency Distillation-LoRA
Trajectory Consistency Distillation (TCD) enables a model to generate higher quality and more detailed images with fewer steps. Moreover, owing to the effective error mitigation during the distillation process, TCD demonstrates superior performance even under conditions of large inference steps.
The major advantages of TCD are:
- Better than Teacher: TCD demonstrates superior generative quality at both small and large inference steps and exceeds the performance of [DPM-Solver++(2S)](../../api/schedulers/multistep_dpm_solver) with Stable Diffusion XL (SDXL). There is no additional discriminator or LPIPS supervision included during TCD training.
- Flexible Inference Steps: The inference steps for TCD sampling can be freely adjusted without adversely affecting the image quality.
- Freely change detail level: During inference, the level of detail in the image can be adjusted with a single hyperparameter, *gamma*.
> [!TIP]
> For more technical details of TCD, please refer to the [paper](https://arxiv.org/abs/2402.19159) or official [project page](https://mhh0318.github.io/tcd/)).
For large models like SDXL, TCD is trained with [LoRA](https://huggingface.co/docs/peft/conceptual_guides/adapter#low-rank-adaptation-lora) to reduce memory usage. This is also useful because you can reuse LoRAs between different finetuned models, as long as they share the same base model, without further training.
This guide will show you how to perform inference with TCD-LoRAs for a variety of tasks like text-to-image and inpainting, as well as how you can easily combine TCD-LoRAs with other adapters. Choose one of the supported base model and it's corresponding TCD-LoRA checkpoint from the table below to get started.
| Base model | TCD-LoRA checkpoint |
|-------------------------------------------------------------------------------------------------|----------------------------------------------------------------|
| [stable-diffusion-v1-5](https://huggingface.co/stable-diffusion-v1-5/stable-diffusion-v1-5) | [TCD-SD15](https://huggingface.co/h1t/TCD-SD15-LoRA) |
| [stable-diffusion-2-1-base](https://huggingface.co/stabilityai/stable-diffusion-2-1-base) | [TCD-SD21-base](https://huggingface.co/h1t/TCD-SD21-base-LoRA) |
| [stable-diffusion-xl-base-1.0](https://huggingface.co/stabilityai/stable-diffusion-xl-base-1.0) | [TCD-SDXL](https://huggingface.co/h1t/TCD-SDXL-LoRA) |
Make sure you have [PEFT](https://github.com/huggingface/peft) installed for better LoRA support.
```bash
pip install -U peft
```
## General tasks
In this guide, let's use the [`StableDiffusionXLPipeline`] and the [`TCDScheduler`]. Use the [`~StableDiffusionPipeline.load_lora_weights`] method to load the SDXL-compatible TCD-LoRA weights.
A few tips to keep in mind for TCD-LoRA inference are to:
- Keep the `num_inference_steps` between 4 and 50
- Set `eta` (used to control stochasticity at each step) between 0 and 1. You should use a higher `eta` when increasing the number of inference steps, but the downside is that a larger `eta` in [`TCDScheduler`] leads to blurrier images. A value of 0.3 is recommended to produce good results.
<hfoptions id="tasks">
<hfoption id="text-to-image">
```python
import torch
from diffusers import StableDiffusionXLPipeline, TCDScheduler
device = "cuda"
base_model_id = "stabilityai/stable-diffusion-xl-base-1.0"
tcd_lora_id = "h1t/TCD-SDXL-LoRA"
pipe = StableDiffusionXLPipeline.from_pretrained(base_model_id, torch_dtype=torch.float16, variant="fp16").to(device)
pipe.scheduler = TCDScheduler.from_config(pipe.scheduler.config)
pipe.load_lora_weights(tcd_lora_id)
pipe.fuse_lora()
prompt = "Painting of the orange cat Otto von Garfield, Count of Bismarck-Schönhausen, Duke of Lauenburg, Minister-President of Prussia. Depicted wearing a Prussian Pickelhaube and eating his favorite meal - lasagna."
image = pipe(
prompt=prompt,
num_inference_steps=4,
guidance_scale=0,
eta=0.3,
generator=torch.Generator(device=device).manual_seed(0),
).images[0]
```
![](https://github.com/jabir-zheng/TCD/raw/main/assets/demo_image.png)
</hfoption>
<hfoption id="inpainting">
```python
import torch
from diffusers import AutoPipelineForInpainting, TCDScheduler
from diffusers.utils import load_image, make_image_grid
device = "cuda"
base_model_id = "diffusers/stable-diffusion-xl-1.0-inpainting-0.1"
tcd_lora_id = "h1t/TCD-SDXL-LoRA"
pipe = AutoPipelineForInpainting.from_pretrained(base_model_id, torch_dtype=torch.float16, variant="fp16").to(device)
pipe.scheduler = TCDScheduler.from_config(pipe.scheduler.config)
pipe.load_lora_weights(tcd_lora_id)
pipe.fuse_lora()
img_url = "https://raw.githubusercontent.com/CompVis/latent-diffusion/main/data/inpainting_examples/overture-creations-5sI6fQgYIuo.png"
mask_url = "https://raw.githubusercontent.com/CompVis/latent-diffusion/main/data/inpainting_examples/overture-creations-5sI6fQgYIuo_mask.png"
init_image = load_image(img_url).resize((1024, 1024))
mask_image = load_image(mask_url).resize((1024, 1024))
prompt = "a tiger sitting on a park bench"
image = pipe(
prompt=prompt,
image=init_image,
mask_image=mask_image,
num_inference_steps=8,
guidance_scale=0,
eta=0.3,
strength=0.99, # make sure to use `strength` below 1.0
generator=torch.Generator(device=device).manual_seed(0),
).images[0]
grid_image = make_image_grid([init_image, mask_image, image], rows=1, cols=3)
```
![](https://github.com/jabir-zheng/TCD/raw/main/assets/inpainting_tcd.png)
</hfoption>
</hfoptions>
## Community models
TCD-LoRA also works with many community finetuned models and plugins. For example, load the [animagine-xl-3.0](https://huggingface.co/cagliostrolab/animagine-xl-3.0) checkpoint which is a community finetuned version of SDXL for generating anime images.
```python
import torch
from diffusers import StableDiffusionXLPipeline, TCDScheduler
device = "cuda"
base_model_id = "cagliostrolab/animagine-xl-3.0"
tcd_lora_id = "h1t/TCD-SDXL-LoRA"
pipe = StableDiffusionXLPipeline.from_pretrained(base_model_id, torch_dtype=torch.float16, variant="fp16").to(device)
pipe.scheduler = TCDScheduler.from_config(pipe.scheduler.config)
pipe.load_lora_weights(tcd_lora_id)
pipe.fuse_lora()
prompt = "A man, clad in a meticulously tailored military uniform, stands with unwavering resolve. The uniform boasts intricate details, and his eyes gleam with determination. Strands of vibrant, windswept hair peek out from beneath the brim of his cap."
image = pipe(
prompt=prompt,
num_inference_steps=8,
guidance_scale=0,
eta=0.3,
generator=torch.Generator(device=device).manual_seed(0),
).images[0]
```
![](https://github.com/jabir-zheng/TCD/raw/main/assets/animagine_xl.png)
TCD-LoRA also supports other LoRAs trained on different styles. For example, let's load the [TheLastBen/Papercut_SDXL](https://huggingface.co/TheLastBen/Papercut_SDXL) LoRA and fuse it with the TCD-LoRA with the [`~loaders.UNet2DConditionLoadersMixin.set_adapters`] method.
> [!TIP]
> Check out the [Merge LoRAs](merge_loras) guide to learn more about efficient merging methods.
```python
import torch
from diffusers import StableDiffusionXLPipeline
from scheduling_tcd import TCDScheduler
device = "cuda"
base_model_id = "stabilityai/stable-diffusion-xl-base-1.0"
tcd_lora_id = "h1t/TCD-SDXL-LoRA"
styled_lora_id = "TheLastBen/Papercut_SDXL"
pipe = StableDiffusionXLPipeline.from_pretrained(base_model_id, torch_dtype=torch.float16, variant="fp16").to(device)
pipe.scheduler = TCDScheduler.from_config(pipe.scheduler.config)
pipe.load_lora_weights(tcd_lora_id, adapter_name="tcd")
pipe.load_lora_weights(styled_lora_id, adapter_name="style")
pipe.set_adapters(["tcd", "style"], adapter_weights=[1.0, 1.0])
prompt = "papercut of a winter mountain, snow"
image = pipe(
prompt=prompt,
num_inference_steps=4,
guidance_scale=0,
eta=0.3,
generator=torch.Generator(device=device).manual_seed(0),
).images[0]
```
![](https://github.com/jabir-zheng/TCD/raw/main/assets/styled_lora.png)
## Adapters
TCD-LoRA is very versatile, and it can be combined with other adapter types like ControlNets, IP-Adapter, and AnimateDiff.
<hfoptions id="adapters">
<hfoption id="ControlNet">
### Depth ControlNet
```python
import torch
import numpy as np
from PIL import Image
from transformers import DPTImageProcessor, DPTForDepthEstimation
from diffusers import ControlNetModel, StableDiffusionXLControlNetPipeline
from diffusers.utils import load_image, make_image_grid
from scheduling_tcd import TCDScheduler
device = "cuda"
depth_estimator = DPTForDepthEstimation.from_pretrained("Intel/dpt-hybrid-midas").to(device)
feature_extractor = DPTImageProcessor.from_pretrained("Intel/dpt-hybrid-midas")
def get_depth_map(image):
image = feature_extractor(images=image, return_tensors="pt").pixel_values.to(device)
with torch.no_grad(), torch.autocast(device):
depth_map = depth_estimator(image).predicted_depth
depth_map = torch.nn.functional.interpolate(
depth_map.unsqueeze(1),
size=(1024, 1024),
mode="bicubic",
align_corners=False,
)
depth_min = torch.amin(depth_map, dim=[1, 2, 3], keepdim=True)
depth_max = torch.amax(depth_map, dim=[1, 2, 3], keepdim=True)
depth_map = (depth_map - depth_min) / (depth_max - depth_min)
image = torch.cat([depth_map] * 3, dim=1)
image = image.permute(0, 2, 3, 1).cpu().numpy()[0]
image = Image.fromarray((image * 255.0).clip(0, 255).astype(np.uint8))
return image
base_model_id = "stabilityai/stable-diffusion-xl-base-1.0"
controlnet_id = "diffusers/controlnet-depth-sdxl-1.0"
tcd_lora_id = "h1t/TCD-SDXL-LoRA"
controlnet = ControlNetModel.from_pretrained(
controlnet_id,
torch_dtype=torch.float16,
variant="fp16",
)
pipe = StableDiffusionXLControlNetPipeline.from_pretrained(
base_model_id,
controlnet=controlnet,
torch_dtype=torch.float16,
variant="fp16",
)
pipe.enable_model_cpu_offload()
pipe.scheduler = TCDScheduler.from_config(pipe.scheduler.config)
pipe.load_lora_weights(tcd_lora_id)
pipe.fuse_lora()
prompt = "stormtrooper lecture, photorealistic"
image = load_image("https://huggingface.co/lllyasviel/sd-controlnet-depth/resolve/main/images/stormtrooper.png")
depth_image = get_depth_map(image)
controlnet_conditioning_scale = 0.5 # recommended for good generalization
image = pipe(
prompt,
image=depth_image,
num_inference_steps=4,
guidance_scale=0,
eta=0.3,
controlnet_conditioning_scale=controlnet_conditioning_scale,
generator=torch.Generator(device=device).manual_seed(0),
).images[0]
grid_image = make_image_grid([depth_image, image], rows=1, cols=2)
```
![](https://github.com/jabir-zheng/TCD/raw/main/assets/controlnet_depth_tcd.png)
### Canny ControlNet
```python
import torch
from diffusers import ControlNetModel, StableDiffusionXLControlNetPipeline
from diffusers.utils import load_image, make_image_grid
from scheduling_tcd import TCDScheduler
device = "cuda"
base_model_id = "stabilityai/stable-diffusion-xl-base-1.0"
controlnet_id = "diffusers/controlnet-canny-sdxl-1.0"
tcd_lora_id = "h1t/TCD-SDXL-LoRA"
controlnet = ControlNetModel.from_pretrained(
controlnet_id,
torch_dtype=torch.float16,
variant="fp16",
)
pipe = StableDiffusionXLControlNetPipeline.from_pretrained(
base_model_id,
controlnet=controlnet,
torch_dtype=torch.float16,
variant="fp16",
)
pipe.enable_model_cpu_offload()
pipe.scheduler = TCDScheduler.from_config(pipe.scheduler.config)
pipe.load_lora_weights(tcd_lora_id)
pipe.fuse_lora()
prompt = "ultrarealistic shot of a furry blue bird"
canny_image = load_image("https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd_controlnet/bird_canny.png")
controlnet_conditioning_scale = 0.5 # recommended for good generalization
image = pipe(
prompt,
image=canny_image,
num_inference_steps=4,
guidance_scale=0,
eta=0.3,
controlnet_conditioning_scale=controlnet_conditioning_scale,
generator=torch.Generator(device=device).manual_seed(0),
).images[0]
grid_image = make_image_grid([canny_image, image], rows=1, cols=2)
```
![](https://github.com/jabir-zheng/TCD/raw/main/assets/controlnet_canny_tcd.png)
<Tip>
The inference parameters in this example might not work for all examples, so we recommend you to try different values for `num_inference_steps`, `guidance_scale`, `controlnet_conditioning_scale` and `cross_attention_kwargs` parameters and choose the best one.
</Tip>
</hfoption>
<hfoption id="IP-Adapter">
This example shows how to use the TCD-LoRA with the [IP-Adapter](https://github.com/tencent-ailab/IP-Adapter/tree/main) and SDXL.
```python
import torch
from diffusers import StableDiffusionXLPipeline
from diffusers.utils import load_image, make_image_grid
from ip_adapter import IPAdapterXL
from scheduling_tcd import TCDScheduler
device = "cuda"
base_model_path = "stabilityai/stable-diffusion-xl-base-1.0"
image_encoder_path = "sdxl_models/image_encoder"
ip_ckpt = "sdxl_models/ip-adapter_sdxl.bin"
tcd_lora_id = "h1t/TCD-SDXL-LoRA"
pipe = StableDiffusionXLPipeline.from_pretrained(
base_model_path,
torch_dtype=torch.float16,
variant="fp16"
)
pipe.scheduler = TCDScheduler.from_config(pipe.scheduler.config)
pipe.load_lora_weights(tcd_lora_id)
pipe.fuse_lora()
ip_model = IPAdapterXL(pipe, image_encoder_path, ip_ckpt, device)
ref_image = load_image("https://raw.githubusercontent.com/tencent-ailab/IP-Adapter/main/assets/images/woman.png").resize((512, 512))
prompt = "best quality, high quality, wearing sunglasses"
image = ip_model.generate(
pil_image=ref_image,
prompt=prompt,
scale=0.5,
num_samples=1,
num_inference_steps=4,
guidance_scale=0,
eta=0.3,
seed=0,
)[0]
grid_image = make_image_grid([ref_image, image], rows=1, cols=2)
```
![](https://github.com/jabir-zheng/TCD/raw/main/assets/ip_adapter.png)
</hfoption>
<hfoption id="AnimateDiff">
[`AnimateDiff`] allows animating images using Stable Diffusion models. TCD-LoRA can substantially accelerate the process without degrading image quality. The quality of animation with TCD-LoRA and AnimateDiff has a more lucid outcome.
```python
import torch
from diffusers import MotionAdapter, AnimateDiffPipeline, DDIMScheduler
from scheduling_tcd import TCDScheduler
from diffusers.utils import export_to_gif
adapter = MotionAdapter.from_pretrained("guoyww/animatediff-motion-adapter-v1-5")
pipe = AnimateDiffPipeline.from_pretrained(
"frankjoshua/toonyou_beta6",
motion_adapter=adapter,
).to("cuda")
# set TCDScheduler
pipe.scheduler = TCDScheduler.from_config(pipe.scheduler.config)
# load TCD LoRA
pipe.load_lora_weights("h1t/TCD-SD15-LoRA", adapter_name="tcd")
pipe.load_lora_weights("guoyww/animatediff-motion-lora-zoom-in", weight_name="diffusion_pytorch_model.safetensors", adapter_name="motion-lora")
pipe.set_adapters(["tcd", "motion-lora"], adapter_weights=[1.0, 1.2])
prompt = "best quality, masterpiece, 1girl, looking at viewer, blurry background, upper body, contemporary, dress"
generator = torch.manual_seed(0)
frames = pipe(
prompt=prompt,
num_inference_steps=5,
guidance_scale=0,
cross_attention_kwargs={"scale": 1},
num_frames=24,
eta=0.3,
generator=generator
).frames[0]
export_to_gif(frames, "animation.gif")
```
![](https://github.com/jabir-zheng/TCD/raw/main/assets/animation_example.gif)
</hfoption>
</hfoptions>
\ No newline at end of file
<!--Copyright 2024 The HuggingFace Team. All rights reserved.
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
the License. You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on
an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the
specific language governing permissions and limitations under the License.
-->
# Inpainting
[[open-in-colab]]
Inpainting replaces or edits specific areas of an image. This makes it a useful tool for image restoration like removing defects and artifacts, or even replacing an image area with something entirely new. Inpainting relies on a mask to determine which regions of an image to fill in; the area to inpaint is represented by white pixels and the area to keep is represented by black pixels. The white pixels are filled in by the prompt.
With 🤗 Diffusers, here is how you can do inpainting:
1. Load an inpainting checkpoint with the [`AutoPipelineForInpainting`] class. This'll automatically detect the appropriate pipeline class to load based on the checkpoint:
```py
import torch
from diffusers import AutoPipelineForInpainting
from diffusers.utils import load_image, make_image_grid
pipeline = AutoPipelineForInpainting.from_pretrained(
"kandinsky-community/kandinsky-2-2-decoder-inpaint", torch_dtype=torch.float16
)
pipeline.enable_model_cpu_offload()
# remove following line if xFormers is not installed or you have PyTorch 2.0 or higher installed
pipeline.enable_xformers_memory_efficient_attention()
```
<Tip>
You'll notice throughout the guide, we use [`~DiffusionPipeline.enable_model_cpu_offload`] and [`~DiffusionPipeline.enable_xformers_memory_efficient_attention`], to save memory and increase inference speed. If you're using PyTorch 2.0, it's not necessary to call [`~DiffusionPipeline.enable_xformers_memory_efficient_attention`] on your pipeline because it'll already be using PyTorch 2.0's native [scaled-dot product attention](../optimization/torch2.0#scaled-dot-product-attention).
</Tip>
2. Load the base and mask images:
```py
init_image = load_image("https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/diffusers/inpaint.png")
mask_image = load_image("https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/diffusers/inpaint_mask.png")
```
3. Create a prompt to inpaint the image with and pass it to the pipeline with the base and mask images:
```py
prompt = "a black cat with glowing eyes, cute, adorable, disney, pixar, highly detailed, 8k"
negative_prompt = "bad anatomy, deformed, ugly, disfigured"
image = pipeline(prompt=prompt, negative_prompt=negative_prompt, image=init_image, mask_image=mask_image).images[0]
make_image_grid([init_image, mask_image, image], rows=1, cols=3)
```
<div class="flex gap-4">
<div>
<img class="rounded-xl" src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/diffusers/inpaint.png"/>
<figcaption class="mt-2 text-center text-sm text-gray-500">base image</figcaption>
</div>
<div>
<img class="rounded-xl" src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/diffusers/inpaint_mask.png"/>
<figcaption class="mt-2 text-center text-sm text-gray-500">mask image</figcaption>
</div>
<div>
<img class="rounded-xl" src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/diffusers/inpaint-cat.png"/>
<figcaption class="mt-2 text-center text-sm text-gray-500">generated image</figcaption>
</div>
</div>
## Create a mask image
Throughout this guide, the mask image is provided in all of the code examples for convenience. You can inpaint on your own images, but you'll need to create a mask image for it. Use the Space below to easily create a mask image.
Upload a base image to inpaint on and use the sketch tool to draw a mask. Once you're done, click **Run** to generate and download the mask image.
<iframe
src="https://stevhliu-inpaint-mask-maker.hf.space"
frameborder="0"
width="850"
height="450"
></iframe>
### Mask blur
The [`~VaeImageProcessor.blur`] method provides an option for how to blend the original image and inpaint area. The amount of blur is determined by the `blur_factor` parameter. Increasing the `blur_factor` increases the amount of blur applied to the mask edges, softening the transition between the original image and inpaint area. A low or zero `blur_factor` preserves the sharper edges of the mask.
To use this, create a blurred mask with the image processor.
```py
import torch
from diffusers import AutoPipelineForInpainting
from diffusers.utils import load_image
from PIL import Image
pipeline = AutoPipelineForInpainting.from_pretrained("stable-diffusion-v1-5/stable-diffusion-v1-5", torch_dtype=torch.float16).to('cuda')
mask = load_image("https://huggingface.co/datasets/YiYiXu/testing-images/resolve/main/seashore_mask.png")
blurred_mask = pipeline.mask_processor.blur(mask, blur_factor=33)
blurred_mask
```
<div class="flex gap-4">
<div>
<img class="rounded-xl" src="https://huggingface.co/datasets/YiYiXu/testing-images/resolve/main/seashore_mask.png"/>
<figcaption class="mt-2 text-center text-sm text-gray-500">mask with no blur</figcaption>
</div>
<div>
<img class="rounded-xl" src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/diffusers/mask_blurred.png"/>
<figcaption class="mt-2 text-center text-sm text-gray-500">mask with blur applied</figcaption>
</div>
</div>
## Popular models
[Stable Diffusion Inpainting](https://huggingface.co/runwayml/stable-diffusion-inpainting), [Stable Diffusion XL (SDXL) Inpainting](https://huggingface.co/diffusers/stable-diffusion-xl-1.0-inpainting-0.1), and [Kandinsky 2.2 Inpainting](https://huggingface.co/kandinsky-community/kandinsky-2-2-decoder-inpaint) are among the most popular models for inpainting. SDXL typically produces higher resolution images than Stable Diffusion v1.5, and Kandinsky 2.2 is also capable of generating high-quality images.
### Stable Diffusion Inpainting
Stable Diffusion Inpainting is a latent diffusion model finetuned on 512x512 images on inpainting. It is a good starting point because it is relatively fast and generates good quality images. To use this model for inpainting, you'll need to pass a prompt, base and mask image to the pipeline:
```py
import torch
from diffusers import AutoPipelineForInpainting
from diffusers.utils import load_image, make_image_grid
pipeline = AutoPipelineForInpainting.from_pretrained(
"runwayml/stable-diffusion-inpainting", torch_dtype=torch.float16, variant="fp16"
)
pipeline.enable_model_cpu_offload()
# remove following line if xFormers is not installed or you have PyTorch 2.0 or higher installed
pipeline.enable_xformers_memory_efficient_attention()
# load base and mask image
init_image = load_image("https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/diffusers/inpaint.png")
mask_image = load_image("https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/diffusers/inpaint_mask.png")
generator = torch.Generator("cuda").manual_seed(92)
prompt = "concept art digital painting of an elven castle, inspired by lord of the rings, highly detailed, 8k"
image = pipeline(prompt=prompt, image=init_image, mask_image=mask_image, generator=generator).images[0]
make_image_grid([init_image, mask_image, image], rows=1, cols=3)
```
### Stable Diffusion XL (SDXL) Inpainting
SDXL is a larger and more powerful version of Stable Diffusion v1.5. This model can follow a two-stage model process (though each model can also be used alone); the base model generates an image, and a refiner model takes that image and further enhances its details and quality. Take a look at the [SDXL](sdxl) guide for a more comprehensive guide on how to use SDXL and configure it's parameters.
```py
import torch
from diffusers import AutoPipelineForInpainting
from diffusers.utils import load_image, make_image_grid
pipeline = AutoPipelineForInpainting.from_pretrained(
"diffusers/stable-diffusion-xl-1.0-inpainting-0.1", torch_dtype=torch.float16, variant="fp16"
)
pipeline.enable_model_cpu_offload()
# remove following line if xFormers is not installed or you have PyTorch 2.0 or higher installed
pipeline.enable_xformers_memory_efficient_attention()
# load base and mask image
init_image = load_image("https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/diffusers/inpaint.png")
mask_image = load_image("https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/diffusers/inpaint_mask.png")
generator = torch.Generator("cuda").manual_seed(92)
prompt = "concept art digital painting of an elven castle, inspired by lord of the rings, highly detailed, 8k"
image = pipeline(prompt=prompt, image=init_image, mask_image=mask_image, generator=generator).images[0]
make_image_grid([init_image, mask_image, image], rows=1, cols=3)
```
### Kandinsky 2.2 Inpainting
The Kandinsky model family is similar to SDXL because it uses two models as well; the image prior model creates image embeddings, and the diffusion model generates images from them. You can load the image prior and diffusion model separately, but the easiest way to use Kandinsky 2.2 is to load it into the [`AutoPipelineForInpainting`] class which uses the [`KandinskyV22InpaintCombinedPipeline`] under the hood.
```py
import torch
from diffusers import AutoPipelineForInpainting
from diffusers.utils import load_image, make_image_grid
pipeline = AutoPipelineForInpainting.from_pretrained(
"kandinsky-community/kandinsky-2-2-decoder-inpaint", torch_dtype=torch.float16
)
pipeline.enable_model_cpu_offload()
# remove following line if xFormers is not installed or you have PyTorch 2.0 or higher installed
pipeline.enable_xformers_memory_efficient_attention()
# load base and mask image
init_image = load_image("https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/diffusers/inpaint.png")
mask_image = load_image("https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/diffusers/inpaint_mask.png")
generator = torch.Generator("cuda").manual_seed(92)
prompt = "concept art digital painting of an elven castle, inspired by lord of the rings, highly detailed, 8k"
image = pipeline(prompt=prompt, image=init_image, mask_image=mask_image, generator=generator).images[0]
make_image_grid([init_image, mask_image, image], rows=1, cols=3)
```
<div class="flex flex-row gap-4">
<div class="flex-1">
<img class="rounded-xl" src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/diffusers/inpaint.png"/>
<figcaption class="mt-2 text-center text-sm text-gray-500">base image</figcaption>
</div>
<div class="flex-1">
<img class="rounded-xl" src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/diffusers/inpaint-sdv1.5.png"/>
<figcaption class="mt-2 text-center text-sm text-gray-500">Stable Diffusion Inpainting</figcaption>
</div>
<div class="flex-1">
<img class="rounded-xl" src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/diffusers/inpaint-sdxl.png"/>
<figcaption class="mt-2 text-center text-sm text-gray-500">Stable Diffusion XL Inpainting</figcaption>
</div>
<div class="flex-1">
<img class="rounded-xl" src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/diffusers/inpaint-kandinsky.png"/>
<figcaption class="mt-2 text-center text-sm text-gray-500">Kandinsky 2.2 Inpainting</figcaption>
</div>
</div>
## Non-inpaint specific checkpoints
So far, this guide has used inpaint specific checkpoints such as [stable-diffusion-v1-5/stable-diffusion-inpainting](https://huggingface.co/stable-diffusion-v1-5/stable-diffusion-inpainting). But you can also use regular checkpoints like [stable-diffusion-v1-5/stable-diffusion-v1-5](https://huggingface.co/stable-diffusion-v1-5/stable-diffusion-v1-5). Let's compare the results of the two checkpoints.
The image on the left is generated from a regular checkpoint, and the image on the right is from an inpaint checkpoint. You'll immediately notice the image on the left is not as clean, and you can still see the outline of the area the model is supposed to inpaint. The image on the right is much cleaner and the inpainted area appears more natural.
<hfoptions id="regular-specific">
<hfoption id="stable-diffusion-v1-5/stable-diffusion-v1-5">
```py
import torch
from diffusers import AutoPipelineForInpainting
from diffusers.utils import load_image, make_image_grid
pipeline = AutoPipelineForInpainting.from_pretrained(
"stable-diffusion-v1-5/stable-diffusion-v1-5", torch_dtype=torch.float16, variant="fp16"
)
pipeline.enable_model_cpu_offload()
# remove following line if xFormers is not installed or you have PyTorch 2.0 or higher installed
pipeline.enable_xformers_memory_efficient_attention()
# load base and mask image
init_image = load_image("https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/diffusers/inpaint.png")
mask_image = load_image("https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/diffusers/inpaint_mask.png")
generator = torch.Generator("cuda").manual_seed(92)
prompt = "concept art digital painting of an elven castle, inspired by lord of the rings, highly detailed, 8k"
image = pipeline(prompt=prompt, image=init_image, mask_image=mask_image, generator=generator).images[0]
make_image_grid([init_image, image], rows=1, cols=2)
```
</hfoption>
<hfoption id="runwayml/stable-diffusion-inpainting">
```py
import torch
from diffusers import AutoPipelineForInpainting
from diffusers.utils import load_image, make_image_grid
pipeline = AutoPipelineForInpainting.from_pretrained(
"runwayml/stable-diffusion-inpainting", torch_dtype=torch.float16, variant="fp16"
)
pipeline.enable_model_cpu_offload()
# remove following line if xFormers is not installed or you have PyTorch 2.0 or higher installed
pipeline.enable_xformers_memory_efficient_attention()
# load base and mask image
init_image = load_image("https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/diffusers/inpaint.png")
mask_image = load_image("https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/diffusers/inpaint_mask.png")
generator = torch.Generator("cuda").manual_seed(92)
prompt = "concept art digital painting of an elven castle, inspired by lord of the rings, highly detailed, 8k"
image = pipeline(prompt=prompt, image=init_image, mask_image=mask_image, generator=generator).images[0]
make_image_grid([init_image, image], rows=1, cols=2)
```
</hfoption>
</hfoptions>
<div class="flex gap-4">
<div>
<img class="rounded-xl" src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/diffusers/non-inpaint-specific.png"/>
<figcaption class="mt-2 text-center text-sm text-gray-500">stable-diffusion-v1-5/stable-diffusion-v1-5</figcaption>
</div>
<div>
<img class="rounded-xl" src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/diffusers/inpaint-specific.png"/>
<figcaption class="mt-2 text-center text-sm text-gray-500">runwayml/stable-diffusion-inpainting</figcaption>
</div>
</div>
However, for more basic tasks like erasing an object from an image (like the rocks in the road for example), a regular checkpoint yields pretty good results. There isn't as noticeable of difference between the regular and inpaint checkpoint.
<hfoptions id="inpaint">
<hfoption id="stable-diffusion-v1-5/stable-diffusion-v1-5">
```py
import torch
from diffusers import AutoPipelineForInpainting
from diffusers.utils import load_image, make_image_grid
pipeline = AutoPipelineForInpainting.from_pretrained(
"stable-diffusion-v1-5/stable-diffusion-v1-5", torch_dtype=torch.float16, variant="fp16"
)
pipeline.enable_model_cpu_offload()
# remove following line if xFormers is not installed or you have PyTorch 2.0 or higher installed
pipeline.enable_xformers_memory_efficient_attention()
# load base and mask image
init_image = load_image("https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/diffusers/inpaint.png")
mask_image = load_image("https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/diffusers/road-mask.png")
image = pipeline(prompt="road", image=init_image, mask_image=mask_image).images[0]
make_image_grid([init_image, image], rows=1, cols=2)
```
</hfoption>
<hfoption id="runwayml/stable-diffusion-inpaint">
```py
import torch
from diffusers import AutoPipelineForInpainting
from diffusers.utils import load_image, make_image_grid
pipeline = AutoPipelineForInpainting.from_pretrained(
"runwayml/stable-diffusion-inpainting", torch_dtype=torch.float16, variant="fp16"
)
pipeline.enable_model_cpu_offload()
# remove following line if xFormers is not installed or you have PyTorch 2.0 or higher installed
pipeline.enable_xformers_memory_efficient_attention()
# load base and mask image
init_image = load_image("https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/diffusers/inpaint.png")
mask_image = load_image("https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/diffusers/road-mask.png")
image = pipeline(prompt="road", image=init_image, mask_image=mask_image).images[0]
make_image_grid([init_image, image], rows=1, cols=2)
```
</hfoption>
</hfoptions>
<div class="flex gap-4">
<div>
<img class="rounded-xl" src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/diffusers/regular-inpaint-basic.png"/>
<figcaption class="mt-2 text-center text-sm text-gray-500">stable-diffusion-v1-5/stable-diffusion-v1-5</figcaption>
</div>
<div>
<img class="rounded-xl" src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/diffusers/specific-inpaint-basic.png"/>
<figcaption class="mt-2 text-center text-sm text-gray-500">runwayml/stable-diffusion-inpainting</figcaption>
</div>
</div>
The trade-off of using a non-inpaint specific checkpoint is the overall image quality may be lower, but it generally tends to preserve the mask area (that is why you can see the mask outline). The inpaint specific checkpoints are intentionally trained to generate higher quality inpainted images, and that includes creating a more natural transition between the masked and unmasked areas. As a result, these checkpoints are more likely to change your unmasked area.
If preserving the unmasked area is important for your task, you can use the [`VaeImageProcessor.apply_overlay`] method to force the unmasked area of an image to remain the same at the expense of some more unnatural transitions between the masked and unmasked areas.
```py
import PIL
import numpy as np
import torch
from diffusers import AutoPipelineForInpainting
from diffusers.utils import load_image, make_image_grid
device = "cuda"
pipeline = AutoPipelineForInpainting.from_pretrained(
"runwayml/stable-diffusion-inpainting",
torch_dtype=torch.float16,
)
pipeline = pipeline.to(device)
img_url = "https://raw.githubusercontent.com/CompVis/latent-diffusion/main/data/inpainting_examples/overture-creations-5sI6fQgYIuo.png"
mask_url = "https://raw.githubusercontent.com/CompVis/latent-diffusion/main/data/inpainting_examples/overture-creations-5sI6fQgYIuo_mask.png"
init_image = load_image(img_url).resize((512, 512))
mask_image = load_image(mask_url).resize((512, 512))
prompt = "Face of a yellow cat, high resolution, sitting on a park bench"
repainted_image = pipeline(prompt=prompt, image=init_image, mask_image=mask_image).images[0]
repainted_image.save("repainted_image.png")
unmasked_unchanged_image = pipeline.image_processor.apply_overlay(mask_image, init_image, repainted_image)
unmasked_unchanged_image.save("force_unmasked_unchanged.png")
make_image_grid([init_image, mask_image, repainted_image, unmasked_unchanged_image], rows=2, cols=2)
```
## Configure pipeline parameters
Image features - like quality and "creativity" - are dependent on pipeline parameters. Knowing what these parameters do is important for getting the results you want. Let's take a look at the most important parameters and see how changing them affects the output.
### Strength
`strength` is a measure of how much noise is added to the base image, which influences how similar the output is to the base image.
* 📈 a high `strength` value means more noise is added to an image and the denoising process takes longer, but you'll get higher quality images that are more different from the base image
* 📉 a low `strength` value means less noise is added to an image and the denoising process is faster, but the image quality may not be as great and the generated image resembles the base image more
```py
import torch
from diffusers import AutoPipelineForInpainting
from diffusers.utils import load_image, make_image_grid
pipeline = AutoPipelineForInpainting.from_pretrained(
"runwayml/stable-diffusion-inpainting", torch_dtype=torch.float16, variant="fp16"
)
pipeline.enable_model_cpu_offload()
# remove following line if xFormers is not installed or you have PyTorch 2.0 or higher installed
pipeline.enable_xformers_memory_efficient_attention()
# load base and mask image
init_image = load_image("https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/diffusers/inpaint.png")
mask_image = load_image("https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/diffusers/inpaint_mask.png")
prompt = "concept art digital painting of an elven castle, inspired by lord of the rings, highly detailed, 8k"
image = pipeline(prompt=prompt, image=init_image, mask_image=mask_image, strength=0.6).images[0]
make_image_grid([init_image, mask_image, image], rows=1, cols=3)
```
<div class="flex flex-row gap-4">
<div class="flex-1">
<img class="rounded-xl" src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/diffusers/inpaint-strength-0.6.png"/>
<figcaption class="mt-2 text-center text-sm text-gray-500">strength = 0.6</figcaption>
</div>
<div class="flex-1">
<img class="rounded-xl" src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/diffusers/inpaint-strength-0.8.png"/>
<figcaption class="mt-2 text-center text-sm text-gray-500">strength = 0.8</figcaption>
</div>
<div class="flex-1">
<img class="rounded-xl" src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/diffusers/inpaint-strength-1.0.png"/>
<figcaption class="mt-2 text-center text-sm text-gray-500">strength = 1.0</figcaption>
</div>
</div>
### Guidance scale
`guidance_scale` affects how aligned the text prompt and generated image are.
* 📈 a high `guidance_scale` value means the prompt and generated image are closely aligned, so the output is a stricter interpretation of the prompt
* 📉 a low `guidance_scale` value means the prompt and generated image are more loosely aligned, so the output may be more varied from the prompt
You can use `strength` and `guidance_scale` together for more control over how expressive the model is. For example, a combination high `strength` and `guidance_scale` values gives the model the most creative freedom.
```py
import torch
from diffusers import AutoPipelineForInpainting
from diffusers.utils import load_image, make_image_grid
pipeline = AutoPipelineForInpainting.from_pretrained(
"runwayml/stable-diffusion-inpainting", torch_dtype=torch.float16, variant="fp16"
)
pipeline.enable_model_cpu_offload()
# remove following line if xFormers is not installed or you have PyTorch 2.0 or higher installed
pipeline.enable_xformers_memory_efficient_attention()
# load base and mask image
init_image = load_image("https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/diffusers/inpaint.png")
mask_image = load_image("https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/diffusers/inpaint_mask.png")
prompt = "concept art digital painting of an elven castle, inspired by lord of the rings, highly detailed, 8k"
image = pipeline(prompt=prompt, image=init_image, mask_image=mask_image, guidance_scale=2.5).images[0]
make_image_grid([init_image, mask_image, image], rows=1, cols=3)
```
<div class="flex flex-row gap-4">
<div class="flex-1">
<img class="rounded-xl" src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/diffusers/inpaint-guidance-2.5.png"/>
<figcaption class="mt-2 text-center text-sm text-gray-500">guidance_scale = 2.5</figcaption>
</div>
<div class="flex-1">
<img class="rounded-xl" src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/diffusers/inpaint-guidance-7.5.png"/>
<figcaption class="mt-2 text-center text-sm text-gray-500">guidance_scale = 7.5</figcaption>
</div>
<div class="flex-1">
<img class="rounded-xl" src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/diffusers/inpaint-guidance-12.5.png"/>
<figcaption class="mt-2 text-center text-sm text-gray-500">guidance_scale = 12.5</figcaption>
</div>
</div>
### Negative prompt
A negative prompt assumes the opposite role of a prompt; it guides the model away from generating certain things in an image. This is useful for quickly improving image quality and preventing the model from generating things you don't want.
```py
import torch
from diffusers import AutoPipelineForInpainting
from diffusers.utils import load_image, make_image_grid
pipeline = AutoPipelineForInpainting.from_pretrained(
"runwayml/stable-diffusion-inpainting", torch_dtype=torch.float16, variant="fp16"
)
pipeline.enable_model_cpu_offload()
# remove following line if xFormers is not installed or you have PyTorch 2.0 or higher installed
pipeline.enable_xformers_memory_efficient_attention()
# load base and mask image
init_image = load_image("https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/diffusers/inpaint.png")
mask_image = load_image("https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/diffusers/inpaint_mask.png")
prompt = "concept art digital painting of an elven castle, inspired by lord of the rings, highly detailed, 8k"
negative_prompt = "bad architecture, unstable, poor details, blurry"
image = pipeline(prompt=prompt, negative_prompt=negative_prompt, image=init_image, mask_image=mask_image).images[0]
make_image_grid([init_image, mask_image, image], rows=1, cols=3)
```
<div class="flex justify-center">
<figure>
<img class="rounded-xl" src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/diffusers/inpaint-negative.png" />
<figcaption class="text-center">negative_prompt = "bad architecture, unstable, poor details, blurry"</figcaption>
</figure>
</div>
### Padding mask crop
A method for increasing the inpainting image quality is to use the [`padding_mask_crop`](https://huggingface.co/docs/diffusers/v0.25.0/en/api/pipelines/stable_diffusion/inpaint#diffusers.StableDiffusionInpaintPipeline.__call__.padding_mask_crop) parameter. When enabled, this option crops the masked area with some user-specified padding and it'll also crop the same area from the original image. Both the image and mask are upscaled to a higher resolution for inpainting, and then overlaid on the original image. This is a quick and easy way to improve image quality without using a separate pipeline like [`StableDiffusionUpscalePipeline`].
Add the `padding_mask_crop` parameter to the pipeline call and set it to the desired padding value.
```py
import torch
from diffusers import AutoPipelineForInpainting
from diffusers.utils import load_image
from PIL import Image
generator = torch.Generator(device='cuda').manual_seed(0)
pipeline = AutoPipelineForInpainting.from_pretrained("stable-diffusion-v1-5/stable-diffusion-v1-5", torch_dtype=torch.float16).to('cuda')
base = load_image("https://huggingface.co/datasets/YiYiXu/testing-images/resolve/main/seashore.png")
mask = load_image("https://huggingface.co/datasets/YiYiXu/testing-images/resolve/main/seashore_mask.png")
image = pipeline("boat", image=base, mask_image=mask, strength=0.75, generator=generator, padding_mask_crop=32).images[0]
image
```
<div class="flex gap-4">
<div>
<img class="rounded-xl" src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/diffusers/baseline_inpaint.png"/>
<figcaption class="mt-2 text-center text-sm text-gray-500">default inpaint image</figcaption>
</div>
<div>
<img class="rounded-xl" src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/diffusers/padding_mask_crop_inpaint.png"/>
<figcaption class="mt-2 text-center text-sm text-gray-500">inpaint image with `padding_mask_crop` enabled</figcaption>
</div>
</div>
## Chained inpainting pipelines
[`AutoPipelineForInpainting`] can be chained with other 🤗 Diffusers pipelines to edit their outputs. This is often useful for improving the output quality from your other diffusion pipelines, and if you're using multiple pipelines, it can be more memory-efficient to chain them together to keep the outputs in latent space and reuse the same pipeline components.
### Text-to-image-to-inpaint
Chaining a text-to-image and inpainting pipeline allows you to inpaint the generated image, and you don't have to provide a base image to begin with. This makes it convenient to edit your favorite text-to-image outputs without having to generate an entirely new image.
Start with the text-to-image pipeline to create a castle:
```py
import torch
from diffusers import AutoPipelineForText2Image, AutoPipelineForInpainting
from diffusers.utils import load_image, make_image_grid
pipeline = AutoPipelineForText2Image.from_pretrained(
"stable-diffusion-v1-5/stable-diffusion-v1-5", torch_dtype=torch.float16, variant="fp16", use_safetensors=True
)
pipeline.enable_model_cpu_offload()
# remove following line if xFormers is not installed or you have PyTorch 2.0 or higher installed
pipeline.enable_xformers_memory_efficient_attention()
text2image = pipeline("concept art digital painting of an elven castle, inspired by lord of the rings, highly detailed, 8k").images[0]
```
Load the mask image of the output from above:
```py
mask_image = load_image("https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/diffusers/inpaint_text-chain-mask.png")
```
And let's inpaint the masked area with a waterfall:
```py
pipeline = AutoPipelineForInpainting.from_pretrained(
"kandinsky-community/kandinsky-2-2-decoder-inpaint", torch_dtype=torch.float16
)
pipeline.enable_model_cpu_offload()
# remove following line if xFormers is not installed or you have PyTorch 2.0 or higher installed
pipeline.enable_xformers_memory_efficient_attention()
prompt = "digital painting of a fantasy waterfall, cloudy"
image = pipeline(prompt=prompt, image=text2image, mask_image=mask_image).images[0]
make_image_grid([text2image, mask_image, image], rows=1, cols=3)
```
<div class="flex flex-row gap-4">
<div class="flex-1">
<img class="rounded-xl" src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/diffusers/inpaint-text-chain.png"/>
<figcaption class="mt-2 text-center text-sm text-gray-500">text-to-image</figcaption>
</div>
<div class="flex-1">
<img class="rounded-xl" src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/diffusers/inpaint-text-chain-out.png"/>
<figcaption class="mt-2 text-center text-sm text-gray-500">inpaint</figcaption>
</div>
</div>
### Inpaint-to-image-to-image
You can also chain an inpainting pipeline before another pipeline like image-to-image or an upscaler to improve the quality.
Begin by inpainting an image:
```py
import torch
from diffusers import AutoPipelineForInpainting, AutoPipelineForImage2Image
from diffusers.utils import load_image, make_image_grid
pipeline = AutoPipelineForInpainting.from_pretrained(
"runwayml/stable-diffusion-inpainting", torch_dtype=torch.float16, variant="fp16"
)
pipeline.enable_model_cpu_offload()
# remove following line if xFormers is not installed or you have PyTorch 2.0 or higher installed
pipeline.enable_xformers_memory_efficient_attention()
# load base and mask image
init_image = load_image("https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/diffusers/inpaint.png")
mask_image = load_image("https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/diffusers/inpaint_mask.png")
prompt = "concept art digital painting of an elven castle, inspired by lord of the rings, highly detailed, 8k"
image_inpainting = pipeline(prompt=prompt, image=init_image, mask_image=mask_image).images[0]
# resize image to 1024x1024 for SDXL
image_inpainting = image_inpainting.resize((1024, 1024))
```
Now let's pass the image to another inpainting pipeline with SDXL's refiner model to enhance the image details and quality:
```py
pipeline = AutoPipelineForInpainting.from_pretrained(
"stabilityai/stable-diffusion-xl-refiner-1.0", torch_dtype=torch.float16, variant="fp16"
)
pipeline.enable_model_cpu_offload()
# remove following line if xFormers is not installed or you have PyTorch 2.0 or higher installed
pipeline.enable_xformers_memory_efficient_attention()
image = pipeline(prompt=prompt, image=image_inpainting, mask_image=mask_image, output_type="latent").images[0]
```
<Tip>
It is important to specify `output_type="latent"` in the pipeline to keep all the outputs in latent space to avoid an unnecessary decode-encode step. This only works if the chained pipelines are using the same VAE. For example, in the [Text-to-image-to-inpaint](#text-to-image-to-inpaint) section, Kandinsky 2.2 uses a different VAE class than the Stable Diffusion model so it won't work. But if you use Stable Diffusion v1.5 for both pipelines, then you can keep everything in latent space because they both use [`AutoencoderKL`].
</Tip>
Finally, you can pass this image to an image-to-image pipeline to put the finishing touches on it. It is more efficient to use the [`~AutoPipelineForImage2Image.from_pipe`] method to reuse the existing pipeline components, and avoid unnecessarily loading all the pipeline components into memory again.
```py
pipeline = AutoPipelineForImage2Image.from_pipe(pipeline)
# remove following line if xFormers is not installed or you have PyTorch 2.0 or higher installed
pipeline.enable_xformers_memory_efficient_attention()
image = pipeline(prompt=prompt, image=image).images[0]
make_image_grid([init_image, mask_image, image_inpainting, image], rows=2, cols=2)
```
<div class="flex flex-row gap-4">
<div class="flex-1">
<img class="rounded-xl" src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/diffusers/inpaint.png"/>
<figcaption class="mt-2 text-center text-sm text-gray-500">initial image</figcaption>
</div>
<div class="flex-1">
<img class="rounded-xl" src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/diffusers/inpaint-to-image-chain.png"/>
<figcaption class="mt-2 text-center text-sm text-gray-500">inpaint</figcaption>
</div>
<div class="flex-1">
<img class="rounded-xl" src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/diffusers/inpaint-to-image-final.png"/>
<figcaption class="mt-2 text-center text-sm text-gray-500">image-to-image</figcaption>
</div>
</div>
Image-to-image and inpainting are actually very similar tasks. Image-to-image generates a new image that resembles the existing provided image. Inpainting does the same thing, but it only transforms the image area defined by the mask and the rest of the image is unchanged. You can think of inpainting as a more precise tool for making specific changes and image-to-image has a broader scope for making more sweeping changes.
## Control image generation
Getting an image to look exactly the way you want is challenging because the denoising process is random. While you can control certain aspects of generation by configuring parameters like `negative_prompt`, there are better and more efficient methods for controlling image generation.
### Prompt weighting
Prompt weighting provides a quantifiable way to scale the representation of concepts in a prompt. You can use it to increase or decrease the magnitude of the text embedding vector for each concept in the prompt, which subsequently determines how much of each concept is generated. The [Compel](https://github.com/damian0815/compel) library offers an intuitive syntax for scaling the prompt weights and generating the embeddings. Learn how to create the embeddings in the [Prompt weighting](../using-diffusers/weighted_prompts) guide.
Once you've generated the embeddings, pass them to the `prompt_embeds` (and `negative_prompt_embeds` if you're using a negative prompt) parameter in the [`AutoPipelineForInpainting`]. The embeddings replace the `prompt` parameter:
```py
import torch
from diffusers import AutoPipelineForInpainting
from diffusers.utils import make_image_grid
pipeline = AutoPipelineForInpainting.from_pretrained(
"runwayml/stable-diffusion-inpainting", torch_dtype=torch.float16,
)
pipeline.enable_model_cpu_offload()
# remove following line if xFormers is not installed or you have PyTorch 2.0 or higher installed
pipeline.enable_xformers_memory_efficient_attention()
image = pipeline(prompt_embeds=prompt_embeds, # generated from Compel
negative_prompt_embeds=negative_prompt_embeds, # generated from Compel
image=init_image,
mask_image=mask_image
).images[0]
make_image_grid([init_image, mask_image, image], rows=1, cols=3)
```
### ControlNet
ControlNet models are used with other diffusion models like Stable Diffusion, and they provide an even more flexible and accurate way to control how an image is generated. A ControlNet accepts an additional conditioning image input that guides the diffusion model to preserve the features in it.
For example, let's condition an image with a ControlNet pretrained on inpaint images:
```py
import torch
import numpy as np
from diffusers import ControlNetModel, StableDiffusionControlNetInpaintPipeline
from diffusers.utils import load_image, make_image_grid
# load ControlNet
controlnet = ControlNetModel.from_pretrained("lllyasviel/control_v11p_sd15_inpaint", torch_dtype=torch.float16, variant="fp16")
# pass ControlNet to the pipeline
pipeline = StableDiffusionControlNetInpaintPipeline.from_pretrained(
"runwayml/stable-diffusion-inpainting", controlnet=controlnet, torch_dtype=torch.float16, variant="fp16"
)
pipeline.enable_model_cpu_offload()
# remove following line if xFormers is not installed or you have PyTorch 2.0 or higher installed
pipeline.enable_xformers_memory_efficient_attention()
# load base and mask image
init_image = load_image("https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/diffusers/inpaint.png")
mask_image = load_image("https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/diffusers/inpaint_mask.png")
# prepare control image
def make_inpaint_condition(init_image, mask_image):
init_image = np.array(init_image.convert("RGB")).astype(np.float32) / 255.0
mask_image = np.array(mask_image.convert("L")).astype(np.float32) / 255.0
assert init_image.shape[0:1] == mask_image.shape[0:1], "image and image_mask must have the same image size"
init_image[mask_image > 0.5] = -1.0 # set as masked pixel
init_image = np.expand_dims(init_image, 0).transpose(0, 3, 1, 2)
init_image = torch.from_numpy(init_image)
return init_image
control_image = make_inpaint_condition(init_image, mask_image)
```
Now generate an image from the base, mask and control images. You'll notice features of the base image are strongly preserved in the generated image.
```py
prompt = "concept art digital painting of an elven castle, inspired by lord of the rings, highly detailed, 8k"
image = pipeline(prompt=prompt, image=init_image, mask_image=mask_image, control_image=control_image).images[0]
make_image_grid([init_image, mask_image, PIL.Image.fromarray(np.uint8(control_image[0][0])).convert('RGB'), image], rows=2, cols=2)
```
You can take this a step further and chain it with an image-to-image pipeline to apply a new [style](https://huggingface.co/nitrosocke/elden-ring-diffusion):
```py
from diffusers import AutoPipelineForImage2Image
pipeline = AutoPipelineForImage2Image.from_pretrained(
"nitrosocke/elden-ring-diffusion", torch_dtype=torch.float16,
)
pipeline.enable_model_cpu_offload()
# remove following line if xFormers is not installed or you have PyTorch 2.0 or higher installed
pipeline.enable_xformers_memory_efficient_attention()
prompt = "elden ring style castle" # include the token "elden ring style" in the prompt
negative_prompt = "bad architecture, deformed, disfigured, poor details"
image_elden_ring = pipeline(prompt, negative_prompt=negative_prompt, image=image).images[0]
make_image_grid([init_image, mask_image, image, image_elden_ring], rows=2, cols=2)
```
<div class="flex flex-row gap-4">
<div class="flex-1">
<img class="rounded-xl" src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/diffusers/inpaint.png"/>
<figcaption class="mt-2 text-center text-sm text-gray-500">initial image</figcaption>
</div>
<div class="flex-1">
<img class="rounded-xl" src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/diffusers/inpaint-controlnet.png"/>
<figcaption class="mt-2 text-center text-sm text-gray-500">ControlNet inpaint</figcaption>
</div>
<div class="flex-1">
<img class="rounded-xl" src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/diffusers/inpaint-img2img.png"/>
<figcaption class="mt-2 text-center text-sm text-gray-500">image-to-image</figcaption>
</div>
</div>
## Optimize
It can be difficult and slow to run diffusion models if you're resource constrained, but it doesn't have to be with a few optimization tricks. One of the biggest (and easiest) optimizations you can enable is switching to memory-efficient attention. If you're using PyTorch 2.0, [scaled-dot product attention](../optimization/torch2.0#scaled-dot-product-attention) is automatically enabled and you don't need to do anything else. For non-PyTorch 2.0 users, you can install and use [xFormers](../optimization/xformers)'s implementation of memory-efficient attention. Both options reduce memory usage and accelerate inference.
You can also offload the model to the CPU to save even more memory:
```diff
+ pipeline.enable_xformers_memory_efficient_attention()
+ pipeline.enable_model_cpu_offload()
```
To speed-up your inference code even more, use [`torch_compile`](../optimization/torch2.0#torchcompile). You should wrap `torch.compile` around the most intensive component in the pipeline which is typically the UNet:
```py
pipeline.unet = torch.compile(pipeline.unet, mode="reduce-overhead", fullgraph=True)
```
Learn more in the [Reduce memory usage](../optimization/memory) and [Torch 2.0](../optimization/torch2.0) guides.
<!--Copyright 2024 The HuggingFace Team. All rights reserved.
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
the License. You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on
an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the
specific language governing permissions and limitations under the License.
-->
# IP-Adapter
[IP-Adapter](https://hf.co/papers/2308.06721) is an image prompt adapter that can be plugged into diffusion models to enable image prompting without any changes to the underlying model. Furthermore, this adapter can be reused with other models finetuned from the same base model and it can be combined with other adapters like [ControlNet](../using-diffusers/controlnet). The key idea behind IP-Adapter is the *decoupled cross-attention* mechanism which adds a separate cross-attention layer just for image features instead of using the same cross-attention layer for both text and image features. This allows the model to learn more image-specific features.
> [!TIP]
> Learn how to load an IP-Adapter in the [Load adapters](../using-diffusers/loading_adapters#ip-adapter) guide, and make sure you check out the [IP-Adapter Plus](../using-diffusers/loading_adapters#ip-adapter-plus) section which requires manually loading the image encoder.
This guide will walk you through using IP-Adapter for various tasks and use cases.
## General tasks
Let's take a look at how to use IP-Adapter's image prompting capabilities with the [`StableDiffusionXLPipeline`] for tasks like text-to-image, image-to-image, and inpainting. We also encourage you to try out other pipelines such as Stable Diffusion, LCM-LoRA, ControlNet, T2I-Adapter, or AnimateDiff!
In all the following examples, you'll see the [`~loaders.IPAdapterMixin.set_ip_adapter_scale`] method. This method controls the amount of text or image conditioning to apply to the model. A value of `1.0` means the model is only conditioned on the image prompt. Lowering this value encourages the model to produce more diverse images, but they may not be as aligned with the image prompt. Typically, a value of `0.5` achieves a good balance between the two prompt types and produces good results.
> [!TIP]
> In the examples below, try adding `low_cpu_mem_usage=True` to the [`~loaders.IPAdapterMixin.load_ip_adapter`] method to speed up the loading time.
<hfoptions id="tasks">
<hfoption id="Text-to-image">
Crafting the precise text prompt to generate the image you want can be difficult because it may not always capture what you'd like to express. Adding an image alongside the text prompt helps the model better understand what it should generate and can lead to more accurate results.
Load a Stable Diffusion XL (SDXL) model and insert an IP-Adapter into the model with the [`~loaders.IPAdapterMixin.load_ip_adapter`] method. Use the `subfolder` parameter to load the SDXL model weights.
```py
from diffusers import AutoPipelineForText2Image
from diffusers.utils import load_image
import torch
pipeline = AutoPipelineForText2Image.from_pretrained("stabilityai/stable-diffusion-xl-base-1.0", torch_dtype=torch.float16).to("cuda")
pipeline.load_ip_adapter("h94/IP-Adapter", subfolder="sdxl_models", weight_name="ip-adapter_sdxl.bin")
pipeline.set_ip_adapter_scale(0.6)
```
Create a text prompt and load an image prompt before passing them to the pipeline to generate an image.
```py
image = load_image("https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/diffusers/ip_adapter_diner.png")
generator = torch.Generator(device="cpu").manual_seed(0)
images = pipeline(
prompt="a polar bear sitting in a chair drinking a milkshake",
ip_adapter_image=image,
negative_prompt="deformed, ugly, wrong proportion, low res, bad anatomy, worst quality, low quality",
num_inference_steps=100,
generator=generator,
).images
images[0]
```
<div class="flex flex-row gap-4">
<div class="flex-1">
<img class="rounded-xl" src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/diffusers/ip_adapter_diner.png"/>
<figcaption class="mt-2 text-center text-sm text-gray-500">IP-Adapter image</figcaption>
</div>
<div class="flex-1">
<img class="rounded-xl" src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/diffusers/ip_adapter_diner_2.png"/>
<figcaption class="mt-2 text-center text-sm text-gray-500">generated image</figcaption>
</div>
</div>
</hfoption>
<hfoption id="Image-to-image">
IP-Adapter can also help with image-to-image by guiding the model to generate an image that resembles the original image and the image prompt.
Load a Stable Diffusion XL (SDXL) model and insert an IP-Adapter into the model with the [`~loaders.IPAdapterMixin.load_ip_adapter`] method. Use the `subfolder` parameter to load the SDXL model weights.
```py
from diffusers import AutoPipelineForImage2Image
from diffusers.utils import load_image
import torch
pipeline = AutoPipelineForImage2Image.from_pretrained("stabilityai/stable-diffusion-xl-base-1.0", torch_dtype=torch.float16).to("cuda")
pipeline.load_ip_adapter("h94/IP-Adapter", subfolder="sdxl_models", weight_name="ip-adapter_sdxl.bin")
pipeline.set_ip_adapter_scale(0.6)
```
Pass the original image and the IP-Adapter image prompt to the pipeline to generate an image. Providing a text prompt to the pipeline is optional, but in this example, a text prompt is used to increase image quality.
```py
image = load_image("https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/diffusers/ip_adapter_bear_1.png")
ip_image = load_image("https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/diffusers/ip_adapter_bear_2.png")
generator = torch.Generator(device="cpu").manual_seed(4)
images = pipeline(
prompt="best quality, high quality",
image=image,
ip_adapter_image=ip_image,
generator=generator,
strength=0.6,
).images
images[0]
```
<div class="flex gap-4">
<div>
<img class="rounded-xl" src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/diffusers/ip_adapter_bear_1.png"/>
<figcaption class="mt-2 text-center text-sm text-gray-500">original image</figcaption>
</div>
<div>
<img class="rounded-xl" src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/diffusers/ip_adapter_bear_2.png"/>
<figcaption class="mt-2 text-center text-sm text-gray-500">IP-Adapter image</figcaption>
</div>
<div>
<img class="rounded-xl" src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/diffusers/ip_adapter_bear_3.png"/>
<figcaption class="mt-2 text-center text-sm text-gray-500">generated image</figcaption>
</div>
</div>
</hfoption>
<hfoption id="Inpainting">
IP-Adapter is also useful for inpainting because the image prompt allows you to be much more specific about what you'd like to generate.
Load a Stable Diffusion XL (SDXL) model and insert an IP-Adapter into the model with the [`~loaders.IPAdapterMixin.load_ip_adapter`] method. Use the `subfolder` parameter to load the SDXL model weights.
```py
from diffusers import AutoPipelineForInpainting
from diffusers.utils import load_image
import torch
pipeline = AutoPipelineForInpainting.from_pretrained("diffusers/stable-diffusion-xl-1.0-inpainting-0.1", torch_dtype=torch.float16).to("cuda")
pipeline.load_ip_adapter("h94/IP-Adapter", subfolder="sdxl_models", weight_name="ip-adapter_sdxl.bin")
pipeline.set_ip_adapter_scale(0.6)
```
Pass a prompt, the original image, mask image, and the IP-Adapter image prompt to the pipeline to generate an image.
```py
mask_image = load_image("https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/diffusers/ip_adapter_mask.png")
image = load_image("https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/diffusers/ip_adapter_bear_1.png")
ip_image = load_image("https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/diffusers/ip_adapter_gummy.png")
generator = torch.Generator(device="cpu").manual_seed(4)
images = pipeline(
prompt="a cute gummy bear waving",
image=image,
mask_image=mask_image,
ip_adapter_image=ip_image,
generator=generator,
num_inference_steps=100,
).images
images[0]
```
<div class="flex gap-4">
<div>
<img class="rounded-xl" src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/diffusers/ip_adapter_bear_1.png"/>
<figcaption class="mt-2 text-center text-sm text-gray-500">original image</figcaption>
</div>
<div>
<img class="rounded-xl" src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/diffusers/ip_adapter_gummy.png"/>
<figcaption class="mt-2 text-center text-sm text-gray-500">IP-Adapter image</figcaption>
</div>
<div>
<img class="rounded-xl" src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/diffusers/ip_adapter_inpaint.png"/>
<figcaption class="mt-2 text-center text-sm text-gray-500">generated image</figcaption>
</div>
</div>
</hfoption>
<hfoption id="Video">
IP-Adapter can also help you generate videos that are more aligned with your text prompt. For example, let's load [AnimateDiff](../api/pipelines/animatediff) with its motion adapter and insert an IP-Adapter into the model with the [`~loaders.IPAdapterMixin.load_ip_adapter`] method.
> [!WARNING]
> If you're planning on offloading the model to the CPU, make sure you run it after you've loaded the IP-Adapter. When you call [`~DiffusionPipeline.enable_model_cpu_offload`] before loading the IP-Adapter, it offloads the image encoder module to the CPU and it'll return an error when you try to run the pipeline.
```py
import torch
from diffusers import AnimateDiffPipeline, DDIMScheduler, MotionAdapter
from diffusers.utils import export_to_gif
from diffusers.utils import load_image
adapter = MotionAdapter.from_pretrained("guoyww/animatediff-motion-adapter-v1-5-2", torch_dtype=torch.float16)
pipeline = AnimateDiffPipeline.from_pretrained("emilianJR/epiCRealism", motion_adapter=adapter, torch_dtype=torch.float16)
scheduler = DDIMScheduler.from_pretrained(
"emilianJR/epiCRealism",
subfolder="scheduler",
clip_sample=False,
timestep_spacing="linspace",
beta_schedule="linear",
steps_offset=1,
)
pipeline.scheduler = scheduler
pipeline.enable_vae_slicing()
pipeline.load_ip_adapter("h94/IP-Adapter", subfolder="models", weight_name="ip-adapter_sd15.bin")
pipeline.enable_model_cpu_offload()
```
Pass a prompt and an image prompt to the pipeline to generate a short video.
```py
ip_adapter_image = load_image("https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/diffusers/ip_adapter_inpaint.png")
output = pipeline(
prompt="A cute gummy bear waving",
negative_prompt="bad quality, worse quality, low resolution",
ip_adapter_image=ip_adapter_image,
num_frames=16,
guidance_scale=7.5,
num_inference_steps=50,
generator=torch.Generator(device="cpu").manual_seed(0),
)
frames = output.frames[0]
export_to_gif(frames, "gummy_bear.gif")
```
<div class="flex flex-row gap-4">
<div class="flex-1">
<img class="rounded-xl" src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/diffusers/ip_adapter_inpaint.png"/>
<figcaption class="mt-2 text-center text-sm text-gray-500">IP-Adapter image</figcaption>
</div>
<div class="flex-1">
<img class="rounded-xl" src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/diffusers/gummy_bear.gif"/>
<figcaption class="mt-2 text-center text-sm text-gray-500">generated video</figcaption>
</div>
</div>
</hfoption>
</hfoptions>
## Configure parameters
There are a couple of IP-Adapter parameters that are useful to know about and can help you with your image generation tasks. These parameters can make your workflow more efficient or give you more control over image generation.
### Image embeddings
IP-Adapter enabled pipelines provide the `ip_adapter_image_embeds` parameter to accept precomputed image embeddings. This is particularly useful in scenarios where you need to run the IP-Adapter pipeline multiple times because you have more than one image. For example, [multi IP-Adapter](#multi-ip-adapter) is a specific use case where you provide multiple styling images to generate a specific image in a specific style. Loading and encoding multiple images each time you use the pipeline would be inefficient. Instead, you can precompute and save the image embeddings to disk (which can save a lot of space if you're using high-quality images) and load them when you need them.
> [!TIP]
> This parameter also gives you the flexibility to load embeddings from other sources. For example, ComfyUI image embeddings for IP-Adapters are compatible with Diffusers and should work ouf-of-the-box!
Call the [`~StableDiffusionPipeline.prepare_ip_adapter_image_embeds`] method to encode and generate the image embeddings. Then you can save them to disk with `torch.save`.
> [!TIP]
> If you're using IP-Adapter with `ip_adapter_image_embedding` instead of `ip_adapter_image`', you can set `load_ip_adapter(image_encoder_folder=None,...)` because you don't need to load an encoder to generate the image embeddings.
```py
image_embeds = pipeline.prepare_ip_adapter_image_embeds(
ip_adapter_image=image,
ip_adapter_image_embeds=None,
device="cuda",
num_images_per_prompt=1,
do_classifier_free_guidance=True,
)
torch.save(image_embeds, "image_embeds.ipadpt")
```
Now load the image embeddings by passing them to the `ip_adapter_image_embeds` parameter.
```py
image_embeds = torch.load("image_embeds.ipadpt")
images = pipeline(
prompt="a polar bear sitting in a chair drinking a milkshake",
ip_adapter_image_embeds=image_embeds,
negative_prompt="deformed, ugly, wrong proportion, low res, bad anatomy, worst quality, low quality",
num_inference_steps=100,
generator=generator,
).images
```
### IP-Adapter masking
Binary masks specify which portion of the output image should be assigned to an IP-Adapter. This is useful for composing more than one IP-Adapter image. For each input IP-Adapter image, you must provide a binary mask.
To start, preprocess the input IP-Adapter images with the [`~image_processor.IPAdapterMaskProcessor.preprocess()`] to generate their masks. For optimal results, provide the output height and width to [`~image_processor.IPAdapterMaskProcessor.preprocess()`]. This ensures masks with different aspect ratios are appropriately stretched. If the input masks already match the aspect ratio of the generated image, you don't have to set the `height` and `width`.
```py
from diffusers.image_processor import IPAdapterMaskProcessor
mask1 = load_image("https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/diffusers/ip_mask_mask1.png")
mask2 = load_image("https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/diffusers/ip_mask_mask2.png")
output_height = 1024
output_width = 1024
processor = IPAdapterMaskProcessor()
masks = processor.preprocess([mask1, mask2], height=output_height, width=output_width)
```
<div class="flex flex-row gap-4">
<div class="flex-1">
<img class="rounded-xl" src="https://huggingface.co/datasets/YiYiXu/testing-images/resolve/main/ip_mask_mask1.png"/>
<figcaption class="mt-2 text-center text-sm text-gray-500">mask one</figcaption>
</div>
<div class="flex-1">
<img class="rounded-xl" src="https://huggingface.co/datasets/YiYiXu/testing-images/resolve/main/ip_mask_mask2.png"/>
<figcaption class="mt-2 text-center text-sm text-gray-500">mask two</figcaption>
</div>
</div>
When there is more than one input IP-Adapter image, load them as a list and provide the IP-Adapter scale list. Each of the input IP-Adapter images here corresponds to one of the masks generated above.
```py
pipeline.load_ip_adapter("h94/IP-Adapter", subfolder="sdxl_models", weight_name=["ip-adapter-plus-face_sdxl_vit-h.safetensors"])
pipeline.set_ip_adapter_scale([[0.7, 0.7]]) # one scale for each image-mask pair
face_image1 = load_image("https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/diffusers/ip_mask_girl1.png")
face_image2 = load_image("https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/diffusers/ip_mask_girl2.png")
ip_images = [[face_image1, face_image2]]
masks = [masks.reshape(1, masks.shape[0], masks.shape[2], masks.shape[3])]
```
<div class="flex flex-row gap-4">
<div class="flex-1">
<img class="rounded-xl" src="https://huggingface.co/datasets/YiYiXu/testing-images/resolve/main/ip_mask_girl1.png"/>
<figcaption class="mt-2 text-center text-sm text-gray-500">IP-Adapter image one</figcaption>
</div>
<div class="flex-1">
<img class="rounded-xl" src="https://huggingface.co/datasets/YiYiXu/testing-images/resolve/main/ip_mask_girl2.png"/>
<figcaption class="mt-2 text-center text-sm text-gray-500">IP-Adapter image two</figcaption>
</div>
</div>
Now pass the preprocessed masks to `cross_attention_kwargs` in the pipeline call.
```py
generator = torch.Generator(device="cpu").manual_seed(0)
num_images = 1
image = pipeline(
prompt="2 girls",
ip_adapter_image=ip_images,
negative_prompt="monochrome, lowres, bad anatomy, worst quality, low quality",
num_inference_steps=20,
num_images_per_prompt=num_images,
generator=generator,
cross_attention_kwargs={"ip_adapter_masks": masks}
).images[0]
image
```
<div class="flex flex-row gap-4">
<div class="flex-1">
<img class="rounded-xl" src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/diffusers/ip_adapter_attention_mask_result_seed_0.png"/>
<figcaption class="mt-2 text-center text-sm text-gray-500">IP-Adapter masking applied</figcaption>
</div>
<div class="flex-1">
<img class="rounded-xl" src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/diffusers/ip_adapter_no_attention_mask_result_seed_0.png"/>
<figcaption class="mt-2 text-center text-sm text-gray-500">no IP-Adapter masking applied</figcaption>
</div>
</div>
## Specific use cases
IP-Adapter's image prompting and compatibility with other adapters and models makes it a versatile tool for a variety of use cases. This section covers some of the more popular applications of IP-Adapter, and we can't wait to see what you come up with!
### Face model
Generating accurate faces is challenging because they are complex and nuanced. Diffusers supports two IP-Adapter checkpoints specifically trained to generate faces from the [h94/IP-Adapter](https://huggingface.co/h94/IP-Adapter) repository:
* [ip-adapter-full-face_sd15.safetensors](https://huggingface.co/h94/IP-Adapter/blob/main/models/ip-adapter-full-face_sd15.safetensors) is conditioned with images of cropped faces and removed backgrounds
* [ip-adapter-plus-face_sd15.safetensors](https://huggingface.co/h94/IP-Adapter/blob/main/models/ip-adapter-plus-face_sd15.safetensors) uses patch embeddings and is conditioned with images of cropped faces
Additionally, Diffusers supports all IP-Adapter checkpoints trained with face embeddings extracted by `insightface` face models. Supported models are from the [h94/IP-Adapter-FaceID](https://huggingface.co/h94/IP-Adapter-FaceID) repository.
For face models, use the [h94/IP-Adapter](https://huggingface.co/h94/IP-Adapter) checkpoint. It is also recommended to use [`DDIMScheduler`] or [`EulerDiscreteScheduler`] for face models.
```py
import torch
from diffusers import StableDiffusionPipeline, DDIMScheduler
from diffusers.utils import load_image
pipeline = StableDiffusionPipeline.from_pretrained(
"stable-diffusion-v1-5/stable-diffusion-v1-5",
torch_dtype=torch.float16,
).to("cuda")
pipeline.scheduler = DDIMScheduler.from_config(pipeline.scheduler.config)
pipeline.load_ip_adapter("h94/IP-Adapter", subfolder="models", weight_name="ip-adapter-full-face_sd15.bin")
pipeline.set_ip_adapter_scale(0.5)
image = load_image("https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/diffusers/ip_adapter_einstein_base.png")
generator = torch.Generator(device="cpu").manual_seed(26)
image = pipeline(
prompt="A photo of Einstein as a chef, wearing an apron, cooking in a French restaurant",
ip_adapter_image=image,
negative_prompt="lowres, bad anatomy, worst quality, low quality",
num_inference_steps=100,
generator=generator,
).images[0]
image
```
<div class="flex flex-row gap-4">
<div class="flex-1">
<img class="rounded-xl" src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/diffusers/ip_adapter_einstein_base.png"/>
<figcaption class="mt-2 text-center text-sm text-gray-500">IP-Adapter image</figcaption>
</div>
<div class="flex-1">
<img class="rounded-xl" src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/diffusers/ip_adapter_einstein.png"/>
<figcaption class="mt-2 text-center text-sm text-gray-500">generated image</figcaption>
</div>
</div>
To use IP-Adapter FaceID models, first extract face embeddings with `insightface`. Then pass the list of tensors to the pipeline as `ip_adapter_image_embeds`.
```py
import torch
from diffusers import StableDiffusionPipeline, DDIMScheduler
from diffusers.utils import load_image
from insightface.app import FaceAnalysis
pipeline = StableDiffusionPipeline.from_pretrained(
"stable-diffusion-v1-5/stable-diffusion-v1-5",
torch_dtype=torch.float16,
).to("cuda")
pipeline.scheduler = DDIMScheduler.from_config(pipeline.scheduler.config)
pipeline.load_ip_adapter("h94/IP-Adapter-FaceID", subfolder=None, weight_name="ip-adapter-faceid_sd15.bin", image_encoder_folder=None)
pipeline.set_ip_adapter_scale(0.6)
image = load_image("https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/diffusers/ip_mask_girl1.png")
ref_images_embeds = []
app = FaceAnalysis(name="buffalo_l", providers=['CUDAExecutionProvider', 'CPUExecutionProvider'])
app.prepare(ctx_id=0, det_size=(640, 640))
image = cv2.cvtColor(np.asarray(image), cv2.COLOR_BGR2RGB)
faces = app.get(image)
image = torch.from_numpy(faces[0].normed_embedding)
ref_images_embeds.append(image.unsqueeze(0))
ref_images_embeds = torch.stack(ref_images_embeds, dim=0).unsqueeze(0)
neg_ref_images_embeds = torch.zeros_like(ref_images_embeds)
id_embeds = torch.cat([neg_ref_images_embeds, ref_images_embeds]).to(dtype=torch.float16, device="cuda")
generator = torch.Generator(device="cpu").manual_seed(42)
images = pipeline(
prompt="A photo of a girl",
ip_adapter_image_embeds=[id_embeds],
negative_prompt="monochrome, lowres, bad anatomy, worst quality, low quality",
num_inference_steps=20, num_images_per_prompt=1,
generator=generator
).images
```
Both IP-Adapter FaceID Plus and Plus v2 models require CLIP image embeddings. You can prepare face embeddings as shown previously, then you can extract and pass CLIP embeddings to the hidden image projection layers.
```py
from insightface.utils import face_align
ref_images_embeds = []
ip_adapter_images = []
app = FaceAnalysis(name="buffalo_l", providers=['CUDAExecutionProvider', 'CPUExecutionProvider'])
app.prepare(ctx_id=0, det_size=(640, 640))
image = cv2.cvtColor(np.asarray(image), cv2.COLOR_BGR2RGB)
faces = app.get(image)
ip_adapter_images.append(face_align.norm_crop(image, landmark=faces[0].kps, image_size=224))
image = torch.from_numpy(faces[0].normed_embedding)
ref_images_embeds.append(image.unsqueeze(0))
ref_images_embeds = torch.stack(ref_images_embeds, dim=0).unsqueeze(0)
neg_ref_images_embeds = torch.zeros_like(ref_images_embeds)
id_embeds = torch.cat([neg_ref_images_embeds, ref_images_embeds]).to(dtype=torch.float16, device="cuda")
clip_embeds = pipeline.prepare_ip_adapter_image_embeds(
[ip_adapter_images], None, torch.device("cuda"), num_images, True)[0]
pipeline.unet.encoder_hid_proj.image_projection_layers[0].clip_embeds = clip_embeds.to(dtype=torch.float16)
pipeline.unet.encoder_hid_proj.image_projection_layers[0].shortcut = False # True if Plus v2
```
### Multi IP-Adapter
More than one IP-Adapter can be used at the same time to generate specific images in more diverse styles. For example, you can use IP-Adapter-Face to generate consistent faces and characters, and IP-Adapter Plus to generate those faces in a specific style.
> [!TIP]
> Read the [IP-Adapter Plus](../using-diffusers/loading_adapters#ip-adapter-plus) section to learn why you need to manually load the image encoder.
Load the image encoder with [`~transformers.CLIPVisionModelWithProjection`].
```py
import torch
from diffusers import AutoPipelineForText2Image, DDIMScheduler
from transformers import CLIPVisionModelWithProjection
from diffusers.utils import load_image
image_encoder = CLIPVisionModelWithProjection.from_pretrained(
"h94/IP-Adapter",
subfolder="models/image_encoder",
torch_dtype=torch.float16,
)
```
Next, you'll load a base model, scheduler, and the IP-Adapters. The IP-Adapters to use are passed as a list to the `weight_name` parameter:
* [ip-adapter-plus_sdxl_vit-h](https://huggingface.co/h94/IP-Adapter#ip-adapter-for-sdxl-10) uses patch embeddings and a ViT-H image encoder
* [ip-adapter-plus-face_sdxl_vit-h](https://huggingface.co/h94/IP-Adapter#ip-adapter-for-sdxl-10) has the same architecture but it is conditioned with images of cropped faces
```py
pipeline = AutoPipelineForText2Image.from_pretrained(
"stabilityai/stable-diffusion-xl-base-1.0",
torch_dtype=torch.float16,
image_encoder=image_encoder,
)
pipeline.scheduler = DDIMScheduler.from_config(pipeline.scheduler.config)
pipeline.load_ip_adapter(
"h94/IP-Adapter",
subfolder="sdxl_models",
weight_name=["ip-adapter-plus_sdxl_vit-h.safetensors", "ip-adapter-plus-face_sdxl_vit-h.safetensors"]
)
pipeline.set_ip_adapter_scale([0.7, 0.3])
pipeline.enable_model_cpu_offload()
```
Load an image prompt and a folder containing images of a certain style you want to use.
```py
face_image = load_image("https://huggingface.co/datasets/YiYiXu/testing-images/resolve/main/women_input.png")
style_folder = "https://huggingface.co/datasets/YiYiXu/testing-images/resolve/main/style_ziggy"
style_images = [load_image(f"{style_folder}/img{i}.png") for i in range(10)]
```
<div class="flex flex-row gap-4">
<div class="flex-1">
<img class="rounded-xl" src="https://huggingface.co/datasets/YiYiXu/testing-images/resolve/main/women_input.png"/>
<figcaption class="mt-2 text-center text-sm text-gray-500">IP-Adapter image of face</figcaption>
</div>
<div class="flex-1">
<img class="rounded-xl" src="https://huggingface.co/datasets/YiYiXu/testing-images/resolve/main/ip_style_grid.png"/>
<figcaption class="mt-2 text-center text-sm text-gray-500">IP-Adapter style images</figcaption>
</div>
</div>
Pass the image prompt and style images as a list to the `ip_adapter_image` parameter, and run the pipeline!
```py
generator = torch.Generator(device="cpu").manual_seed(0)
image = pipeline(
prompt="wonderwoman",
ip_adapter_image=[style_images, face_image],
negative_prompt="monochrome, lowres, bad anatomy, worst quality, low quality",
num_inference_steps=50, num_images_per_prompt=1,
generator=generator,
).images[0]
image
```
<div class="flex justify-center">
    <img src="https://huggingface.co/datasets/YiYiXu/testing-images/resolve/main/ip_multi_out.png" />
</div>
### Instant generation
[Latent Consistency Models (LCM)](../using-diffusers/inference_with_lcm_lora) are diffusion models that can generate images in as little as 4 steps compared to other diffusion models like SDXL that typically require way more steps. This is why image generation with an LCM feels "instantaneous". IP-Adapters can be plugged into an LCM-LoRA model to instantly generate images with an image prompt.
The IP-Adapter weights need to be loaded first, then you can use [`~StableDiffusionPipeline.load_lora_weights`] to load the LoRA style and weight you want to apply to your image.
```py
from diffusers import DiffusionPipeline, LCMScheduler
import torch
from diffusers.utils import load_image
model_id = "sd-dreambooth-library/herge-style"
lcm_lora_id = "latent-consistency/lcm-lora-sdv1-5"
pipeline = DiffusionPipeline.from_pretrained(model_id, torch_dtype=torch.float16)
pipeline.load_ip_adapter("h94/IP-Adapter", subfolder="models", weight_name="ip-adapter_sd15.bin")
pipeline.load_lora_weights(lcm_lora_id)
pipeline.scheduler = LCMScheduler.from_config(pipeline.scheduler.config)
pipeline.enable_model_cpu_offload()
```
Try using with a lower IP-Adapter scale to condition image generation more on the [herge_style](https://huggingface.co/sd-dreambooth-library/herge-style) checkpoint, and remember to use the special token `herge_style` in your prompt to trigger and apply the style.
```py
pipeline.set_ip_adapter_scale(0.4)
prompt = "herge_style woman in armor, best quality, high quality"
generator = torch.Generator(device="cpu").manual_seed(0)
ip_adapter_image = load_image("https://user-images.githubusercontent.com/24734142/266492875-2d50d223-8475-44f0-a7c6-08b51cb53572.png")
image = pipeline(
prompt=prompt,
ip_adapter_image=ip_adapter_image,
num_inference_steps=4,
guidance_scale=1,
).images[0]
image
```
<div class="flex justify-center">
    <img src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/diffusers/ip_adapter_herge.png" />
</div>
### Structural control
To control image generation to an even greater degree, you can combine IP-Adapter with a model like [ControlNet](../using-diffusers/controlnet). A ControlNet is also an adapter that can be inserted into a diffusion model to allow for conditioning on an additional control image. The control image can be depth maps, edge maps, pose estimations, and more.
Load a [`ControlNetModel`] checkpoint conditioned on depth maps, insert it into a diffusion model, and load the IP-Adapter.
```py
from diffusers import StableDiffusionControlNetPipeline, ControlNetModel
import torch
from diffusers.utils import load_image
controlnet_model_path = "lllyasviel/control_v11f1p_sd15_depth"
controlnet = ControlNetModel.from_pretrained(controlnet_model_path, torch_dtype=torch.float16)
pipeline = StableDiffusionControlNetPipeline.from_pretrained(
"stable-diffusion-v1-5/stable-diffusion-v1-5", controlnet=controlnet, torch_dtype=torch.float16)
pipeline.to("cuda")
pipeline.load_ip_adapter("h94/IP-Adapter", subfolder="models", weight_name="ip-adapter_sd15.bin")
```
Now load the IP-Adapter image and depth map.
```py
ip_adapter_image = load_image("https://huggingface.co/datasets/YiYiXu/testing-images/resolve/main/statue.png")
depth_map = load_image("https://huggingface.co/datasets/YiYiXu/testing-images/resolve/main/depth.png")
```
<div class="flex flex-row gap-4">
<div class="flex-1">
<img class="rounded-xl" src="https://huggingface.co/datasets/YiYiXu/testing-images/resolve/main/statue.png"/>
<figcaption class="mt-2 text-center text-sm text-gray-500">IP-Adapter image</figcaption>
</div>
<div class="flex-1">
<img class="rounded-xl" src="https://huggingface.co/datasets/YiYiXu/testing-images/resolve/main/depth.png"/>
<figcaption class="mt-2 text-center text-sm text-gray-500">depth map</figcaption>
</div>
</div>
Pass the depth map and IP-Adapter image to the pipeline to generate an image.
```py
generator = torch.Generator(device="cpu").manual_seed(33)
image = pipeline(
prompt="best quality, high quality",
image=depth_map,
ip_adapter_image=ip_adapter_image,
negative_prompt="monochrome, lowres, bad anatomy, worst quality, low quality",
num_inference_steps=50,
generator=generator,
).images[0]
image
```
<div class="flex justify-center">
    <img src="https://huggingface.co/datasets/YiYiXu/testing-images/resolve/main/ipa-controlnet-out.png" />
</div>
### Style & layout control
[InstantStyle](https://arxiv.org/abs/2404.02733) is a plug-and-play method on top of IP-Adapter, which disentangles style and layout from image prompt to control image generation. This way, you can generate images following only the style or layout from image prompt, with significantly improved diversity. This is achieved by only activating IP-Adapters to specific parts of the model.
By default IP-Adapters are inserted to all layers of the model. Use the [`~loaders.IPAdapterMixin.set_ip_adapter_scale`] method with a dictionary to assign scales to IP-Adapter at different layers.
```py
from diffusers import AutoPipelineForText2Image
from diffusers.utils import load_image
import torch
pipeline = AutoPipelineForText2Image.from_pretrained("stabilityai/stable-diffusion-xl-base-1.0", torch_dtype=torch.float16).to("cuda")
pipeline.load_ip_adapter("h94/IP-Adapter", subfolder="sdxl_models", weight_name="ip-adapter_sdxl.bin")
scale = {
"down": {"block_2": [0.0, 1.0]},
"up": {"block_0": [0.0, 1.0, 0.0]},
}
pipeline.set_ip_adapter_scale(scale)
```
This will activate IP-Adapter at the second layer in the model's down-part block 2 and up-part block 0. The former is the layer where IP-Adapter injects layout information and the latter injects style. Inserting IP-Adapter to these two layers you can generate images following both the style and layout from image prompt, but with contents more aligned to text prompt.
```py
style_image = load_image("https://huggingface.co/datasets/huggingface/documentation-images/resolve/0052a70beed5bf71b92610a43a52df6d286cd5f3/diffusers/rabbit.jpg")
generator = torch.Generator(device="cpu").manual_seed(26)
image = pipeline(
prompt="a cat, masterpiece, best quality, high quality",
ip_adapter_image=style_image,
negative_prompt="text, watermark, lowres, low quality, worst quality, deformed, glitch, low contrast, noisy, saturation, blurry",
guidance_scale=5,
num_inference_steps=30,
generator=generator,
).images[0]
image
```
<div class="flex flex-row gap-4">
<div class="flex-1">
<img class="rounded-xl" src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/0052a70beed5bf71b92610a43a52df6d286cd5f3/diffusers/rabbit.jpg"/>
<figcaption class="mt-2 text-center text-sm text-gray-500">IP-Adapter image</figcaption>
</div>
<div class="flex-1">
<img class="rounded-xl" src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/datasets/cat_style_layout.png"/>
<figcaption class="mt-2 text-center text-sm text-gray-500">generated image</figcaption>
</div>
</div>
In contrast, inserting IP-Adapter to all layers will often generate images that overly focus on image prompt and diminish diversity.
Activate IP-Adapter only in the style layer and then call the pipeline again.
```py
scale = {
"up": {"block_0": [0.0, 1.0, 0.0]},
}
pipeline.set_ip_adapter_scale(scale)
generator = torch.Generator(device="cpu").manual_seed(26)
image = pipeline(
prompt="a cat, masterpiece, best quality, high quality",
ip_adapter_image=style_image,
negative_prompt="text, watermark, lowres, low quality, worst quality, deformed, glitch, low contrast, noisy, saturation, blurry",
guidance_scale=5,
num_inference_steps=30,
generator=generator,
).images[0]
image
```
<div class="flex flex-row gap-4">
<div class="flex-1">
<img class="rounded-xl" src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/datasets/cat_style_only.png"/>
<figcaption class="mt-2 text-center text-sm text-gray-500">IP-Adapter only in style layer</figcaption>
</div>
<div class="flex-1">
<img class="rounded-xl" src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/datasets/cat_ip_adapter.png"/>
<figcaption class="mt-2 text-center text-sm text-gray-500">IP-Adapter in all layers</figcaption>
</div>
</div>
Note that you don't have to specify all layers in the dictionary. Those not included in the dictionary will be set to scale 0 which means disable IP-Adapter by default.
<!--Copyright 2024 The HuggingFace Team. All rights reserved.
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
the License. You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on
an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the
specific language governing permissions and limitations under the License.
-->
# Kandinsky
[[open-in-colab]]
The Kandinsky models are a series of multilingual text-to-image generation models. The Kandinsky 2.0 model uses two multilingual text encoders and concatenates those results for the UNet.
[Kandinsky 2.1](../api/pipelines/kandinsky) changes the architecture to include an image prior model ([`CLIP`](https://huggingface.co/docs/transformers/model_doc/clip)) to generate a mapping between text and image embeddings. The mapping provides better text-image alignment and it is used with the text embeddings during training, leading to higher quality results. Finally, Kandinsky 2.1 uses a [Modulating Quantized Vectors (MoVQ)](https://huggingface.co/papers/2209.09002) decoder - which adds a spatial conditional normalization layer to increase photorealism - to decode the latents into images.
[Kandinsky 2.2](../api/pipelines/kandinsky_v22) improves on the previous model by replacing the image encoder of the image prior model with a larger CLIP-ViT-G model to improve quality. The image prior model was also retrained on images with different resolutions and aspect ratios to generate higher-resolution images and different image sizes.
[Kandinsky 3](../api/pipelines/kandinsky3) simplifies the architecture and shifts away from the two-stage generation process involving the prior model and diffusion model. Instead, Kandinsky 3 uses [Flan-UL2](https://huggingface.co/google/flan-ul2) to encode text, a UNet with [BigGan-deep](https://hf.co/papers/1809.11096) blocks, and [Sber-MoVQGAN](https://github.com/ai-forever/MoVQGAN) to decode the latents into images. Text understanding and generated image quality are primarily achieved by using a larger text encoder and UNet.
This guide will show you how to use the Kandinsky models for text-to-image, image-to-image, inpainting, interpolation, and more.
Before you begin, make sure you have the following libraries installed:
```py
# uncomment to install the necessary libraries in Colab
#!pip install -q diffusers transformers accelerate
```
<Tip warning={true}>
Kandinsky 2.1 and 2.2 usage is very similar! The only difference is Kandinsky 2.2 doesn't accept `prompt` as an input when decoding the latents. Instead, Kandinsky 2.2 only accepts `image_embeds` during decoding.
<br>
Kandinsky 3 has a more concise architecture and it doesn't require a prior model. This means it's usage is identical to other diffusion models like [Stable Diffusion XL](sdxl).
</Tip>
## Text-to-image
To use the Kandinsky models for any task, you always start by setting up the prior pipeline to encode the prompt and generate the image embeddings. The prior pipeline also generates `negative_image_embeds` that correspond to the negative prompt `""`. For better results, you can pass an actual `negative_prompt` to the prior pipeline, but this'll increase the effective batch size of the prior pipeline by 2x.
<hfoptions id="text-to-image">
<hfoption id="Kandinsky 2.1">
```py
from diffusers import KandinskyPriorPipeline, KandinskyPipeline
import torch
prior_pipeline = KandinskyPriorPipeline.from_pretrained("kandinsky-community/kandinsky-2-1-prior", torch_dtype=torch.float16).to("cuda")
pipeline = KandinskyPipeline.from_pretrained("kandinsky-community/kandinsky-2-1", torch_dtype=torch.float16).to("cuda")
prompt = "A alien cheeseburger creature eating itself, claymation, cinematic, moody lighting"
negative_prompt = "low quality, bad quality" # optional to include a negative prompt, but results are usually better
image_embeds, negative_image_embeds = prior_pipeline(prompt, negative_prompt, guidance_scale=1.0).to_tuple()
```
Now pass all the prompts and embeddings to the [`KandinskyPipeline`] to generate an image:
```py
image = pipeline(prompt, image_embeds=image_embeds, negative_prompt=negative_prompt, negative_image_embeds=negative_image_embeds, height=768, width=768).images[0]
image
```
<div class="flex justify-center">
<img class="rounded-xl" src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/diffusers/kandinsky-docs/cheeseburger.png"/>
</div>
</hfoption>
<hfoption id="Kandinsky 2.2">
```py
from diffusers import KandinskyV22PriorPipeline, KandinskyV22Pipeline
import torch
prior_pipeline = KandinskyV22PriorPipeline.from_pretrained("kandinsky-community/kandinsky-2-2-prior", torch_dtype=torch.float16).to("cuda")
pipeline = KandinskyV22Pipeline.from_pretrained("kandinsky-community/kandinsky-2-2-decoder", torch_dtype=torch.float16).to("cuda")
prompt = "A alien cheeseburger creature eating itself, claymation, cinematic, moody lighting"
negative_prompt = "low quality, bad quality" # optional to include a negative prompt, but results are usually better
image_embeds, negative_image_embeds = prior_pipeline(prompt, guidance_scale=1.0).to_tuple()
```
Pass the `image_embeds` and `negative_image_embeds` to the [`KandinskyV22Pipeline`] to generate an image:
```py
image = pipeline(image_embeds=image_embeds, negative_image_embeds=negative_image_embeds, height=768, width=768).images[0]
image
```
<div class="flex justify-center">
<img class="rounded-xl" src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/diffusers/kandinsky-text-to-image.png"/>
</div>
</hfoption>
<hfoption id="Kandinsky 3">
Kandinsky 3 doesn't require a prior model so you can directly load the [`Kandinsky3Pipeline`] and pass a prompt to generate an image:
```py
from diffusers import Kandinsky3Pipeline
import torch
pipeline = Kandinsky3Pipeline.from_pretrained("kandinsky-community/kandinsky-3", variant="fp16", torch_dtype=torch.float16)
pipeline.enable_model_cpu_offload()
prompt = "A alien cheeseburger creature eating itself, claymation, cinematic, moody lighting"
image = pipeline(prompt).images[0]
image
```
</hfoption>
</hfoptions>
🤗 Diffusers also provides an end-to-end API with the [`KandinskyCombinedPipeline`] and [`KandinskyV22CombinedPipeline`], meaning you don't have to separately load the prior and text-to-image pipeline. The combined pipeline automatically loads both the prior model and the decoder. You can still set different values for the prior pipeline with the `prior_guidance_scale` and `prior_num_inference_steps` parameters if you want.
Use the [`AutoPipelineForText2Image`] to automatically call the combined pipelines under the hood:
<hfoptions id="text-to-image">
<hfoption id="Kandinsky 2.1">
```py
from diffusers import AutoPipelineForText2Image
import torch
pipeline = AutoPipelineForText2Image.from_pretrained("kandinsky-community/kandinsky-2-1", torch_dtype=torch.float16)
pipeline.enable_model_cpu_offload()
prompt = "A alien cheeseburger creature eating itself, claymation, cinematic, moody lighting"
negative_prompt = "low quality, bad quality"
image = pipeline(prompt=prompt, negative_prompt=negative_prompt, prior_guidance_scale=1.0, guidance_scale=4.0, height=768, width=768).images[0]
image
```
</hfoption>
<hfoption id="Kandinsky 2.2">
```py
from diffusers import AutoPipelineForText2Image
import torch
pipeline = AutoPipelineForText2Image.from_pretrained("kandinsky-community/kandinsky-2-2-decoder", torch_dtype=torch.float16)
pipeline.enable_model_cpu_offload()
prompt = "A alien cheeseburger creature eating itself, claymation, cinematic, moody lighting"
negative_prompt = "low quality, bad quality"
image = pipeline(prompt=prompt, negative_prompt=negative_prompt, prior_guidance_scale=1.0, guidance_scale=4.0, height=768, width=768).images[0]
image
```
</hfoption>
</hfoptions>
## Image-to-image
For image-to-image, pass the initial image and text prompt to condition the image to the pipeline. Start by loading the prior pipeline:
<hfoptions id="image-to-image">
<hfoption id="Kandinsky 2.1">
```py
import torch
from diffusers import KandinskyImg2ImgPipeline, KandinskyPriorPipeline
prior_pipeline = KandinskyPriorPipeline.from_pretrained("kandinsky-community/kandinsky-2-1-prior", torch_dtype=torch.float16, use_safetensors=True).to("cuda")
pipeline = KandinskyImg2ImgPipeline.from_pretrained("kandinsky-community/kandinsky-2-1", torch_dtype=torch.float16, use_safetensors=True).to("cuda")
```
</hfoption>
<hfoption id="Kandinsky 2.2">
```py
import torch
from diffusers import KandinskyV22Img2ImgPipeline, KandinskyPriorPipeline
prior_pipeline = KandinskyPriorPipeline.from_pretrained("kandinsky-community/kandinsky-2-2-prior", torch_dtype=torch.float16, use_safetensors=True).to("cuda")
pipeline = KandinskyV22Img2ImgPipeline.from_pretrained("kandinsky-community/kandinsky-2-2-decoder", torch_dtype=torch.float16, use_safetensors=True).to("cuda")
```
</hfoption>
<hfoption id="Kandinsky 3">
Kandinsky 3 doesn't require a prior model so you can directly load the image-to-image pipeline:
```py
from diffusers import Kandinsky3Img2ImgPipeline
from diffusers.utils import load_image
import torch
pipeline = Kandinsky3Img2ImgPipeline.from_pretrained("kandinsky-community/kandinsky-3", variant="fp16", torch_dtype=torch.float16)
pipeline.enable_model_cpu_offload()
```
</hfoption>
</hfoptions>
Download an image to condition on:
```py
from diffusers.utils import load_image
# download image
url = "https://raw.githubusercontent.com/CompVis/stable-diffusion/main/assets/stable-samples/img2img/sketch-mountains-input.jpg"
original_image = load_image(url)
original_image = original_image.resize((768, 512))
```
<div class="flex justify-center">
<img class="rounded-xl" src="https://raw.githubusercontent.com/CompVis/stable-diffusion/main/assets/stable-samples/img2img/sketch-mountains-input.jpg"/>
</div>
Generate the `image_embeds` and `negative_image_embeds` with the prior pipeline:
```py
prompt = "A fantasy landscape, Cinematic lighting"
negative_prompt = "low quality, bad quality"
image_embeds, negative_image_embeds = prior_pipeline(prompt, negative_prompt).to_tuple()
```
Now pass the original image, and all the prompts and embeddings to the pipeline to generate an image:
<hfoptions id="image-to-image">
<hfoption id="Kandinsky 2.1">
```py
from diffusers.utils import make_image_grid
image = pipeline(prompt, negative_prompt=negative_prompt, image=original_image, image_embeds=image_embeds, negative_image_embeds=negative_image_embeds, height=768, width=768, strength=0.3).images[0]
make_image_grid([original_image.resize((512, 512)), image.resize((512, 512))], rows=1, cols=2)
```
<div class="flex justify-center">
<img class="rounded-xl" src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/diffusers/kandinsky-docs/img2img_fantasyland.png"/>
</div>
</hfoption>
<hfoption id="Kandinsky 2.2">
```py
from diffusers.utils import make_image_grid
image = pipeline(image=original_image, image_embeds=image_embeds, negative_image_embeds=negative_image_embeds, height=768, width=768, strength=0.3).images[0]
make_image_grid([original_image.resize((512, 512)), image.resize((512, 512))], rows=1, cols=2)
```
<div class="flex justify-center">
<img class="rounded-xl" src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/diffusers/kandinsky-image-to-image.png"/>
</div>
</hfoption>
<hfoption id="Kandinsky 3">
```py
image = pipeline(prompt, negative_prompt=negative_prompt, image=image, strength=0.75, num_inference_steps=25).images[0]
image
```
</hfoption>
</hfoptions>
🤗 Diffusers also provides an end-to-end API with the [`KandinskyImg2ImgCombinedPipeline`] and [`KandinskyV22Img2ImgCombinedPipeline`], meaning you don't have to separately load the prior and image-to-image pipeline. The combined pipeline automatically loads both the prior model and the decoder. You can still set different values for the prior pipeline with the `prior_guidance_scale` and `prior_num_inference_steps` parameters if you want.
Use the [`AutoPipelineForImage2Image`] to automatically call the combined pipelines under the hood:
<hfoptions id="image-to-image">
<hfoption id="Kandinsky 2.1">
```py
from diffusers import AutoPipelineForImage2Image
from diffusers.utils import make_image_grid, load_image
import torch
pipeline = AutoPipelineForImage2Image.from_pretrained("kandinsky-community/kandinsky-2-1", torch_dtype=torch.float16, use_safetensors=True)
pipeline.enable_model_cpu_offload()
prompt = "A fantasy landscape, Cinematic lighting"
negative_prompt = "low quality, bad quality"
url = "https://raw.githubusercontent.com/CompVis/stable-diffusion/main/assets/stable-samples/img2img/sketch-mountains-input.jpg"
original_image = load_image(url)
original_image.thumbnail((768, 768))
image = pipeline(prompt=prompt, negative_prompt=negative_prompt, image=original_image, strength=0.3).images[0]
make_image_grid([original_image.resize((512, 512)), image.resize((512, 512))], rows=1, cols=2)
```
</hfoption>
<hfoption id="Kandinsky 2.2">
```py
from diffusers import AutoPipelineForImage2Image
from diffusers.utils import make_image_grid, load_image
import torch
pipeline = AutoPipelineForImage2Image.from_pretrained("kandinsky-community/kandinsky-2-2-decoder", torch_dtype=torch.float16)
pipeline.enable_model_cpu_offload()
prompt = "A fantasy landscape, Cinematic lighting"
negative_prompt = "low quality, bad quality"
url = "https://raw.githubusercontent.com/CompVis/stable-diffusion/main/assets/stable-samples/img2img/sketch-mountains-input.jpg"
original_image = load_image(url)
original_image.thumbnail((768, 768))
image = pipeline(prompt=prompt, negative_prompt=negative_prompt, image=original_image, strength=0.3).images[0]
make_image_grid([original_image.resize((512, 512)), image.resize((512, 512))], rows=1, cols=2)
```
</hfoption>
</hfoptions>
## Inpainting
<Tip warning={true}>
⚠️ The Kandinsky models use ⬜️ **white pixels** to represent the masked area now instead of black pixels. If you are using [`KandinskyInpaintPipeline`] in production, you need to change the mask to use white pixels:
```py
# For PIL input
import PIL.ImageOps
mask = PIL.ImageOps.invert(mask)
# For PyTorch and NumPy input
mask = 1 - mask
```
</Tip>
For inpainting, you'll need the original image, a mask of the area to replace in the original image, and a text prompt of what to inpaint. Load the prior pipeline:
<hfoptions id="inpaint">
<hfoption id="Kandinsky 2.1">
```py
from diffusers import KandinskyInpaintPipeline, KandinskyPriorPipeline
from diffusers.utils import load_image, make_image_grid
import torch
import numpy as np
from PIL import Image
prior_pipeline = KandinskyPriorPipeline.from_pretrained("kandinsky-community/kandinsky-2-1-prior", torch_dtype=torch.float16, use_safetensors=True).to("cuda")
pipeline = KandinskyInpaintPipeline.from_pretrained("kandinsky-community/kandinsky-2-1-inpaint", torch_dtype=torch.float16, use_safetensors=True).to("cuda")
```
</hfoption>
<hfoption id="Kandinsky 2.2">
```py
from diffusers import KandinskyV22InpaintPipeline, KandinskyV22PriorPipeline
from diffusers.utils import load_image, make_image_grid
import torch
import numpy as np
from PIL import Image
prior_pipeline = KandinskyV22PriorPipeline.from_pretrained("kandinsky-community/kandinsky-2-2-prior", torch_dtype=torch.float16, use_safetensors=True).to("cuda")
pipeline = KandinskyV22InpaintPipeline.from_pretrained("kandinsky-community/kandinsky-2-2-decoder-inpaint", torch_dtype=torch.float16, use_safetensors=True).to("cuda")
```
</hfoption>
</hfoptions>
Load an initial image and create a mask:
```py
init_image = load_image("https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/kandinsky/cat.png")
mask = np.zeros((768, 768), dtype=np.float32)
# mask area above cat's head
mask[:250, 250:-250] = 1
```
Generate the embeddings with the prior pipeline:
```py
prompt = "a hat"
prior_output = prior_pipeline(prompt)
```
Now pass the initial image, mask, and prompt and embeddings to the pipeline to generate an image:
<hfoptions id="inpaint">
<hfoption id="Kandinsky 2.1">
```py
output_image = pipeline(prompt, image=init_image, mask_image=mask, **prior_output, height=768, width=768, num_inference_steps=150).images[0]
mask = Image.fromarray((mask*255).astype('uint8'), 'L')
make_image_grid([init_image, mask, output_image], rows=1, cols=3)
```
<div class="flex justify-center">
<img class="rounded-xl" src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/diffusers/kandinsky-docs/inpaint_cat_hat.png"/>
</div>
</hfoption>
<hfoption id="Kandinsky 2.2">
```py
output_image = pipeline(image=init_image, mask_image=mask, **prior_output, height=768, width=768, num_inference_steps=150).images[0]
mask = Image.fromarray((mask*255).astype('uint8'), 'L')
make_image_grid([init_image, mask, output_image], rows=1, cols=3)
```
<div class="flex justify-center">
<img class="rounded-xl" src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/diffusers/kandinskyv22-inpaint.png"/>
</div>
</hfoption>
</hfoptions>
You can also use the end-to-end [`KandinskyInpaintCombinedPipeline`] and [`KandinskyV22InpaintCombinedPipeline`] to call the prior and decoder pipelines together under the hood. Use the [`AutoPipelineForInpainting`] for this:
<hfoptions id="inpaint">
<hfoption id="Kandinsky 2.1">
```py
import torch
import numpy as np
from PIL import Image
from diffusers import AutoPipelineForInpainting
from diffusers.utils import load_image, make_image_grid
pipe = AutoPipelineForInpainting.from_pretrained("kandinsky-community/kandinsky-2-1-inpaint", torch_dtype=torch.float16)
pipe.enable_model_cpu_offload()
init_image = load_image("https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/kandinsky/cat.png")
mask = np.zeros((768, 768), dtype=np.float32)
# mask area above cat's head
mask[:250, 250:-250] = 1
prompt = "a hat"
output_image = pipe(prompt=prompt, image=init_image, mask_image=mask).images[0]
mask = Image.fromarray((mask*255).astype('uint8'), 'L')
make_image_grid([init_image, mask, output_image], rows=1, cols=3)
```
</hfoption>
<hfoption id="Kandinsky 2.2">
```py
import torch
import numpy as np
from PIL import Image
from diffusers import AutoPipelineForInpainting
from diffusers.utils import load_image, make_image_grid
pipe = AutoPipelineForInpainting.from_pretrained("kandinsky-community/kandinsky-2-2-decoder-inpaint", torch_dtype=torch.float16)
pipe.enable_model_cpu_offload()
init_image = load_image("https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/kandinsky/cat.png")
mask = np.zeros((768, 768), dtype=np.float32)
# mask area above cat's head
mask[:250, 250:-250] = 1
prompt = "a hat"
output_image = pipe(prompt=prompt, image=original_image, mask_image=mask).images[0]
mask = Image.fromarray((mask*255).astype('uint8'), 'L')
make_image_grid([init_image, mask, output_image], rows=1, cols=3)
```
</hfoption>
</hfoptions>
## Interpolation
Interpolation allows you to explore the latent space between the image and text embeddings which is a cool way to see some of the prior model's intermediate outputs. Load the prior pipeline and two images you'd like to interpolate:
<hfoptions id="interpolate">
<hfoption id="Kandinsky 2.1">
```py
from diffusers import KandinskyPriorPipeline, KandinskyPipeline
from diffusers.utils import load_image, make_image_grid
import torch
prior_pipeline = KandinskyPriorPipeline.from_pretrained("kandinsky-community/kandinsky-2-1-prior", torch_dtype=torch.float16, use_safetensors=True).to("cuda")
img_1 = load_image("https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/kandinsky/cat.png")
img_2 = load_image("https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/kandinsky/starry_night.jpeg")
make_image_grid([img_1.resize((512,512)), img_2.resize((512,512))], rows=1, cols=2)
```
</hfoption>
<hfoption id="Kandinsky 2.2">
```py
from diffusers import KandinskyV22PriorPipeline, KandinskyV22Pipeline
from diffusers.utils import load_image, make_image_grid
import torch
prior_pipeline = KandinskyV22PriorPipeline.from_pretrained("kandinsky-community/kandinsky-2-2-prior", torch_dtype=torch.float16, use_safetensors=True).to("cuda")
img_1 = load_image("https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/kandinsky/cat.png")
img_2 = load_image("https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/kandinsky/starry_night.jpeg")
make_image_grid([img_1.resize((512,512)), img_2.resize((512,512))], rows=1, cols=2)
```
</hfoption>
</hfoptions>
<div class="flex gap-4">
<div>
<img class="rounded-xl" src="https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/kandinsky/cat.png"/>
<figcaption class="mt-2 text-center text-sm text-gray-500">a cat</figcaption>
</div>
<div>
<img class="rounded-xl" src="https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/kandinsky/starry_night.jpeg"/>
<figcaption class="mt-2 text-center text-sm text-gray-500">Van Gogh's Starry Night painting</figcaption>
</div>
</div>
Specify the text or images to interpolate, and set the weights for each text or image. Experiment with the weights to see how they affect the interpolation!
```py
images_texts = ["a cat", img_1, img_2]
weights = [0.3, 0.3, 0.4]
```
Call the `interpolate` function to generate the embeddings, and then pass them to the pipeline to generate the image:
<hfoptions id="interpolate">
<hfoption id="Kandinsky 2.1">
```py
# prompt can be left empty
prompt = ""
prior_out = prior_pipeline.interpolate(images_texts, weights)
pipeline = KandinskyPipeline.from_pretrained("kandinsky-community/kandinsky-2-1", torch_dtype=torch.float16, use_safetensors=True).to("cuda")
image = pipeline(prompt, **prior_out, height=768, width=768).images[0]
image
```
<div class="flex justify-center">
<img class="rounded-xl" src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/diffusers/kandinsky-docs/starry_cat.png"/>
</div>
</hfoption>
<hfoption id="Kandinsky 2.2">
```py
# prompt can be left empty
prompt = ""
prior_out = prior_pipeline.interpolate(images_texts, weights)
pipeline = KandinskyV22Pipeline.from_pretrained("kandinsky-community/kandinsky-2-2-decoder", torch_dtype=torch.float16, use_safetensors=True).to("cuda")
image = pipeline(prompt, **prior_out, height=768, width=768).images[0]
image
```
<div class="flex justify-center">
<img class="rounded-xl" src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/diffusers/kandinskyv22-interpolate.png"/>
</div>
</hfoption>
</hfoptions>
## ControlNet
<Tip warning={true}>
⚠️ ControlNet is only supported for Kandinsky 2.2!
</Tip>
ControlNet enables conditioning large pretrained diffusion models with additional inputs such as a depth map or edge detection. For example, you can condition Kandinsky 2.2 with a depth map so the model understands and preserves the structure of the depth image.
Let's load an image and extract it's depth map:
```py
from diffusers.utils import load_image
img = load_image(
"https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/kandinskyv22/cat.png"
).resize((768, 768))
img
```
<div class="flex justify-center">
<img class="rounded-xl" src="https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/kandinskyv22/cat.png"/>
</div>
Then you can use the `depth-estimation` [`~transformers.Pipeline`] from 🤗 Transformers to process the image and retrieve the depth map:
```py
import torch
import numpy as np
from transformers import pipeline
def make_hint(image, depth_estimator):
image = depth_estimator(image)["depth"]
image = np.array(image)
image = image[:, :, None]
image = np.concatenate([image, image, image], axis=2)
detected_map = torch.from_numpy(image).float() / 255.0
hint = detected_map.permute(2, 0, 1)
return hint
depth_estimator = pipeline("depth-estimation")
hint = make_hint(img, depth_estimator).unsqueeze(0).half().to("cuda")
```
### Text-to-image [[controlnet-text-to-image]]
Load the prior pipeline and the [`KandinskyV22ControlnetPipeline`]:
```py
from diffusers import KandinskyV22PriorPipeline, KandinskyV22ControlnetPipeline
prior_pipeline = KandinskyV22PriorPipeline.from_pretrained(
"kandinsky-community/kandinsky-2-2-prior", torch_dtype=torch.float16, use_safetensors=True
).to("cuda")
pipeline = KandinskyV22ControlnetPipeline.from_pretrained(
"kandinsky-community/kandinsky-2-2-controlnet-depth", torch_dtype=torch.float16
).to("cuda")
```
Generate the image embeddings from a prompt and negative prompt:
```py
prompt = "A robot, 4k photo"
negative_prior_prompt = "lowres, text, error, cropped, worst quality, low quality, jpeg artifacts, ugly, duplicate, morbid, mutilated, out of frame, extra fingers, mutated hands, poorly drawn hands, poorly drawn face, mutation, deformed, blurry, dehydrated, bad anatomy, bad proportions, extra limbs, cloned face, disfigured, gross proportions, malformed limbs, missing arms, missing legs, extra arms, extra legs, fused fingers, too many fingers, long neck, username, watermark, signature"
generator = torch.Generator(device="cuda").manual_seed(43)
image_emb, zero_image_emb = prior_pipeline(
prompt=prompt, negative_prompt=negative_prior_prompt, generator=generator
).to_tuple()
```
Finally, pass the image embeddings and the depth image to the [`KandinskyV22ControlnetPipeline`] to generate an image:
```py
image = pipeline(image_embeds=image_emb, negative_image_embeds=zero_image_emb, hint=hint, num_inference_steps=50, generator=generator, height=768, width=768).images[0]
image
```
<div class="flex justify-center">
<img class="rounded-xl" src="https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/kandinskyv22/robot_cat_text2img.png"/>
</div>
### Image-to-image [[controlnet-image-to-image]]
For image-to-image with ControlNet, you'll need to use the:
- [`KandinskyV22PriorEmb2EmbPipeline`] to generate the image embeddings from a text prompt and an image
- [`KandinskyV22ControlnetImg2ImgPipeline`] to generate an image from the initial image and the image embeddings
Process and extract a depth map of an initial image of a cat with the `depth-estimation` [`~transformers.Pipeline`] from 🤗 Transformers:
```py
import torch
import numpy as np
from diffusers import KandinskyV22PriorEmb2EmbPipeline, KandinskyV22ControlnetImg2ImgPipeline
from diffusers.utils import load_image
from transformers import pipeline
img = load_image(
"https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/kandinskyv22/cat.png"
).resize((768, 768))
def make_hint(image, depth_estimator):
image = depth_estimator(image)["depth"]
image = np.array(image)
image = image[:, :, None]
image = np.concatenate([image, image, image], axis=2)
detected_map = torch.from_numpy(image).float() / 255.0
hint = detected_map.permute(2, 0, 1)
return hint
depth_estimator = pipeline("depth-estimation")
hint = make_hint(img, depth_estimator).unsqueeze(0).half().to("cuda")
```
Load the prior pipeline and the [`KandinskyV22ControlnetImg2ImgPipeline`]:
```py
prior_pipeline = KandinskyV22PriorEmb2EmbPipeline.from_pretrained(
"kandinsky-community/kandinsky-2-2-prior", torch_dtype=torch.float16, use_safetensors=True
).to("cuda")
pipeline = KandinskyV22ControlnetImg2ImgPipeline.from_pretrained(
"kandinsky-community/kandinsky-2-2-controlnet-depth", torch_dtype=torch.float16
).to("cuda")
```
Pass a text prompt and the initial image to the prior pipeline to generate the image embeddings:
```py
prompt = "A robot, 4k photo"
negative_prior_prompt = "lowres, text, error, cropped, worst quality, low quality, jpeg artifacts, ugly, duplicate, morbid, mutilated, out of frame, extra fingers, mutated hands, poorly drawn hands, poorly drawn face, mutation, deformed, blurry, dehydrated, bad anatomy, bad proportions, extra limbs, cloned face, disfigured, gross proportions, malformed limbs, missing arms, missing legs, extra arms, extra legs, fused fingers, too many fingers, long neck, username, watermark, signature"
generator = torch.Generator(device="cuda").manual_seed(43)
img_emb = prior_pipeline(prompt=prompt, image=img, strength=0.85, generator=generator)
negative_emb = prior_pipeline(prompt=negative_prior_prompt, image=img, strength=1, generator=generator)
```
Now you can run the [`KandinskyV22ControlnetImg2ImgPipeline`] to generate an image from the initial image and the image embeddings:
```py
image = pipeline(image=img, strength=0.5, image_embeds=img_emb.image_embeds, negative_image_embeds=negative_emb.image_embeds, hint=hint, num_inference_steps=50, generator=generator, height=768, width=768).images[0]
make_image_grid([img.resize((512, 512)), image.resize((512, 512))], rows=1, cols=2)
```
<div class="flex justify-center">
<img class="rounded-xl" src="https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/kandinskyv22/robot_cat.png"/>
</div>
## Optimizations
Kandinsky is unique because it requires a prior pipeline to generate the mappings, and a second pipeline to decode the latents into an image. Optimization efforts should be focused on the second pipeline because that is where the bulk of the computation is done. Here are some tips to improve Kandinsky during inference.
1. Enable [xFormers](../optimization/xformers) if you're using PyTorch < 2.0:
```diff
from diffusers import DiffusionPipeline
import torch
pipe = DiffusionPipeline.from_pretrained("kandinsky-community/kandinsky-2-1", torch_dtype=torch.float16)
+ pipe.enable_xformers_memory_efficient_attention()
```
2. Enable `torch.compile` if you're using PyTorch >= 2.0 to automatically use scaled dot-product attention (SDPA):
```diff
pipe.unet.to(memory_format=torch.channels_last)
+ pipe.unet = torch.compile(pipe.unet, mode="reduce-overhead", fullgraph=True)
```
This is the same as explicitly setting the attention processor to use [`~models.attention_processor.AttnAddedKVProcessor2_0`]:
```py
from diffusers.models.attention_processor import AttnAddedKVProcessor2_0
pipe.unet.set_attn_processor(AttnAddedKVProcessor2_0())
```
3. Offload the model to the CPU with [`~KandinskyPriorPipeline.enable_model_cpu_offload`] to avoid out-of-memory errors:
```diff
from diffusers import DiffusionPipeline
import torch
pipe = DiffusionPipeline.from_pretrained("kandinsky-community/kandinsky-2-1", torch_dtype=torch.float16)
+ pipe.enable_model_cpu_offload()
```
4. By default, the text-to-image pipeline uses the [`DDIMScheduler`] but you can replace it with another scheduler like [`DDPMScheduler`] to see how that affects the tradeoff between inference speed and image quality:
```py
from diffusers import DDPMScheduler
from diffusers import DiffusionPipeline
scheduler = DDPMScheduler.from_pretrained("kandinsky-community/kandinsky-2-1", subfolder="ddpm_scheduler")
pipe = DiffusionPipeline.from_pretrained("kandinsky-community/kandinsky-2-1", scheduler=scheduler, torch_dtype=torch.float16, use_safetensors=True).to("cuda")
```
<!--Copyright 2024 The HuggingFace Team. All rights reserved.
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
the License. You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on
an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the
specific language governing permissions and limitations under the License.
-->
# Load pipelines
[[open-in-colab]]
Diffusion systems consist of multiple components like parameterized models and schedulers that interact in complex ways. That is why we designed the [`DiffusionPipeline`] to wrap the complexity of the entire diffusion system into an easy-to-use API. At the same time, the [`DiffusionPipeline`] is entirely customizable so you can modify each component to build a diffusion system for your use case.
This guide will show you how to load:
- pipelines from the Hub and locally
- different components into a pipeline
- multiple pipelines without increasing memory usage
- checkpoint variants such as different floating point types or non-exponential mean averaged (EMA) weights
## Load a pipeline
> [!TIP]
> Skip to the [DiffusionPipeline explained](#diffusionpipeline-explained) section if you're interested in an explanation about how the [`DiffusionPipeline`] class works.
There are two ways to load a pipeline for a task:
1. Load the generic [`DiffusionPipeline`] class and allow it to automatically detect the correct pipeline class from the checkpoint.
2. Load a specific pipeline class for a specific task.
<hfoptions id="pipelines">
<hfoption id="generic pipeline">
The [`DiffusionPipeline`] class is a simple and generic way to load the latest trending diffusion model from the [Hub](https://huggingface.co/models?library=diffusers&sort=trending). It uses the [`~DiffusionPipeline.from_pretrained`] method to automatically detect the correct pipeline class for a task from the checkpoint, downloads and caches all the required configuration and weight files, and returns a pipeline ready for inference.
```python
from diffusers import DiffusionPipeline
pipeline = DiffusionPipeline.from_pretrained("stable-diffusion-v1-5/stable-diffusion-v1-5", use_safetensors=True)
```
This same checkpoint can also be used for an image-to-image task. The [`DiffusionPipeline`] class can handle any task as long as you provide the appropriate inputs. For example, for an image-to-image task, you need to pass an initial image to the pipeline.
```py
from diffusers import DiffusionPipeline
pipeline = DiffusionPipeline.from_pretrained("stable-diffusion-v1-5/stable-diffusion-v1-5", use_safetensors=True)
init_image = load_image("https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/diffusers/img2img-init.png")
prompt = "Astronaut in a jungle, cold color palette, muted colors, detailed, 8k"
image = pipeline("Astronaut in a jungle, cold color palette, muted colors, detailed, 8k", image=init_image).images[0]
```
</hfoption>
<hfoption id="specific pipeline">
Checkpoints can be loaded by their specific pipeline class if you already know it. For example, to load a Stable Diffusion model, use the [`StableDiffusionPipeline`] class.
```python
from diffusers import StableDiffusionPipeline
pipeline = StableDiffusionPipeline.from_pretrained("stable-diffusion-v1-5/stable-diffusion-v1-5", use_safetensors=True)
```
This same checkpoint may also be used for another task like image-to-image. To differentiate what task you want to use the checkpoint for, you have to use the corresponding task-specific pipeline class. For example, to use the same checkpoint for image-to-image, use the [`StableDiffusionImg2ImgPipeline`] class.
```py
from diffusers import StableDiffusionImg2ImgPipeline
pipeline = StableDiffusionImg2ImgPipeline.from_pretrained("stable-diffusion-v1-5/stable-diffusion-v1-5", use_safetensors=True)
```
</hfoption>
</hfoptions>
Use the Space below to gauge a pipeline's memory requirements before you download and load it to see if it runs on your hardware.
<div class="block dark:hidden">
<iframe
src="https://diffusers-compute-pipeline-size.hf.space?__theme=light"
width="850"
height="1600"
></iframe>
</div>
<div class="hidden dark:block">
<iframe
src="https://diffusers-compute-pipeline-size.hf.space?__theme=dark"
width="850"
height="1600"
></iframe>
</div>
### Local pipeline
To load a pipeline locally, use [git-lfs](https://git-lfs.github.com/) to manually download a checkpoint to your local disk.
```bash
git-lfs install
git clone https://huggingface.co/stable-diffusion-v1-5/stable-diffusion-v1-5
```
This creates a local folder, ./stable-diffusion-v1-5, on your disk and you should pass its path to [`~DiffusionPipeline.from_pretrained`].
```python
from diffusers import DiffusionPipeline
stable_diffusion = DiffusionPipeline.from_pretrained("./stable-diffusion-v1-5", use_safetensors=True)
```
The [`~DiffusionPipeline.from_pretrained`] method won't download files from the Hub when it detects a local path, but this also means it won't download and cache the latest changes to a checkpoint.
## Customize a pipeline
You can customize a pipeline by loading different components into it. This is important because you can:
- change to a scheduler with faster generation speed or higher generation quality depending on your needs (call the `scheduler.compatibles` method on your pipeline to see compatible schedulers)
- change a default pipeline component to a newer and better performing one
For example, let's customize the default [stabilityai/stable-diffusion-xl-base-1.0](https://hf.co/stabilityai/stable-diffusion-xl-base-1.0) checkpoint with:
- The [`HeunDiscreteScheduler`] to generate higher quality images at the expense of slower generation speed. You must pass the `subfolder="scheduler"` parameter in [`~HeunDiscreteScheduler.from_pretrained`] to load the scheduler configuration into the correct [subfolder](https://hf.co/stabilityai/stable-diffusion-xl-base-1.0/tree/main/scheduler) of the pipeline repository.
- A more stable VAE that runs in fp16.
```py
from diffusers import StableDiffusionXLPipeline, HeunDiscreteScheduler, AutoencoderKL
import torch
scheduler = HeunDiscreteScheduler.from_pretrained("stabilityai/stable-diffusion-xl-base-1.0", subfolder="scheduler")
vae = AutoencoderKL.from_pretrained("madebyollin/sdxl-vae-fp16-fix", torch_dtype=torch.float16, use_safetensors=True)
```
Now pass the new scheduler and VAE to the [`StableDiffusionXLPipeline`].
```py
pipeline = StableDiffusionXLPipeline.from_pretrained(
"stabilityai/stable-diffusion-xl-base-1.0",
scheduler=scheduler,
vae=vae,
torch_dtype=torch.float16,
variant="fp16",
use_safetensors=True
).to("cuda")
```
## Reuse a pipeline
When you load multiple pipelines that share the same model components, it makes sense to reuse the shared components instead of reloading everything into memory again, especially if your hardware is memory-constrained. For example:
1. You generated an image with the [`StableDiffusionPipeline`] but you want to improve its quality with the [`StableDiffusionSAGPipeline`]. Both of these pipelines share the same pretrained model, so it'd be a waste of memory to load the same model twice.
2. You want to add a model component, like a [`MotionAdapter`](../api/pipelines/animatediff#animatediffpipeline), to [`AnimateDiffPipeline`] which was instantiated from an existing [`StableDiffusionPipeline`]. Again, both pipelines share the same pretrained model, so it'd be a waste of memory to load an entirely new pipeline again.
With the [`DiffusionPipeline.from_pipe`] API, you can switch between multiple pipelines to take advantage of their different features without increasing memory-usage. It is similar to turning on and off a feature in your pipeline.
> [!TIP]
> To switch between tasks (rather than features), use the [`~DiffusionPipeline.from_pipe`] method with the [AutoPipeline](../api/pipelines/auto_pipeline) class, which automatically identifies the pipeline class based on the task (learn more in the [AutoPipeline](../tutorials/autopipeline) tutorial).
Let's start with a [`StableDiffusionPipeline`] and then reuse the loaded model components to create a [`StableDiffusionSAGPipeline`] to increase generation quality. You'll use the [`StableDiffusionPipeline`] with an [IP-Adapter](./ip_adapter) to generate a bear eating pizza.
```python
from diffusers import DiffusionPipeline, StableDiffusionSAGPipeline
import torch
import gc
from diffusers.utils import load_image
from accelerate.utils import compute_module_sizes
image = load_image("https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/diffusers/load_neg_embed.png")
pipe_sd = DiffusionPipeline.from_pretrained("SG161222/Realistic_Vision_V6.0_B1_noVAE", torch_dtype=torch.float16)
pipe_sd.load_ip_adapter("h94/IP-Adapter", subfolder="models", weight_name="ip-adapter_sd15.bin")
pipe_sd.set_ip_adapter_scale(0.6)
pipe_sd.to("cuda")
generator = torch.Generator(device="cpu").manual_seed(33)
out_sd = pipe_sd(
prompt="bear eats pizza",
negative_prompt="wrong white balance, dark, sketches,worst quality,low quality",
ip_adapter_image=image,
num_inference_steps=50,
generator=generator,
).images[0]
out_sd
```
<div class="flex justify-center">
<img class="rounded-xl" src="https://huggingface.co/datasets/YiYiXu/testing-images/resolve/main/from_pipe_out_sd_0.png"/>
</div>
For reference, you can check how much memory this process consumed.
```python
def bytes_to_giga_bytes(bytes):
return bytes / 1024 / 1024 / 1024
print(f"Max memory allocated: {bytes_to_giga_bytes(torch.cuda.max_memory_allocated())} GB")
"Max memory allocated: 4.406213283538818 GB"
```
Now, reuse the same pipeline components from [`StableDiffusionPipeline`] in [`StableDiffusionSAGPipeline`] with the [`~DiffusionPipeline.from_pipe`] method.
> [!WARNING]
> Some pipeline methods may not function properly on new pipelines created with [`~DiffusionPipeline.from_pipe`]. For instance, the [`~DiffusionPipeline.enable_model_cpu_offload`] method installs hooks on the model components based on a unique offloading sequence for each pipeline. If the models are executed in a different order in the new pipeline, the CPU offloading may not work correctly.
>
> To ensure everything works as expected, we recommend re-applying a pipeline method on a new pipeline created with [`~DiffusionPipeline.from_pipe`].
```python
pipe_sag = StableDiffusionSAGPipeline.from_pipe(
pipe_sd
)
generator = torch.Generator(device="cpu").manual_seed(33)
out_sag = pipe_sag(
prompt="bear eats pizza",
negative_prompt="wrong white balance, dark, sketches,worst quality,low quality",
ip_adapter_image=image,
num_inference_steps=50,
generator=generator,
guidance_scale=1.0,
sag_scale=0.75
).images[0]
out_sag
```
<div class="flex justify-center">
<img class="rounded-xl" src="https://huggingface.co/datasets/YiYiXu/testing-images/resolve/main/from_pipe_out_sag_1.png"/>
</div>
If you check the memory usage, you'll see it remains the same as before because [`StableDiffusionPipeline`] and [`StableDiffusionSAGPipeline`] are sharing the same pipeline components. This allows you to use them interchangeably without any additional memory overhead.
```py
print(f"Max memory allocated: {bytes_to_giga_bytes(torch.cuda.max_memory_allocated())} GB")
"Max memory allocated: 4.406213283538818 GB"
```
Let's animate the image with the [`AnimateDiffPipeline`] and also add a [`MotionAdapter`] module to the pipeline. For the [`AnimateDiffPipeline`], you need to unload the IP-Adapter first and reload it *after* you've created your new pipeline (this only applies to the [`AnimateDiffPipeline`]).
```py
from diffusers import AnimateDiffPipeline, MotionAdapter, DDIMScheduler
from diffusers.utils import export_to_gif
pipe_sag.unload_ip_adapter()
adapter = MotionAdapter.from_pretrained("guoyww/animatediff-motion-adapter-v1-5-2", torch_dtype=torch.float16)
pipe_animate = AnimateDiffPipeline.from_pipe(pipe_sd, motion_adapter=adapter)
pipe_animate.scheduler = DDIMScheduler.from_config(pipe_animate.scheduler.config, beta_schedule="linear")
# load IP-Adapter and LoRA weights again
pipe_animate.load_ip_adapter("h94/IP-Adapter", subfolder="models", weight_name="ip-adapter_sd15.bin")
pipe_animate.load_lora_weights("guoyww/animatediff-motion-lora-zoom-out", adapter_name="zoom-out")
pipe_animate.to("cuda")
generator = torch.Generator(device="cpu").manual_seed(33)
pipe_animate.set_adapters("zoom-out", adapter_weights=0.75)
out = pipe_animate(
prompt="bear eats pizza",
num_frames=16,
num_inference_steps=50,
ip_adapter_image=image,
generator=generator,
).frames[0]
export_to_gif(out, "out_animate.gif")
```
<div class="flex justify-center">
<img class="rounded-xl" src="https://huggingface.co/datasets/YiYiXu/testing-images/resolve/main/from_pipe_out_animate_3.gif"/>
</div>
The [`AnimateDiffPipeline`] is more memory-intensive and consumes 15GB of memory (see the [Memory-usage of from_pipe](#memory-usage-of-from_pipe) section to learn what this means for your memory-usage).
```py
print(f"Max memory allocated: {bytes_to_giga_bytes(torch.cuda.max_memory_allocated())} GB")
"Max memory allocated: 15.178664207458496 GB"
```
### Modify from_pipe components
Pipelines loaded with [`~DiffusionPipeline.from_pipe`] can be customized with different model components or methods. However, whenever you modify the *state* of the model components, it affects all the other pipelines that share the same components. For example, if you call [`~diffusers.loaders.IPAdapterMixin.unload_ip_adapter`] on the [`StableDiffusionSAGPipeline`], you won't be able to use IP-Adapter with the [`StableDiffusionPipeline`] because it's been removed from their shared components.
```py
pipe.sag_unload_ip_adapter()
generator = torch.Generator(device="cpu").manual_seed(33)
out_sd = pipe_sd(
prompt="bear eats pizza",
negative_prompt="wrong white balance, dark, sketches,worst quality,low quality",
ip_adapter_image=image,
num_inference_steps=50,
generator=generator,
).images[0]
"AttributeError: 'NoneType' object has no attribute 'image_projection_layers'"
```
### Memory usage of from_pipe
The memory requirement of loading multiple pipelines with [`~DiffusionPipeline.from_pipe`] is determined by the pipeline with the highest memory-usage regardless of the number of pipelines you create.
| Pipeline | Memory usage (GB) |
|---|---|
| StableDiffusionPipeline | 4.400 |
| StableDiffusionSAGPipeline | 4.400 |
| AnimateDiffPipeline | 15.178 |
The [`AnimateDiffPipeline`] has the highest memory requirement, so the *total memory-usage* is based only on the [`AnimateDiffPipeline`]. Your memory-usage will not increase if you create additional pipelines as long as their memory requirements doesn't exceed that of the [`AnimateDiffPipeline`]. Each pipeline can be used interchangeably without any additional memory overhead.
## Safety checker
Diffusers implements a [safety checker](https://github.com/huggingface/diffusers/blob/main/src/diffusers/pipelines/stable_diffusion/safety_checker.py) for Stable Diffusion models which can generate harmful content. The safety checker screens the generated output against known hardcoded not-safe-for-work (NSFW) content. If for whatever reason you'd like to disable the safety checker, pass `safety_checker=None` to the [`~DiffusionPipeline.from_pretrained`] method.
```python
from diffusers import DiffusionPipeline
pipeline = DiffusionPipeline.from_pretrained("stable-diffusion-v1-5/stable-diffusion-v1-5", safety_checker=None, use_safetensors=True)
"""
You have disabled the safety checker for <class 'diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline'> by passing `safety_checker=None`. Ensure that you abide by the conditions of the Stable Diffusion license and do not expose unfiltered results in services or applications open to the public. Both the diffusers team and Hugging Face strongly recommend keeping the safety filter enabled in all public-facing circumstances, disabling it only for use cases that involve analyzing network behavior or auditing its results. For more information, please have a look at https://github.com/huggingface/diffusers/pull/254 .
"""
```
## Checkpoint variants
A checkpoint variant is usually a checkpoint whose weights are:
- Stored in a different floating point type, such as [torch.float16](https://pytorch.org/docs/stable/tensors.html#data-types), because it only requires half the bandwidth and storage to download. You can't use this variant if you're continuing training or using a CPU.
- Non-exponential mean averaged (EMA) weights which shouldn't be used for inference. You should use this variant to continue finetuning a model.
> [!TIP]
> When the checkpoints have identical model structures, but they were trained on different datasets and with a different training setup, they should be stored in separate repositories. For example, [stabilityai/stable-diffusion-2](https://hf.co/stabilityai/stable-diffusion-2) and [stabilityai/stable-diffusion-2-1](https://hf.co/stabilityai/stable-diffusion-2-1) are stored in separate repositories.
Otherwise, a variant is **identical** to the original checkpoint. They have exactly the same serialization format (like [safetensors](./using_safetensors)), model structure, and their weights have identical tensor shapes.
| **checkpoint type** | **weight name** | **argument for loading weights** |
|---------------------|---------------------------------------------|----------------------------------|
| original | diffusion_pytorch_model.safetensors | |
| floating point | diffusion_pytorch_model.fp16.safetensors | `variant`, `torch_dtype` |
| non-EMA | diffusion_pytorch_model.non_ema.safetensors | `variant` |
There are two important arguments for loading variants:
- `torch_dtype` specifies the floating point precision of the loaded checkpoint. For example, if you want to save bandwidth by loading a fp16 variant, you should set `variant="fp16"` and `torch_dtype=torch.float16` to *convert the weights* to fp16. Otherwise, the fp16 weights are converted to the default fp32 precision.
If you only set `torch_dtype=torch.float16`, the default fp32 weights are downloaded first and then converted to fp16.
- `variant` specifies which files should be loaded from the repository. For example, if you want to load a non-EMA variant of a UNet from [stable-diffusion-v1-5/stable-diffusion-v1-5](https://hf.co/stable-diffusion-v1-5/stable-diffusion-v1-5/tree/main/unet), set `variant="non_ema"` to download the `non_ema` file.
<hfoptions id="variants">
<hfoption id="fp16">
```py
from diffusers import DiffusionPipeline
import torch
pipeline = DiffusionPipeline.from_pretrained(
"stable-diffusion-v1-5/stable-diffusion-v1-5", variant="fp16", torch_dtype=torch.float16, use_safetensors=True
)
```
</hfoption>
<hfoption id="non-EMA">
```py
pipeline = DiffusionPipeline.from_pretrained(
"stable-diffusion-v1-5/stable-diffusion-v1-5", variant="non_ema", use_safetensors=True
)
```
</hfoption>
</hfoptions>
Use the `variant` parameter in the [`DiffusionPipeline.save_pretrained`] method to save a checkpoint as a different floating point type or as a non-EMA variant. You should try save a variant to the same folder as the original checkpoint, so you have the option of loading both from the same folder.
<hfoptions id="save">
<hfoption id="fp16">
```python
from diffusers import DiffusionPipeline
pipeline.save_pretrained("stable-diffusion-v1-5/stable-diffusion-v1-5", variant="fp16")
```
</hfoption>
<hfoption id="non_ema">
```py
pipeline.save_pretrained("stable-diffusion-v1-5/stable-diffusion-v1-5", variant="non_ema")
```
</hfoption>
</hfoptions>
If you don't save the variant to an existing folder, you must specify the `variant` argument otherwise it'll throw an `Exception` because it can't find the original checkpoint.
```python
# 👎 this won't work
pipeline = DiffusionPipeline.from_pretrained(
"./stable-diffusion-v1-5", torch_dtype=torch.float16, use_safetensors=True
)
# 👍 this works
pipeline = DiffusionPipeline.from_pretrained(
"./stable-diffusion-v1-5", variant="fp16", torch_dtype=torch.float16, use_safetensors=True
)
```
## DiffusionPipeline explained
As a class method, [`DiffusionPipeline.from_pretrained`] is responsible for two things:
- Download the latest version of the folder structure required for inference and cache it. If the latest folder structure is available in the local cache, [`DiffusionPipeline.from_pretrained`] reuses the cache and won't redownload the files.
- Load the cached weights into the correct pipeline [class](../api/pipelines/overview#diffusers-summary) - retrieved from the `model_index.json` file - and return an instance of it.
The pipelines' underlying folder structure corresponds directly with their class instances. For example, the [`StableDiffusionPipeline`] corresponds to the folder structure in [`stable-diffusion-v1-5/stable-diffusion-v1-5`](https://huggingface.co/stable-diffusion-v1-5/stable-diffusion-v1-5).
```python
from diffusers import DiffusionPipeline
repo_id = "stable-diffusion-v1-5/stable-diffusion-v1-5"
pipeline = DiffusionPipeline.from_pretrained(repo_id, use_safetensors=True)
print(pipeline)
```
You'll see pipeline is an instance of [`StableDiffusionPipeline`], which consists of seven components:
- `"feature_extractor"`: a [`~transformers.CLIPImageProcessor`] from 🤗 Transformers.
- `"safety_checker"`: a [component](https://github.com/huggingface/diffusers/blob/e55687e1e15407f60f32242027b7bb8170e58266/src/diffusers/pipelines/stable_diffusion/safety_checker.py#L32) for screening against harmful content.
- `"scheduler"`: an instance of [`PNDMScheduler`].
- `"text_encoder"`: a [`~transformers.CLIPTextModel`] from 🤗 Transformers.
- `"tokenizer"`: a [`~transformers.CLIPTokenizer`] from 🤗 Transformers.
- `"unet"`: an instance of [`UNet2DConditionModel`].
- `"vae"`: an instance of [`AutoencoderKL`].
```json
StableDiffusionPipeline {
"feature_extractor": [
"transformers",
"CLIPImageProcessor"
],
"safety_checker": [
"stable_diffusion",
"StableDiffusionSafetyChecker"
],
"scheduler": [
"diffusers",
"PNDMScheduler"
],
"text_encoder": [
"transformers",
"CLIPTextModel"
],
"tokenizer": [
"transformers",
"CLIPTokenizer"
],
"unet": [
"diffusers",
"UNet2DConditionModel"
],
"vae": [
"diffusers",
"AutoencoderKL"
]
}
```
Compare the components of the pipeline instance to the [`stable-diffusion-v1-5/stable-diffusion-v1-5`](https://huggingface.co/stable-diffusion-v1-5/stable-diffusion-v1-5/tree/main) folder structure, and you'll see there is a separate folder for each of the components in the repository:
```
.
├── feature_extractor
│   └── preprocessor_config.json
├── model_index.json
├── safety_checker
│   ├── config.json
| ├── model.fp16.safetensors
│ ├── model.safetensors
│ ├── pytorch_model.bin
| └── pytorch_model.fp16.bin
├── scheduler
│   └── scheduler_config.json
├── text_encoder
│   ├── config.json
| ├── model.fp16.safetensors
│ ├── model.safetensors
│ |── pytorch_model.bin
| └── pytorch_model.fp16.bin
├── tokenizer
│   ├── merges.txt
│   ├── special_tokens_map.json
│   ├── tokenizer_config.json
│   └── vocab.json
├── unet
│   ├── config.json
│   ├── diffusion_pytorch_model.bin
| |── diffusion_pytorch_model.fp16.bin
│ |── diffusion_pytorch_model.f16.safetensors
│ |── diffusion_pytorch_model.non_ema.bin
│ |── diffusion_pytorch_model.non_ema.safetensors
│ └── diffusion_pytorch_model.safetensors
|── vae
. ├── config.json
. ├── diffusion_pytorch_model.bin
├── diffusion_pytorch_model.fp16.bin
├── diffusion_pytorch_model.fp16.safetensors
└── diffusion_pytorch_model.safetensors
```
You can access each of the components of the pipeline as an attribute to view its configuration:
```py
pipeline.tokenizer
CLIPTokenizer(
name_or_path="/root/.cache/huggingface/hub/models--runwayml--stable-diffusion-v1-5/snapshots/39593d5650112b4cc580433f6b0435385882d819/tokenizer",
vocab_size=49408,
model_max_length=77,
is_fast=False,
padding_side="right",
truncation_side="right",
special_tokens={
"bos_token": AddedToken("<|startoftext|>", rstrip=False, lstrip=False, single_word=False, normalized=True),
"eos_token": AddedToken("<|endoftext|>", rstrip=False, lstrip=False, single_word=False, normalized=True),
"unk_token": AddedToken("<|endoftext|>", rstrip=False, lstrip=False, single_word=False, normalized=True),
"pad_token": "<|endoftext|>",
},
clean_up_tokenization_spaces=True
)
```
Every pipeline expects a [`model_index.json`](https://huggingface.co/stable-diffusion-v1-5/stable-diffusion-v1-5/blob/main/model_index.json) file that tells the [`DiffusionPipeline`]:
- which pipeline class to load from `_class_name`
- which version of 🧨 Diffusers was used to create the model in `_diffusers_version`
- what components from which library are stored in the subfolders (`name` corresponds to the component and subfolder name, `library` corresponds to the name of the library to load the class from, and `class` corresponds to the class name)
```json
{
"_class_name": "StableDiffusionPipeline",
"_diffusers_version": "0.6.0",
"feature_extractor": [
"transformers",
"CLIPImageProcessor"
],
"safety_checker": [
"stable_diffusion",
"StableDiffusionSafetyChecker"
],
"scheduler": [
"diffusers",
"PNDMScheduler"
],
"text_encoder": [
"transformers",
"CLIPTextModel"
],
"tokenizer": [
"transformers",
"CLIPTokenizer"
],
"unet": [
"diffusers",
"UNet2DConditionModel"
],
"vae": [
"diffusers",
"AutoencoderKL"
]
}
```
<!--Copyright 2024 The HuggingFace Team. All rights reserved.
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
the License. You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on
an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the
specific language governing permissions and limitations under the License.
-->
# Load adapters
[[open-in-colab]]
There are several [training](../training/overview) techniques for personalizing diffusion models to generate images of a specific subject or images in certain styles. Each of these training methods produces a different type of adapter. Some of the adapters generate an entirely new model, while other adapters only modify a smaller set of embeddings or weights. This means the loading process for each adapter is also different.
This guide will show you how to load DreamBooth, textual inversion, and LoRA weights.
<Tip>
Feel free to browse the [Stable Diffusion Conceptualizer](https://huggingface.co/spaces/sd-concepts-library/stable-diffusion-conceptualizer), [LoRA the Explorer](https://huggingface.co/spaces/multimodalart/LoraTheExplorer), and the [Diffusers Models Gallery](https://huggingface.co/spaces/huggingface-projects/diffusers-gallery) for checkpoints and embeddings to use.
</Tip>
## DreamBooth
[DreamBooth](https://dreambooth.github.io/) finetunes an *entire diffusion model* on just several images of a subject to generate images of that subject in new styles and settings. This method works by using a special word in the prompt that the model learns to associate with the subject image. Of all the training methods, DreamBooth produces the largest file size (usually a few GBs) because it is a full checkpoint model.
Let's load the [herge_style](https://huggingface.co/sd-dreambooth-library/herge-style) checkpoint, which is trained on just 10 images drawn by Hergé, to generate images in that style. For it to work, you need to include the special word `herge_style` in your prompt to trigger the checkpoint:
```py
from diffusers import AutoPipelineForText2Image
import torch
pipeline = AutoPipelineForText2Image.from_pretrained("sd-dreambooth-library/herge-style", torch_dtype=torch.float16).to("cuda")
prompt = "A cute herge_style brown bear eating a slice of pizza, stunning color scheme, masterpiece, illustration"
image = pipeline(prompt).images[0]
image
```
<div class="flex justify-center">
<img src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/diffusers/load_dreambooth.png" />
</div>
## Textual inversion
[Textual inversion](https://textual-inversion.github.io/) is very similar to DreamBooth and it can also personalize a diffusion model to generate certain concepts (styles, objects) from just a few images. This method works by training and finding new embeddings that represent the images you provide with a special word in the prompt. As a result, the diffusion model weights stay the same and the training process produces a relatively tiny (a few KBs) file.
Because textual inversion creates embeddings, it cannot be used on its own like DreamBooth and requires another model.
```py
from diffusers import AutoPipelineForText2Image
import torch
pipeline = AutoPipelineForText2Image.from_pretrained("stable-diffusion-v1-5/stable-diffusion-v1-5", torch_dtype=torch.float16).to("cuda")
```
Now you can load the textual inversion embeddings with the [`~loaders.TextualInversionLoaderMixin.load_textual_inversion`] method and generate some images. Let's load the [sd-concepts-library/gta5-artwork](https://huggingface.co/sd-concepts-library/gta5-artwork) embeddings and you'll need to include the special word `<gta5-artwork>` in your prompt to trigger it:
```py
pipeline.load_textual_inversion("sd-concepts-library/gta5-artwork")
prompt = "A cute brown bear eating a slice of pizza, stunning color scheme, masterpiece, illustration, <gta5-artwork> style"
image = pipeline(prompt).images[0]
image
```
<div class="flex justify-center">
<img src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/diffusers/load_txt_embed.png" />
</div>
Textual inversion can also be trained on undesirable things to create *negative embeddings* to discourage a model from generating images with those undesirable things like blurry images or extra fingers on a hand. This can be an easy way to quickly improve your prompt. You'll also load the embeddings with [`~loaders.TextualInversionLoaderMixin.load_textual_inversion`], but this time, you'll need two more parameters:
- `weight_name`: specifies the weight file to load if the file was saved in the 🤗 Diffusers format with a specific name or if the file is stored in the A1111 format
- `token`: specifies the special word to use in the prompt to trigger the embeddings
Let's load the [sayakpaul/EasyNegative-test](https://huggingface.co/sayakpaul/EasyNegative-test) embeddings:
```py
pipeline.load_textual_inversion(
"sayakpaul/EasyNegative-test", weight_name="EasyNegative.safetensors", token="EasyNegative"
)
```
Now you can use the `token` to generate an image with the negative embeddings:
```py
prompt = "A cute brown bear eating a slice of pizza, stunning color scheme, masterpiece, illustration, EasyNegative"
negative_prompt = "EasyNegative"
image = pipeline(prompt, negative_prompt=negative_prompt, num_inference_steps=50).images[0]
image
```
<div class="flex justify-center">
<img src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/diffusers/load_neg_embed.png" />
</div>
## LoRA
[Low-Rank Adaptation (LoRA)](https://huggingface.co/papers/2106.09685) is a popular training technique because it is fast and generates smaller file sizes (a couple hundred MBs). Like the other methods in this guide, LoRA can train a model to learn new styles from just a few images. It works by inserting new weights into the diffusion model and then only the new weights are trained instead of the entire model. This makes LoRAs faster to train and easier to store.
<Tip>
LoRA is a very general training technique that can be used with other training methods. For example, it is common to train a model with DreamBooth and LoRA. It is also increasingly common to load and merge multiple LoRAs to create new and unique images. You can learn more about it in the in-depth [Merge LoRAs](merge_loras) guide since merging is outside the scope of this loading guide.
</Tip>
LoRAs also need to be used with another model:
```py
from diffusers import AutoPipelineForText2Image
import torch
pipeline = AutoPipelineForText2Image.from_pretrained("stabilityai/stable-diffusion-xl-base-1.0", torch_dtype=torch.float16).to("cuda")
```
Then use the [`~loaders.StableDiffusionLoraLoaderMixin.load_lora_weights`] method to load the [ostris/super-cereal-sdxl-lora](https://huggingface.co/ostris/super-cereal-sdxl-lora) weights and specify the weights filename from the repository:
```py
pipeline.load_lora_weights("ostris/super-cereal-sdxl-lora", weight_name="cereal_box_sdxl_v1.safetensors")
prompt = "bears, pizza bites"
image = pipeline(prompt).images[0]
image
```
<div class="flex justify-center">
<img src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/diffusers/load_lora.png" />
</div>
The [`~loaders.StableDiffusionLoraLoaderMixin.load_lora_weights`] method loads LoRA weights into both the UNet and text encoder. It is the preferred way for loading LoRAs because it can handle cases where:
- the LoRA weights don't have separate identifiers for the UNet and text encoder
- the LoRA weights have separate identifiers for the UNet and text encoder
To directly load (and save) a LoRA adapter at the *model-level*, use [`~PeftAdapterMixin.load_lora_adapter`], which builds and prepares the necessary model configuration for the adapter. Like [`~loaders.StableDiffusionLoraLoaderMixin.load_lora_weights`], [`PeftAdapterMixin.load_lora_adapter`] can load LoRAs for both the UNet and text encoder. For example, if you're loading a LoRA for the UNet, [`PeftAdapterMixin.load_lora_adapter`] ignores the keys for the text encoder.
Use the `weight_name` parameter to specify the specific weight file and the `prefix` parameter to filter for the appropriate state dicts (`"unet"` in this case) to load.
```py
from diffusers import AutoPipelineForText2Image
import torch
pipeline = AutoPipelineForText2Image.from_pretrained("stabilityai/stable-diffusion-xl-base-1.0", torch_dtype=torch.float16).to("cuda")
pipeline.unet.load_lora_adapter("jbilcke-hf/sdxl-cinematic-1", weight_name="pytorch_lora_weights.safetensors", prefix="unet")
# use cnmt in the prompt to trigger the LoRA
prompt = "A cute cnmt eating a slice of pizza, stunning color scheme, masterpiece, illustration"
image = pipeline(prompt).images[0]
image
```
<div class="flex justify-center">
<img src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/diffusers/load_attn_proc.png" />
</div>
Save an adapter with [`~PeftAdapterMixin.save_lora_adapter`].
To unload the LoRA weights, use the [`~loaders.StableDiffusionLoraLoaderMixin.unload_lora_weights`] method to discard the LoRA weights and restore the model to its original weights:
```py
pipeline.unload_lora_weights()
```
### Adjust LoRA weight scale
For both [`~loaders.StableDiffusionLoraLoaderMixin.load_lora_weights`] and [`~loaders.UNet2DConditionLoadersMixin.load_attn_procs`], you can pass the `cross_attention_kwargs={"scale": 0.5}` parameter to adjust how much of the LoRA weights to use. A value of `0` is the same as only using the base model weights, and a value of `1` is equivalent to using the fully finetuned LoRA.
For more granular control on the amount of LoRA weights used per layer, you can use [`~loaders.StableDiffusionLoraLoaderMixin.set_adapters`] and pass a dictionary specifying by how much to scale the weights in each layer by.
```python
pipe = ... # create pipeline
pipe.load_lora_weights(..., adapter_name="my_adapter")
scales = {
"text_encoder": 0.5,
"text_encoder_2": 0.5, # only usable if pipe has a 2nd text encoder
"unet": {
"down": 0.9, # all transformers in the down-part will use scale 0.9
# "mid" # in this example "mid" is not given, therefore all transformers in the mid part will use the default scale 1.0
"up": {
"block_0": 0.6, # all 3 transformers in the 0th block in the up-part will use scale 0.6
"block_1": [0.4, 0.8, 1.0], # the 3 transformers in the 1st block in the up-part will use scales 0.4, 0.8 and 1.0 respectively
}
}
}
pipe.set_adapters("my_adapter", scales)
```
This also works with multiple adapters - see [this guide](https://huggingface.co/docs/diffusers/tutorials/using_peft_for_inference#customize-adapters-strength) for how to do it.
<Tip warning={true}>
Currently, [`~loaders.StableDiffusionLoraLoaderMixin.set_adapters`] only supports scaling attention weights. If a LoRA has other parts (e.g., resnets or down-/upsamplers), they will keep a scale of 1.0.
</Tip>
### Kohya and TheLastBen
Other popular LoRA trainers from the community include those by [Kohya](https://github.com/kohya-ss/sd-scripts/) and [TheLastBen](https://github.com/TheLastBen/fast-stable-diffusion). These trainers create different LoRA checkpoints than those trained by 🤗 Diffusers, but they can still be loaded in the same way.
<hfoptions id="other-trainers">
<hfoption id="Kohya">
To load a Kohya LoRA, let's download the [Blueprintify SD XL 1.0](https://civitai.com/models/150986/blueprintify-sd-xl-10) checkpoint from [Civitai](https://civitai.com/) as an example:
```sh
!wget https://civitai.com/api/download/models/168776 -O blueprintify-sd-xl-10.safetensors
```
Load the LoRA checkpoint with the [`~loaders.StableDiffusionLoraLoaderMixin.load_lora_weights`] method, and specify the filename in the `weight_name` parameter:
```py
from diffusers import AutoPipelineForText2Image
import torch
pipeline = AutoPipelineForText2Image.from_pretrained("stabilityai/stable-diffusion-xl-base-1.0", torch_dtype=torch.float16).to("cuda")
pipeline.load_lora_weights("path/to/weights", weight_name="blueprintify-sd-xl-10.safetensors")
```
Generate an image:
```py
# use bl3uprint in the prompt to trigger the LoRA
prompt = "bl3uprint, a highly detailed blueprint of the eiffel tower, explaining how to build all parts, many txt, blueprint grid backdrop"
image = pipeline(prompt).images[0]
image
```
<Tip warning={true}>
Some limitations of using Kohya LoRAs with 🤗 Diffusers include:
- Images may not look like those generated by UIs - like ComfyUI - for multiple reasons, which are explained [here](https://github.com/huggingface/diffusers/pull/4287/#issuecomment-1655110736).
- [LyCORIS checkpoints](https://github.com/KohakuBlueleaf/LyCORIS) aren't fully supported. The [`~loaders.StableDiffusionLoraLoaderMixin.load_lora_weights`] method loads LyCORIS checkpoints with LoRA and LoCon modules, but Hada and LoKR are not supported.
</Tip>
</hfoption>
<hfoption id="TheLastBen">
Loading a checkpoint from TheLastBen is very similar. For example, to load the [TheLastBen/William_Eggleston_Style_SDXL](https://huggingface.co/TheLastBen/William_Eggleston_Style_SDXL) checkpoint:
```py
from diffusers import AutoPipelineForText2Image
import torch
pipeline = AutoPipelineForText2Image.from_pretrained("stabilityai/stable-diffusion-xl-base-1.0", torch_dtype=torch.float16).to("cuda")
pipeline.load_lora_weights("TheLastBen/William_Eggleston_Style_SDXL", weight_name="wegg.safetensors")
# use by william eggleston in the prompt to trigger the LoRA
prompt = "a house by william eggleston, sunrays, beautiful, sunlight, sunrays, beautiful"
image = pipeline(prompt=prompt).images[0]
image
```
</hfoption>
</hfoptions>
## IP-Adapter
[IP-Adapter](https://ip-adapter.github.io/) is a lightweight adapter that enables image prompting for any diffusion model. This adapter works by decoupling the cross-attention layers of the image and text features. All the other model components are frozen and only the embedded image features in the UNet are trained. As a result, IP-Adapter files are typically only ~100MBs.
You can learn more about how to use IP-Adapter for different tasks and specific use cases in the [IP-Adapter](../using-diffusers/ip_adapter) guide.
> [!TIP]
> Diffusers currently only supports IP-Adapter for some of the most popular pipelines. Feel free to open a feature request if you have a cool use case and want to integrate IP-Adapter with an unsupported pipeline!
> Official IP-Adapter checkpoints are available from [h94/IP-Adapter](https://huggingface.co/h94/IP-Adapter).
To start, load a Stable Diffusion checkpoint.
```py
from diffusers import AutoPipelineForText2Image
import torch
from diffusers.utils import load_image
pipeline = AutoPipelineForText2Image.from_pretrained("stable-diffusion-v1-5/stable-diffusion-v1-5", torch_dtype=torch.float16).to("cuda")
```
Then load the IP-Adapter weights and add it to the pipeline with the [`~loaders.IPAdapterMixin.load_ip_adapter`] method.
```py
pipeline.load_ip_adapter("h94/IP-Adapter", subfolder="models", weight_name="ip-adapter_sd15.bin")
```
Once loaded, you can use the pipeline with an image and text prompt to guide the image generation process.
```py
image = load_image("https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/diffusers/load_neg_embed.png")
generator = torch.Generator(device="cpu").manual_seed(33)
images = pipeline(
    prompt='best quality, high quality, wearing sunglasses',
    ip_adapter_image=image,
    negative_prompt="monochrome, lowres, bad anatomy, worst quality, low quality",
    num_inference_steps=50,
    generator=generator,
).images[0]
images
```
<div class="flex justify-center">
    <img src="https://huggingface.co/datasets/YiYiXu/testing-images/resolve/main/ip-bear.png" />
</div>
### IP-Adapter Plus
IP-Adapter relies on an image encoder to generate image features. If the IP-Adapter repository contains an `image_encoder` subfolder, the image encoder is automatically loaded and registered to the pipeline. Otherwise, you'll need to explicitly load the image encoder with a [`~transformers.CLIPVisionModelWithProjection`] model and pass it to the pipeline.
This is the case for *IP-Adapter Plus* checkpoints which use the ViT-H image encoder.
```py
from transformers import CLIPVisionModelWithProjection
image_encoder = CLIPVisionModelWithProjection.from_pretrained(
"h94/IP-Adapter",
subfolder="models/image_encoder",
torch_dtype=torch.float16
)
pipeline = AutoPipelineForText2Image.from_pretrained(
"stabilityai/stable-diffusion-xl-base-1.0",
image_encoder=image_encoder,
torch_dtype=torch.float16
).to("cuda")
pipeline.load_ip_adapter("h94/IP-Adapter", subfolder="sdxl_models", weight_name="ip-adapter-plus_sdxl_vit-h.safetensors")
```
### IP-Adapter Face ID models
The IP-Adapter FaceID models are experimental IP Adapters that use image embeddings generated by `insightface` instead of CLIP image embeddings. Some of these models also use LoRA to improve ID consistency.
You need to install `insightface` and all its requirements to use these models.
<Tip warning={true}>
As InsightFace pretrained models are available for non-commercial research purposes, IP-Adapter-FaceID models are released exclusively for research purposes and are not intended for commercial use.
</Tip>
```py
pipeline = AutoPipelineForText2Image.from_pretrained(
"stabilityai/stable-diffusion-xl-base-1.0",
torch_dtype=torch.float16
).to("cuda")
pipeline.load_ip_adapter("h94/IP-Adapter-FaceID", subfolder=None, weight_name="ip-adapter-faceid_sdxl.bin", image_encoder_folder=None)
```
If you want to use one of the two IP-Adapter FaceID Plus models, you must also load the CLIP image encoder, as this models use both `insightface` and CLIP image embeddings to achieve better photorealism.
```py
from transformers import CLIPVisionModelWithProjection
image_encoder = CLIPVisionModelWithProjection.from_pretrained(
"laion/CLIP-ViT-H-14-laion2B-s32B-b79K",
torch_dtype=torch.float16,
)
pipeline = AutoPipelineForText2Image.from_pretrained(
"stable-diffusion-v1-5/stable-diffusion-v1-5",
image_encoder=image_encoder,
torch_dtype=torch.float16
).to("cuda")
pipeline.load_ip_adapter("h94/IP-Adapter-FaceID", subfolder=None, weight_name="ip-adapter-faceid-plus_sd15.bin")
```
<!--Copyright 2024 Marigold authors and The HuggingFace Team. All rights reserved.
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
the License. You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on
an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the
specific language governing permissions and limitations under the License.
-->
# Marigold Pipelines for Computer Vision Tasks
[Marigold](../api/pipelines/marigold) is a novel diffusion-based dense prediction approach, and a set of pipelines for various computer vision tasks, such as monocular depth estimation.
This guide will show you how to use Marigold to obtain fast and high-quality predictions for images and videos.
Each pipeline supports one Computer Vision task, which takes an input RGB image as input and produces a *prediction* of the modality of interest, such as a depth map of the input image.
Currently, the following tasks are implemented:
| Pipeline | Predicted Modalities | Demos |
|---------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------|:--------------------------------------------------------------------------------------------------------------------------------------------------:|
| [MarigoldDepthPipeline](https://github.com/huggingface/diffusers/blob/main/src/diffusers/pipelines/marigold/pipeline_marigold_depth.py) | [Depth](https://en.wikipedia.org/wiki/Depth_map), [Disparity](https://en.wikipedia.org/wiki/Binocular_disparity) | [Fast Demo (LCM)](https://huggingface.co/spaces/prs-eth/marigold-lcm), [Slow Original Demo (DDIM)](https://huggingface.co/spaces/prs-eth/marigold) |
| [MarigoldNormalsPipeline](https://github.com/huggingface/diffusers/blob/main/src/diffusers/pipelines/marigold/pipeline_marigold_normals.py) | [Surface normals](https://en.wikipedia.org/wiki/Normal_mapping) | [Fast Demo (LCM)](https://huggingface.co/spaces/prs-eth/marigold-normals-lcm) |
The original checkpoints can be found under the [PRS-ETH](https://huggingface.co/prs-eth/) Hugging Face organization.
These checkpoints are meant to work with diffusers pipelines and the [original codebase](https://github.com/prs-eth/marigold).
The original code can also be used to train new checkpoints.
| Checkpoint | Modality | Comment |
|-----------------------------------------------------------------------------------------------|----------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| [prs-eth/marigold-v1-0](https://huggingface.co/prs-eth/marigold-v1-0) | Depth | The first Marigold Depth checkpoint, which predicts *affine-invariant depth* maps. The performance of this checkpoint in benchmarks was studied in the original [paper](https://huggingface.co/papers/2312.02145). Designed to be used with the `DDIMScheduler` at inference, it requires at least 10 steps to get reliable predictions. Affine-invariant depth prediction has a range of values in each pixel between 0 (near plane) and 1 (far plane); both planes are chosen by the model as part of the inference process. See the `MarigoldImageProcessor` reference for visualization utilities. |
| [prs-eth/marigold-depth-lcm-v1-0](https://huggingface.co/prs-eth/marigold-depth-lcm-v1-0) | Depth | The fast Marigold Depth checkpoint, fine-tuned from `prs-eth/marigold-v1-0`. Designed to be used with the `LCMScheduler` at inference, it requires as little as 1 step to get reliable predictions. The prediction reliability saturates at 4 steps and declines after that. |
| [prs-eth/marigold-normals-v0-1](https://huggingface.co/prs-eth/marigold-normals-v0-1) | Normals | A preview checkpoint for the Marigold Normals pipeline. Designed to be used with the `DDIMScheduler` at inference, it requires at least 10 steps to get reliable predictions. The surface normals predictions are unit-length 3D vectors with values in the range from -1 to 1. *This checkpoint will be phased out after the release of `v1-0` version.* |
| [prs-eth/marigold-normals-lcm-v0-1](https://huggingface.co/prs-eth/marigold-normals-lcm-v0-1) | Normals | The fast Marigold Normals checkpoint, fine-tuned from `prs-eth/marigold-normals-v0-1`. Designed to be used with the `LCMScheduler` at inference, it requires as little as 1 step to get reliable predictions. The prediction reliability saturates at 4 steps and declines after that. *This checkpoint will be phased out after the release of `v1-0` version.* |
The examples below are mostly given for depth prediction, but they can be universally applied with other supported modalities.
We showcase the predictions using the same input image of Albert Einstein generated by Midjourney.
This makes it easier to compare visualizations of the predictions across various modalities and checkpoints.
<div class="flex gap-4" style="justify-content: center; width: 100%;">
<div style="flex: 1 1 50%; max-width: 50%;">
<img class="rounded-xl" src="https://marigoldmonodepth.github.io/images/einstein.jpg"/>
<figcaption class="mt-1 text-center text-sm text-gray-500">
Example input image for all Marigold pipelines
</figcaption>
</div>
</div>
### Depth Prediction Quick Start
To get the first depth prediction, load `prs-eth/marigold-depth-lcm-v1-0` checkpoint into `MarigoldDepthPipeline` pipeline, put the image through the pipeline, and save the predictions:
```python
import diffusers
import torch
pipe = diffusers.MarigoldDepthPipeline.from_pretrained(
"prs-eth/marigold-depth-lcm-v1-0", variant="fp16", torch_dtype=torch.float16
).to("cuda")
image = diffusers.utils.load_image("https://marigoldmonodepth.github.io/images/einstein.jpg")
depth = pipe(image)
vis = pipe.image_processor.visualize_depth(depth.prediction)
vis[0].save("einstein_depth.png")
depth_16bit = pipe.image_processor.export_depth_to_16bit_png(depth.prediction)
depth_16bit[0].save("einstein_depth_16bit.png")
```
The visualization function for depth [`~pipelines.marigold.marigold_image_processing.MarigoldImageProcessor.visualize_depth`] applies one of [matplotlib's colormaps](https://matplotlib.org/stable/users/explain/colors/colormaps.html) (`Spectral` by default) to map the predicted pixel values from a single-channel `[0, 1]` depth range into an RGB image.
With the `Spectral` colormap, pixels with near depth are painted red, and far pixels are assigned blue color.
The 16-bit PNG file stores the single channel values mapped linearly from the `[0, 1]` range into `[0, 65535]`.
Below are the raw and the visualized predictions; as can be seen, dark areas (mustache) are easier to distinguish in the visualization:
<div class="flex gap-4">
<div style="flex: 1 1 50%; max-width: 50%;">
<img class="rounded-xl" src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/marigold/marigold_einstein_lcm_depth_16bit.png"/>
<figcaption class="mt-1 text-center text-sm text-gray-500">
Predicted depth (16-bit PNG)
</figcaption>
</div>
<div style="flex: 1 1 50%; max-width: 50%;">
<img class="rounded-xl" src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/marigold/marigold_einstein_lcm_depth.png"/>
<figcaption class="mt-1 text-center text-sm text-gray-500">
Predicted depth visualization (Spectral)
</figcaption>
</div>
</div>
### Surface Normals Prediction Quick Start
Load `prs-eth/marigold-normals-lcm-v0-1` checkpoint into `MarigoldNormalsPipeline` pipeline, put the image through the pipeline, and save the predictions:
```python
import diffusers
import torch
pipe = diffusers.MarigoldNormalsPipeline.from_pretrained(
"prs-eth/marigold-normals-lcm-v0-1", variant="fp16", torch_dtype=torch.float16
).to("cuda")
image = diffusers.utils.load_image("https://marigoldmonodepth.github.io/images/einstein.jpg")
normals = pipe(image)
vis = pipe.image_processor.visualize_normals(normals.prediction)
vis[0].save("einstein_normals.png")
```
The visualization function for normals [`~pipelines.marigold.marigold_image_processing.MarigoldImageProcessor.visualize_normals`] maps the three-dimensional prediction with pixel values in the range `[-1, 1]` into an RGB image.
The visualization function supports flipping surface normals axes to make the visualization compatible with other choices of the frame of reference.
Conceptually, each pixel is painted according to the surface normal vector in the frame of reference, where `X` axis points right, `Y` axis points up, and `Z` axis points at the viewer.
Below is the visualized prediction:
<div class="flex gap-4" style="justify-content: center; width: 100%;">
<div style="flex: 1 1 50%; max-width: 50%;">
<img class="rounded-xl" src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/marigold/marigold_einstein_lcm_normals.png"/>
<figcaption class="mt-1 text-center text-sm text-gray-500">
Predicted surface normals visualization
</figcaption>
</div>
</div>
In this example, the nose tip almost certainly has a point on the surface, in which the surface normal vector points straight at the viewer, meaning that its coordinates are `[0, 0, 1]`.
This vector maps to the RGB `[128, 128, 255]`, which corresponds to the violet-blue color.
Similarly, a surface normal on the cheek in the right part of the image has a large `X` component, which increases the red hue.
Points on the shoulders pointing up with a large `Y` promote green color.
### Speeding up inference
The above quick start snippets are already optimized for speed: they load the LCM checkpoint, use the `fp16` variant of weights and computation, and perform just one denoising diffusion step.
The `pipe(image)` call completes in 280ms on RTX 3090 GPU.
Internally, the input image is encoded with the Stable Diffusion VAE encoder, then the U-Net performs one denoising step, and finally, the prediction latent is decoded with the VAE decoder into pixel space.
In this case, two out of three module calls are dedicated to converting between pixel and latent space of LDM.
Because Marigold's latent space is compatible with the base Stable Diffusion, it is possible to speed up the pipeline call by more than 3x (85ms on RTX 3090) by using a [lightweight replacement of the SD VAE](../api/models/autoencoder_tiny):
```diff
import diffusers
import torch
pipe = diffusers.MarigoldDepthPipeline.from_pretrained(
"prs-eth/marigold-depth-lcm-v1-0", variant="fp16", torch_dtype=torch.float16
).to("cuda")
+ pipe.vae = diffusers.AutoencoderTiny.from_pretrained(
+ "madebyollin/taesd", torch_dtype=torch.float16
+ ).cuda()
image = diffusers.utils.load_image("https://marigoldmonodepth.github.io/images/einstein.jpg")
depth = pipe(image)
```
As suggested in [Optimizations](../optimization/torch2.0#torch.compile), adding `torch.compile` may squeeze extra performance depending on the target hardware:
```diff
import diffusers
import torch
pipe = diffusers.MarigoldDepthPipeline.from_pretrained(
"prs-eth/marigold-depth-lcm-v1-0", variant="fp16", torch_dtype=torch.float16
).to("cuda")
+ pipe.unet = torch.compile(pipe.unet, mode="reduce-overhead", fullgraph=True)
image = diffusers.utils.load_image("https://marigoldmonodepth.github.io/images/einstein.jpg")
depth = pipe(image)
```
## Qualitative Comparison with Depth Anything
With the above speed optimizations, Marigold delivers predictions with more details and faster than [Depth Anything](https://huggingface.co/docs/transformers/main/en/model_doc/depth_anything) with the largest checkpoint [LiheYoung/depth-anything-large-hf](https://huggingface.co/LiheYoung/depth-anything-large-hf):
<div class="flex gap-4">
<div style="flex: 1 1 50%; max-width: 50%;">
<img class="rounded-xl" src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/marigold/marigold_einstein_lcm_depth.png"/>
<figcaption class="mt-1 text-center text-sm text-gray-500">
Marigold LCM fp16 with Tiny AutoEncoder
</figcaption>
</div>
<div style="flex: 1 1 50%; max-width: 50%;">
<img class="rounded-xl" src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/marigold/einstein_depthanything_large.png"/>
<figcaption class="mt-1 text-center text-sm text-gray-500">
Depth Anything Large
</figcaption>
</div>
</div>
## Maximizing Precision and Ensembling
Marigold pipelines have a built-in ensembling mechanism combining multiple predictions from different random latents.
This is a brute-force way of improving the precision of predictions, capitalizing on the generative nature of diffusion.
The ensembling path is activated automatically when the `ensemble_size` argument is set greater than `1`.
When aiming for maximum precision, it makes sense to adjust `num_inference_steps` simultaneously with `ensemble_size`.
The recommended values vary across checkpoints but primarily depend on the scheduler type.
The effect of ensembling is particularly well-seen with surface normals:
```python
import diffusers
model_path = "prs-eth/marigold-normals-v1-0"
model_paper_kwargs = {
diffusers.schedulers.DDIMScheduler: {
"num_inference_steps": 10,
"ensemble_size": 10,
},
diffusers.schedulers.LCMScheduler: {
"num_inference_steps": 4,
"ensemble_size": 5,
},
}
image = diffusers.utils.load_image("https://marigoldmonodepth.github.io/images/einstein.jpg")
pipe = diffusers.MarigoldNormalsPipeline.from_pretrained(model_path).to("cuda")
pipe_kwargs = model_paper_kwargs[type(pipe.scheduler)]
depth = pipe(image, **pipe_kwargs)
vis = pipe.image_processor.visualize_normals(depth.prediction)
vis[0].save("einstein_normals.png")
```
<div class="flex gap-4">
<div style="flex: 1 1 50%; max-width: 50%;">
<img class="rounded-xl" src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/marigold/marigold_einstein_lcm_normals.png"/>
<figcaption class="mt-1 text-center text-sm text-gray-500">
Surface normals, no ensembling
</figcaption>
</div>
<div style="flex: 1 1 50%; max-width: 50%;">
<img class="rounded-xl" src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/marigold/marigold_einstein_normals.png"/>
<figcaption class="mt-1 text-center text-sm text-gray-500">
Surface normals, with ensembling
</figcaption>
</div>
</div>
As can be seen, all areas with fine-grained structurers, such as hair, got more conservative and on average more correct predictions.
Such a result is more suitable for precision-sensitive downstream tasks, such as 3D reconstruction.
## Quantitative Evaluation
To evaluate Marigold quantitatively in standard leaderboards and benchmarks (such as NYU, KITTI, and other datasets), follow the evaluation protocol outlined in the paper: load the full precision fp32 model and use appropriate values for `num_inference_steps` and `ensemble_size`.
Optionally seed randomness to ensure reproducibility. Maximizing `batch_size` will deliver maximum device utilization.
```python
import diffusers
import torch
device = "cuda"
seed = 2024
model_path = "prs-eth/marigold-v1-0"
model_paper_kwargs = {
diffusers.schedulers.DDIMScheduler: {
"num_inference_steps": 50,
"ensemble_size": 10,
},
diffusers.schedulers.LCMScheduler: {
"num_inference_steps": 4,
"ensemble_size": 10,
},
}
image = diffusers.utils.load_image("https://marigoldmonodepth.github.io/images/einstein.jpg")
generator = torch.Generator(device=device).manual_seed(seed)
pipe = diffusers.MarigoldDepthPipeline.from_pretrained(model_path).to(device)
pipe_kwargs = model_paper_kwargs[type(pipe.scheduler)]
depth = pipe(image, generator=generator, **pipe_kwargs)
# evaluate metrics
```
## Using Predictive Uncertainty
The ensembling mechanism built into Marigold pipelines combines multiple predictions obtained from different random latents.
As a side effect, it can be used to quantify epistemic (model) uncertainty; simply specify `ensemble_size` greater than 1 and set `output_uncertainty=True`.
The resulting uncertainty will be available in the `uncertainty` field of the output.
It can be visualized as follows:
```python
import diffusers
import torch
pipe = diffusers.MarigoldDepthPipeline.from_pretrained(
"prs-eth/marigold-depth-lcm-v1-0", variant="fp16", torch_dtype=torch.float16
).to("cuda")
image = diffusers.utils.load_image("https://marigoldmonodepth.github.io/images/einstein.jpg")
depth = pipe(
image,
ensemble_size=10, # any number greater than 1; higher values yield higher precision
output_uncertainty=True,
)
uncertainty = pipe.image_processor.visualize_uncertainty(depth.uncertainty)
uncertainty[0].save("einstein_depth_uncertainty.png")
```
<div class="flex gap-4">
<div style="flex: 1 1 50%; max-width: 50%;">
<img class="rounded-xl" src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/marigold/marigold_einstein_depth_uncertainty.png"/>
<figcaption class="mt-1 text-center text-sm text-gray-500">
Depth uncertainty
</figcaption>
</div>
<div style="flex: 1 1 50%; max-width: 50%;">
<img class="rounded-xl" src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/marigold/marigold_einstein_normals_uncertainty.png"/>
<figcaption class="mt-1 text-center text-sm text-gray-500">
Surface normals uncertainty
</figcaption>
</div>
</div>
The interpretation of uncertainty is easy: higher values (white) correspond to pixels, where the model struggles to make consistent predictions.
Evidently, the depth model is the least confident around edges with discontinuity, where the object depth changes drastically.
The surface normals model is the least confident in fine-grained structures, such as hair, and dark areas, such as the collar.
## Frame-by-frame Video Processing with Temporal Consistency
Due to Marigold's generative nature, each prediction is unique and defined by the random noise sampled for the latent initialization.
This becomes an obvious drawback compared to traditional end-to-end dense regression networks, as exemplified in the following videos:
<div class="flex gap-4">
<div style="flex: 1 1 50%; max-width: 50%;">
<img class="rounded-xl" src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/marigold/marigold_obama.gif"/>
<figcaption class="mt-1 text-center text-sm text-gray-500">Input video</figcaption>
</div>
<div style="flex: 1 1 50%; max-width: 50%;">
<img class="rounded-xl" src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/marigold/marigold_obama_depth_independent.gif"/>
<figcaption class="mt-1 text-center text-sm text-gray-500">Marigold Depth applied to input video frames independently</figcaption>
</div>
</div>
To address this issue, it is possible to pass `latents` argument to the pipelines, which defines the starting point of diffusion.
Empirically, we found that a convex combination of the very same starting point noise latent and the latent corresponding to the previous frame prediction give sufficiently smooth results, as implemented in the snippet below:
```python
import imageio
from PIL import Image
from tqdm import tqdm
import diffusers
import torch
device = "cuda"
path_in = "obama.mp4"
path_out = "obama_depth.gif"
pipe = diffusers.MarigoldDepthPipeline.from_pretrained(
"prs-eth/marigold-depth-lcm-v1-0", variant="fp16", torch_dtype=torch.float16
).to(device)
pipe.vae = diffusers.AutoencoderTiny.from_pretrained(
"madebyollin/taesd", torch_dtype=torch.float16
).to(device)
pipe.set_progress_bar_config(disable=True)
with imageio.get_reader(path_in) as reader:
size = reader.get_meta_data()['size']
last_frame_latent = None
latent_common = torch.randn(
(1, 4, 768 * size[1] // (8 * max(size)), 768 * size[0] // (8 * max(size)))
).to(device=device, dtype=torch.float16)
out = []
for frame_id, frame in tqdm(enumerate(reader), desc="Processing Video"):
frame = Image.fromarray(frame)
latents = latent_common
if last_frame_latent is not None:
latents = 0.9 * latents + 0.1 * last_frame_latent
depth = pipe(
frame, match_input_resolution=False, latents=latents, output_latent=True
)
last_frame_latent = depth.latent
out.append(pipe.image_processor.visualize_depth(depth.prediction)[0])
diffusers.utils.export_to_gif(out, path_out, fps=reader.get_meta_data()['fps'])
```
Here, the diffusion process starts from the given computed latent.
The pipeline sets `output_latent=True` to access `out.latent` and computes its contribution to the next frame's latent initialization.
The result is much more stable now:
<div class="flex gap-4">
<div style="flex: 1 1 50%; max-width: 50%;">
<img class="rounded-xl" src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/marigold/marigold_obama_depth_independent.gif"/>
<figcaption class="mt-1 text-center text-sm text-gray-500">Marigold Depth applied to input video frames independently</figcaption>
</div>
<div style="flex: 1 1 50%; max-width: 50%;">
<img class="rounded-xl" src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/marigold/marigold_obama_depth_consistent.gif"/>
<figcaption class="mt-1 text-center text-sm text-gray-500">Marigold Depth with forced latents initialization</figcaption>
</div>
</div>
## Marigold for ControlNet
A very common application for depth prediction with diffusion models comes in conjunction with ControlNet.
Depth crispness plays a crucial role in obtaining high-quality results from ControlNet.
As seen in comparisons with other methods above, Marigold excels at that task.
The snippet below demonstrates how to load an image, compute depth, and pass it into ControlNet in a compatible format:
```python
import torch
import diffusers
device = "cuda"
generator = torch.Generator(device=device).manual_seed(2024)
image = diffusers.utils.load_image(
"https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/diffusers/controlnet_depth_source.png"
)
pipe = diffusers.MarigoldDepthPipeline.from_pretrained(
"prs-eth/marigold-depth-lcm-v1-0", torch_dtype=torch.float16, variant="fp16"
).to(device)
depth_image = pipe(image, generator=generator).prediction
depth_image = pipe.image_processor.visualize_depth(depth_image, color_map="binary")
depth_image[0].save("motorcycle_controlnet_depth.png")
controlnet = diffusers.ControlNetModel.from_pretrained(
"diffusers/controlnet-depth-sdxl-1.0", torch_dtype=torch.float16, variant="fp16"
).to(device)
pipe = diffusers.StableDiffusionXLControlNetPipeline.from_pretrained(
"SG161222/RealVisXL_V4.0", torch_dtype=torch.float16, variant="fp16", controlnet=controlnet
).to(device)
pipe.scheduler = diffusers.DPMSolverMultistepScheduler.from_config(pipe.scheduler.config, use_karras_sigmas=True)
controlnet_out = pipe(
prompt="high quality photo of a sports bike, city",
negative_prompt="",
guidance_scale=6.5,
num_inference_steps=25,
image=depth_image,
controlnet_conditioning_scale=0.7,
control_guidance_end=0.7,
generator=generator,
).images
controlnet_out[0].save("motorcycle_controlnet_out.png")
```
<div class="flex gap-4">
<div style="flex: 1 1 33%; max-width: 33%;">
<img class="rounded-xl" src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/diffusers/controlnet_depth_source.png"/>
<figcaption class="mt-1 text-center text-sm text-gray-500">
Input image
</figcaption>
</div>
<div style="flex: 1 1 33%; max-width: 33%;">
<img class="rounded-xl" src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/marigold/motorcycle_controlnet_depth.png"/>
<figcaption class="mt-1 text-center text-sm text-gray-500">
Depth in the format compatible with ControlNet
</figcaption>
</div>
<div style="flex: 1 1 33%; max-width: 33%;">
<img class="rounded-xl" src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/marigold/motorcycle_controlnet_out.png"/>
<figcaption class="mt-1 text-center text-sm text-gray-500">
ControlNet generation, conditioned on depth and prompt: "high quality photo of a sports bike, city"
</figcaption>
</div>
</div>
Hopefully, you will find Marigold useful for solving your downstream tasks, be it a part of a more broad generative workflow, or a perception task, such as 3D reconstruction.
<!--Copyright 2024 The HuggingFace Team. All rights reserved.
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
the License. You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on
an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the
specific language governing permissions and limitations under the License.
-->
# Merge LoRAs
It can be fun and creative to use multiple [LoRAs]((https://huggingface.co/docs/peft/conceptual_guides/adapter#low-rank-adaptation-lora)) together to generate something entirely new and unique. This works by merging multiple LoRA weights together to produce images that are a blend of different styles. Diffusers provides a few methods to merge LoRAs depending on *how* you want to merge their weights, which can affect image quality.
This guide will show you how to merge LoRAs using the [`~loaders.PeftAdapterMixin.set_adapters`] and [add_weighted_adapter](https://huggingface.co/docs/peft/package_reference/lora#peft.LoraModel.add_weighted_adapter) methods. To improve inference speed and reduce memory-usage of merged LoRAs, you'll also see how to use the [`~loaders.StableDiffusionLoraLoaderMixin.fuse_lora`] method to fuse the LoRA weights with the original weights of the underlying model.
For this guide, load a Stable Diffusion XL (SDXL) checkpoint and the [KappaNeuro/studio-ghibli-style](https://huggingface.co/KappaNeuro/studio-ghibli-style) and [Norod78/sdxl-chalkboarddrawing-lora](https://huggingface.co/Norod78/sdxl-chalkboarddrawing-lora) LoRAs with the [`~loaders.StableDiffusionLoraLoaderMixin.load_lora_weights`] method. You'll need to assign each LoRA an `adapter_name` to combine them later.
```py
from diffusers import DiffusionPipeline
import torch
pipeline = DiffusionPipeline.from_pretrained("stabilityai/stable-diffusion-xl-base-1.0", torch_dtype=torch.float16).to("cuda")
pipeline.load_lora_weights("ostris/ikea-instructions-lora-sdxl", weight_name="ikea_instructions_xl_v1_5.safetensors", adapter_name="ikea")
pipeline.load_lora_weights("lordjia/by-feng-zikai", weight_name="fengzikai_v1.0_XL.safetensors", adapter_name="feng")
```
## set_adapters
The [`~loaders.PeftAdapterMixin.set_adapters`] method merges LoRA adapters by concatenating their weighted matrices. Use the adapter name to specify which LoRAs to merge, and the `adapter_weights` parameter to control the scaling for each LoRA. For example, if `adapter_weights=[0.5, 0.5]`, then the merged LoRA output is an average of both LoRAs. Try adjusting the adapter weights to see how it affects the generated image!
```py
pipeline.set_adapters(["ikea", "feng"], adapter_weights=[0.7, 0.8])
generator = torch.manual_seed(0)
prompt = "A bowl of ramen shaped like a cute kawaii bear, by Feng Zikai"
image = pipeline(prompt, generator=generator, cross_attention_kwargs={"scale": 1.0}).images[0]
image
```
<div class="flex justify-center">
<img src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/diffusers/lora_merge_set_adapters.png"/>
</div>
## add_weighted_adapter
> [!WARNING]
> This is an experimental method that adds PEFTs [add_weighted_adapter](https://huggingface.co/docs/peft/package_reference/lora#peft.LoraModel.add_weighted_adapter) method to Diffusers to enable more efficient merging methods. Check out this [issue](https://github.com/huggingface/diffusers/issues/6892) if you're interested in learning more about the motivation and design behind this integration.
The [add_weighted_adapter](https://huggingface.co/docs/peft/package_reference/lora#peft.LoraModel.add_weighted_adapter) method provides access to more efficient merging method such as [TIES and DARE](https://huggingface.co/docs/peft/developer_guides/model_merging). To use these merging methods, make sure you have the latest stable version of Diffusers and PEFT installed.
```bash
pip install -U diffusers peft
```
There are three steps to merge LoRAs with the [add_weighted_adapter](https://huggingface.co/docs/peft/package_reference/lora#peft.LoraModel.add_weighted_adapter) method:
1. Create a [PeftModel](https://huggingface.co/docs/peft/package_reference/peft_model#peft.PeftModel) from the underlying model and LoRA checkpoint.
2. Load a base UNet model and the LoRA adapters.
3. Merge the adapters using the [add_weighted_adapter](https://huggingface.co/docs/peft/package_reference/lora#peft.LoraModel.add_weighted_adapter) method and the merging method of your choice.
Let's dive deeper into what these steps entail.
1. Load a UNet that corresponds to the UNet in the LoRA checkpoint. In this case, both LoRAs use the SDXL UNet as their base model.
```python
from diffusers import UNet2DConditionModel
import torch
unet = UNet2DConditionModel.from_pretrained(
"stabilityai/stable-diffusion-xl-base-1.0",
torch_dtype=torch.float16,
use_safetensors=True,
variant="fp16",
subfolder="unet",
).to("cuda")
```
Load the SDXL pipeline and the LoRA checkpoints, starting with the [ostris/ikea-instructions-lora-sdxl](https://huggingface.co/ostris/ikea-instructions-lora-sdxl) LoRA.
```python
from diffusers import DiffusionPipeline
pipeline = DiffusionPipeline.from_pretrained(
"stabilityai/stable-diffusion-xl-base-1.0",
variant="fp16",
torch_dtype=torch.float16,
unet=unet
).to("cuda")
pipeline.load_lora_weights("ostris/ikea-instructions-lora-sdxl", weight_name="ikea_instructions_xl_v1_5.safetensors", adapter_name="ikea")
```
Now you'll create a [PeftModel](https://huggingface.co/docs/peft/package_reference/peft_model#peft.PeftModel) from the loaded LoRA checkpoint by combining the SDXL UNet and the LoRA UNet from the pipeline.
```python
from peft import get_peft_model, LoraConfig
import copy
sdxl_unet = copy.deepcopy(unet)
ikea_peft_model = get_peft_model(
sdxl_unet,
pipeline.unet.peft_config["ikea"],
adapter_name="ikea"
)
original_state_dict = {f"base_model.model.{k}": v for k, v in pipeline.unet.state_dict().items()}
ikea_peft_model.load_state_dict(original_state_dict, strict=True)
```
> [!TIP]
> You can optionally push the ikea_peft_model to the Hub by calling `ikea_peft_model.push_to_hub("ikea_peft_model", token=TOKEN)`.
Repeat this process to create a [PeftModel](https://huggingface.co/docs/peft/package_reference/peft_model#peft.PeftModel) from the [lordjia/by-feng-zikai](https://huggingface.co/lordjia/by-feng-zikai) LoRA.
```python
pipeline.delete_adapters("ikea")
sdxl_unet.delete_adapters("ikea")
pipeline.load_lora_weights("lordjia/by-feng-zikai", weight_name="fengzikai_v1.0_XL.safetensors", adapter_name="feng")
pipeline.set_adapters(adapter_names="feng")
feng_peft_model = get_peft_model(
sdxl_unet,
pipeline.unet.peft_config["feng"],
adapter_name="feng"
)
original_state_dict = {f"base_model.model.{k}": v for k, v in pipe.unet.state_dict().items()}
feng_peft_model.load_state_dict(original_state_dict, strict=True)
```
2. Load a base UNet model and then load the adapters onto it.
```python
from peft import PeftModel
base_unet = UNet2DConditionModel.from_pretrained(
"stabilityai/stable-diffusion-xl-base-1.0",
torch_dtype=torch.float16,
use_safetensors=True,
variant="fp16",
subfolder="unet",
).to("cuda")
model = PeftModel.from_pretrained(base_unet, "stevhliu/ikea_peft_model", use_safetensors=True, subfolder="ikea", adapter_name="ikea")
model.load_adapter("stevhliu/feng_peft_model", use_safetensors=True, subfolder="feng", adapter_name="feng")
```
3. Merge the adapters using the [add_weighted_adapter](https://huggingface.co/docs/peft/package_reference/lora#peft.LoraModel.add_weighted_adapter) method and the merging method of your choice (learn more about other merging methods in this [blog post](https://huggingface.co/blog/peft_merging)). For this example, let's use the `"dare_linear"` method to merge the LoRAs.
> [!WARNING]
> Keep in mind the LoRAs need to have the same rank to be merged!
```python
model.add_weighted_adapter(
adapters=["ikea", "feng"],
weights=[1.0, 1.0],
combination_type="dare_linear",
adapter_name="ikea-feng"
)
model.set_adapters("ikea-feng")
```
Now you can generate an image with the merged LoRA.
```python
model = model.to(dtype=torch.float16, device="cuda")
pipeline = DiffusionPipeline.from_pretrained(
"stabilityai/stable-diffusion-xl-base-1.0", unet=model, variant="fp16", torch_dtype=torch.float16,
).to("cuda")
image = pipeline("A bowl of ramen shaped like a cute kawaii bear, by Feng Zikai", generator=torch.manual_seed(0)).images[0]
image
```
<div class="flex justify-center">
<img src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/diffusers/ikea-feng-dare-linear.png"/>
</div>
## fuse_lora
Both the [`~loaders.PeftAdapterMixin.set_adapters`] and [add_weighted_adapter](https://huggingface.co/docs/peft/package_reference/lora#peft.LoraModel.add_weighted_adapter) methods require loading the base model and the LoRA adapters separately which incurs some overhead. The [`~loaders.lora_base.LoraBaseMixin.fuse_lora`] method allows you to fuse the LoRA weights directly with the original weights of the underlying model. This way, you're only loading the model once which can increase inference and lower memory-usage.
You can use PEFT to easily fuse/unfuse multiple adapters directly into the model weights (both UNet and text encoder) using the [`~loaders.lora_base.LoraBaseMixin.fuse_lora`] method, which can lead to a speed-up in inference and lower VRAM usage.
For example, if you have a base model and adapters loaded and set as active with the following adapter weights:
```py
from diffusers import DiffusionPipeline
import torch
pipeline = DiffusionPipeline.from_pretrained("stabilityai/stable-diffusion-xl-base-1.0", torch_dtype=torch.float16).to("cuda")
pipeline.load_lora_weights("ostris/ikea-instructions-lora-sdxl", weight_name="ikea_instructions_xl_v1_5.safetensors", adapter_name="ikea")
pipeline.load_lora_weights("lordjia/by-feng-zikai", weight_name="fengzikai_v1.0_XL.safetensors", adapter_name="feng")
pipeline.set_adapters(["ikea", "feng"], adapter_weights=[0.7, 0.8])
```
Fuse these LoRAs into the UNet with the [`~loaders.lora_base.LoraBaseMixin.fuse_lora`] method. The `lora_scale` parameter controls how much to scale the output by with the LoRA weights. It is important to make the `lora_scale` adjustments in the [`~loaders.lora_base.LoraBaseMixin.fuse_lora`] method because it won’t work if you try to pass `scale` to the `cross_attention_kwargs` in the pipeline.
```py
pipeline.fuse_lora(adapter_names=["ikea", "feng"], lora_scale=1.0)
```
Then you should use [`~loaders.StableDiffusionLoraLoaderMixin.unload_lora_weights`] to unload the LoRA weights since they've already been fused with the underlying base model. Finally, call [`~DiffusionPipeline.save_pretrained`] to save the fused pipeline locally or you could call [`~DiffusionPipeline.push_to_hub`] to push the fused pipeline to the Hub.
```py
pipeline.unload_lora_weights()
# save locally
pipeline.save_pretrained("path/to/fused-pipeline")
# save to the Hub
pipeline.push_to_hub("fused-ikea-feng")
```
Now you can quickly load the fused pipeline and use it for inference without needing to separately load the LoRA adapters.
```py
pipeline = DiffusionPipeline.from_pretrained(
"username/fused-ikea-feng", torch_dtype=torch.float16,
).to("cuda")
image = pipeline("A bowl of ramen shaped like a cute kawaii bear, by Feng Zikai", generator=torch.manual_seed(0)).images[0]
image
```
You can call [`~~loaders.lora_base.LoraBaseMixin.unfuse_lora`] to restore the original model's weights (for example, if you want to use a different `lora_scale` value). However, this only works if you've only fused one LoRA adapter to the original model. If you've fused multiple LoRAs, you'll need to reload the model.
```py
pipeline.unfuse_lora()
```
### torch.compile
[torch.compile](../optimization/torch2.0#torchcompile) can speed up your pipeline even more, but the LoRA weights must be fused first and then unloaded. Typically, the UNet is compiled because it is such a computationally intensive component of the pipeline.
```py
from diffusers import DiffusionPipeline
import torch
# load base model and LoRAs
pipeline = DiffusionPipeline.from_pretrained("stabilityai/stable-diffusion-xl-base-1.0", torch_dtype=torch.float16).to("cuda")
pipeline.load_lora_weights("ostris/ikea-instructions-lora-sdxl", weight_name="ikea_instructions_xl_v1_5.safetensors", adapter_name="ikea")
pipeline.load_lora_weights("lordjia/by-feng-zikai", weight_name="fengzikai_v1.0_XL.safetensors", adapter_name="feng")
# activate both LoRAs and set adapter weights
pipeline.set_adapters(["ikea", "feng"], adapter_weights=[0.7, 0.8])
# fuse LoRAs and unload weights
pipeline.fuse_lora(adapter_names=["ikea", "feng"], lora_scale=1.0)
pipeline.unload_lora_weights()
# torch.compile
pipeline.unet.to(memory_format=torch.channels_last)
pipeline.unet = torch.compile(pipeline.unet, mode="reduce-overhead", fullgraph=True)
image = pipeline("A bowl of ramen shaped like a cute kawaii bear, by Feng Zikai", generator=torch.manual_seed(0)).images[0]
```
Learn more about torch.compile in the [Accelerate inference of text-to-image diffusion models](../tutorials/fast_diffusion#torchcompile) guide.
## Next steps
For more conceptual details about how each merging method works, take a look at the [🤗 PEFT welcomes new merging methods](https://huggingface.co/blog/peft_merging#concatenation-cat) blog post!
<!--Copyright 2024 The HuggingFace Team. All rights reserved.
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
the License. You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on
an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the
specific language governing permissions and limitations under the License.
-->
# Model files and layouts
[[open-in-colab]]
Diffusion models are saved in various file types and organized in different layouts. Diffusers stores model weights as safetensors files in *Diffusers-multifolder* layout and it also supports loading files (like safetensors and ckpt files) from a *single-file* layout which is commonly used in the diffusion ecosystem.
Each layout has its own benefits and use cases, and this guide will show you how to load the different files and layouts, and how to convert them.
## Files
PyTorch model weights are typically saved with Python's [pickle](https://docs.python.org/3/library/pickle.html) utility as ckpt or bin files. However, pickle is not secure and pickled files may contain malicious code that can be executed. This vulnerability is a serious concern given the popularity of model sharing. To address this security issue, the [Safetensors](https://hf.co/docs/safetensors) library was developed as a secure alternative to pickle, which saves models as safetensors files.
### safetensors
> [!TIP]
> Learn more about the design decisions and why safetensor files are preferred for saving and loading model weights in the [Safetensors audited as really safe and becoming the default](https://blog.eleuther.ai/safetensors-security-audit/) blog post.
[Safetensors](https://hf.co/docs/safetensors) is a safe and fast file format for securely storing and loading tensors. Safetensors restricts the header size to limit certain types of attacks, supports lazy loading (useful for distributed setups), and has generally faster loading speeds.
Make sure you have the [Safetensors](https://hf.co/docs/safetensors) library installed.
```py
!pip install safetensors
```
Safetensors stores weights in a safetensors file. Diffusers loads safetensors files by default if they're available and the Safetensors library is installed. There are two ways safetensors files can be organized:
1. Diffusers-multifolder layout: there may be several separate safetensors files, one for each pipeline component (text encoder, UNet, VAE), organized in subfolders (check out the [stable-diffusion-v1-5/stable-diffusion-v1-5](https://hf.co/stable-diffusion-v1-5/stable-diffusion-v1-5/tree/main) repository as an example)
2. single-file layout: all the model weights may be saved in a single file (check out the [WarriorMama777/OrangeMixs](https://hf.co/WarriorMama777/OrangeMixs/tree/main/Models/AbyssOrangeMix) repository as an example)
<hfoptions id="safetensors">
<hfoption id="multifolder">
Use the [`~DiffusionPipeline.from_pretrained`] method to load a model with safetensors files stored in multiple folders.
```py
from diffusers import DiffusionPipeline
pipeline = DiffusionPipeline.from_pretrained(
"stable-diffusion-v1-5/stable-diffusion-v1-5",
use_safetensors=True
)
```
</hfoption>
<hfoption id="single file">
Use the [`~loaders.FromSingleFileMixin.from_single_file`] method to load a model with all the weights stored in a single safetensors file.
```py
from diffusers import StableDiffusionPipeline
pipeline = StableDiffusionPipeline.from_single_file(
"https://huggingface.co/WarriorMama777/OrangeMixs/blob/main/Models/AbyssOrangeMix/AbyssOrangeMix.safetensors"
)
```
</hfoption>
</hfoptions>
#### LoRA files
[LoRA](https://hf.co/docs/peft/conceptual_guides/adapter#low-rank-adaptation-lora) is a lightweight adapter that is fast and easy to train, making them especially popular for generating images in a certain way or style. These adapters are commonly stored in a safetensors file, and are widely popular on model sharing platforms like [civitai](https://civitai.com/).
LoRAs are loaded into a base model with the [`~loaders.StableDiffusionLoraLoaderMixin.load_lora_weights`] method.
```py
from diffusers import StableDiffusionXLPipeline
import torch
# base model
pipeline = StableDiffusionXLPipeline.from_pretrained(
"Lykon/dreamshaper-xl-1-0", torch_dtype=torch.float16, variant="fp16"
).to("cuda")
# download LoRA weights
!wget https://civitai.com/api/download/models/168776 -O blueprintify.safetensors
# load LoRA weights
pipeline.load_lora_weights(".", weight_name="blueprintify.safetensors")
prompt = "bl3uprint, a highly detailed blueprint of the empire state building, explaining how to build all parts, many txt, blueprint grid backdrop"
negative_prompt = "lowres, cropped, worst quality, low quality, normal quality, artifacts, signature, watermark, username, blurry, more than one bridge, bad architecture"
image = pipeline(
prompt=prompt,
negative_prompt=negative_prompt,
generator=torch.manual_seed(0),
).images[0]
image
```
<div class="flex justify-center">
<img src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/diffusers/blueprint-lora.png"/>
</div>
### ckpt
> [!WARNING]
> Pickled files may be unsafe because they can be exploited to execute malicious code. It is recommended to use safetensors files instead where possible, or convert the weights to safetensors files.
PyTorch's [torch.save](https://pytorch.org/docs/stable/generated/torch.save.html) function uses Python's [pickle](https://docs.python.org/3/library/pickle.html) utility to serialize and save models. These files are saved as a ckpt file and they contain the entire model's weights.
Use the [`~loaders.FromSingleFileMixin.from_single_file`] method to directly load a ckpt file.
```py
from diffusers import StableDiffusionPipeline
pipeline = StableDiffusionPipeline.from_single_file(
"https://huggingface.co/stable-diffusion-v1-5/stable-diffusion-v1-5/blob/main/v1-5-pruned.ckpt"
)
```
## Storage layout
There are two ways model files are organized, either in a Diffusers-multifolder layout or in a single-file layout. The Diffusers-multifolder layout is the default, and each component file (text encoder, UNet, VAE) is stored in a separate subfolder. Diffusers also supports loading models from a single-file layout where all the components are bundled together.
### Diffusers-multifolder
The Diffusers-multifolder layout is the default storage layout for Diffusers. Each component's (text encoder, UNet, VAE) weights are stored in a separate subfolder. The weights can be stored as safetensors or ckpt files.
<div class="flex flex-row gap-4">
<div class="flex-1">
<img class="rounded-xl" src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/diffusers/multifolder-layout.png"/>
<figcaption class="mt-2 text-center text-sm text-gray-500">multifolder layout</figcaption>
</div>
<div class="flex-1">
<img class="rounded-xl" src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/diffusers/multifolder-unet.png"/>
<figcaption class="mt-2 text-center text-sm text-gray-500">UNet subfolder</figcaption>
</div>
</div>
To load from Diffusers-multifolder layout, use the [`~DiffusionPipeline.from_pretrained`] method.
```py
from diffusers import DiffusionPipeline
pipeline = DiffusionPipeline.from_pretrained(
"stabilityai/stable-diffusion-xl-base-1.0",
torch_dtype=torch.float16,
variant="fp16",
use_safetensors=True,
).to("cuda")
```
Benefits of using the Diffusers-multifolder layout include:
1. Faster to load each component file individually or in parallel.
2. Reduced memory usage because you only load the components you need. For example, models like [SDXL Turbo](https://hf.co/stabilityai/sdxl-turbo), [SDXL Lightning](https://hf.co/ByteDance/SDXL-Lightning), and [Hyper-SD](https://hf.co/ByteDance/Hyper-SD) have the same components except for the UNet. You can reuse their shared components with the [`~DiffusionPipeline.from_pipe`] method without consuming any additional memory (take a look at the [Reuse a pipeline](./loading#reuse-a-pipeline) guide) and only load the UNet. This way, you don't need to download redundant components and unnecessarily use more memory.
```py
import torch
from diffusers import StableDiffusionXLPipeline, UNet2DConditionModel, EulerDiscreteScheduler
# download one model
sdxl_pipeline = StableDiffusionXLPipeline.from_pretrained(
"stabilityai/stable-diffusion-xl-base-1.0",
torch_dtype=torch.float16,
variant="fp16",
use_safetensors=True,
).to("cuda")
# switch UNet for another model
unet = UNet2DConditionModel.from_pretrained(
"stabilityai/sdxl-turbo",
subfolder="unet",
torch_dtype=torch.float16,
variant="fp16",
use_safetensors=True
)
# reuse all the same components in new model except for the UNet
turbo_pipeline = StableDiffusionXLPipeline.from_pipe(
sdxl_pipeline, unet=unet,
).to("cuda")
turbo_pipeline.scheduler = EulerDiscreteScheduler.from_config(
turbo_pipeline.scheduler.config,
timestep+spacing="trailing"
)
image = turbo_pipeline(
"an astronaut riding a unicorn on mars",
num_inference_steps=1,
guidance_scale=0.0,
).images[0]
image
```
3. Reduced storage requirements because if a component, such as the SDXL [VAE](https://hf.co/madebyollin/sdxl-vae-fp16-fix), is shared across multiple models, you only need to download and store a single copy of it instead of downloading and storing it multiple times. For 10 SDXL models, this can save ~3.5GB of storage. The storage savings is even greater for newer models like PixArt Sigma, where the [text encoder](https://hf.co/PixArt-alpha/PixArt-Sigma-XL-2-1024-MS/tree/main/text_encoder) alone is ~19GB!
4. Flexibility to replace a component in the model with a newer or better version.
```py
from diffusers import DiffusionPipeline, AutoencoderKL
vae = AutoencoderKL.from_pretrained("madebyollin/sdxl-vae-fp16-fix", torch_dtype=torch.float16, use_safetensors=True)
pipeline = DiffusionPipeline.from_pretrained(
"stabilityai/stable-diffusion-xl-base-1.0",
vae=vae,
torch_dtype=torch.float16,
variant="fp16",
use_safetensors=True,
).to("cuda")
```
5. More visibility and information about a model's components, which are stored in a [config.json](https://hf.co/stabilityai/stable-diffusion-xl-base-1.0/blob/main/unet/config.json) file in each component subfolder.
### Single-file
The single-file layout stores all the model weights in a single file. All the model components (text encoder, UNet, VAE) weights are kept together instead of separately in subfolders. This can be a safetensors or ckpt file.
<div class="flex justify-center">
<img src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/diffusers/single-file-layout.png"/>
</div>
To load from a single-file layout, use the [`~loaders.FromSingleFileMixin.from_single_file`] method.
```py
import torch
from diffusers import StableDiffusionXLPipeline
pipeline = StableDiffusionXLPipeline.from_single_file(
"https://huggingface.co/stabilityai/stable-diffusion-xl-base-1.0/blob/main/sd_xl_base_1.0.safetensors",
torch_dtype=torch.float16,
variant="fp16",
use_safetensors=True,
).to("cuda")
```
Benefits of using a single-file layout include:
1. Easy compatibility with diffusion interfaces such as [ComfyUI](https://github.com/comfyanonymous/ComfyUI) or [Automatic1111](https://github.com/AUTOMATIC1111/stable-diffusion-webui) which commonly use a single-file layout.
2. Easier to manage (download and share) a single file.
## Convert layout and files
Diffusers provides many scripts and methods to convert storage layouts and file formats to enable broader support across the diffusion ecosystem.
Take a look at the [diffusers/scripts](https://github.com/huggingface/diffusers/tree/main/scripts) collection to find a script that fits your conversion needs.
> [!TIP]
> Scripts that have "`to_diffusers`" appended at the end mean they convert a model to the Diffusers-multifolder layout. Each script has their own specific set of arguments for configuring the conversion, so make sure you check what arguments are available!
For example, to convert a Stable Diffusion XL model stored in Diffusers-multifolder layout to a single-file layout, run the [convert_diffusers_to_original_sdxl.py](https://github.com/huggingface/diffusers/blob/main/scripts/convert_diffusers_to_original_sdxl.py) script. Provide the path to the model to convert, and the path to save the converted model to. You can optionally specify whether you want to save the model as a safetensors file and whether to save the model in half-precision.
```bash
python convert_diffusers_to_original_sdxl.py --model_path path/to/model/to/convert --checkpoint_path path/to/save/model/to --use_safetensors
```
You can also save a model to Diffusers-multifolder layout with the [`~DiffusionPipeline.save_pretrained`] method. This creates a directory for you if it doesn't already exist, and it also saves the files as a safetensors file by default.
```py
from diffusers import StableDiffusionXLPipeline
pipeline = StableDiffusionXLPipeline.from_single_file(
"https://huggingface.co/stabilityai/stable-diffusion-xl-base-1.0/blob/main/sd_xl_base_1.0.safetensors",
)
pipeline.save_pretrained()
```
Lastly, there are also Spaces, such as [SD To Diffusers](https://hf.co/spaces/diffusers/sd-to-diffusers) and [SD-XL To Diffusers](https://hf.co/spaces/diffusers/sdxl-to-diffusers), that provide a more user-friendly interface for converting models to Diffusers-multifolder layout. This is the easiest and most convenient option for converting layouts, and it'll open a PR on your model repository with the converted files. However, this option is not as reliable as running a script, and the Space may fail for more complicated models.
## Single-file layout usage
Now that you're familiar with the differences between the Diffusers-multifolder and single-file layout, this section shows you how to load models and pipeline components, customize configuration options for loading, and load local files with the [`~loaders.FromSingleFileMixin.from_single_file`] method.
### Load a pipeline or model
Pass the file path of the pipeline or model to the [`~loaders.FromSingleFileMixin.from_single_file`] method to load it.
<hfoptions id="pipeline-model">
<hfoption id="pipeline">
```py
from diffusers import StableDiffusionXLPipeline
ckpt_path = "https://huggingface.co/stabilityai/stable-diffusion-xl-base-1.0/blob/main/sd_xl_base_1.0_0.9vae.safetensors"
pipeline = StableDiffusionXLPipeline.from_single_file(ckpt_path)
```
</hfoption>
<hfoption id="model">
```py
from diffusers import StableCascadeUNet
ckpt_path = "https://huggingface.co/stabilityai/stable-cascade/blob/main/stage_b_lite.safetensors"
model = StableCascadeUNet.from_single_file(ckpt_path)
```
</hfoption>
</hfoptions>
Customize components in the pipeline by passing them directly to the [`~loaders.FromSingleFileMixin.from_single_file`] method. For example, you can use a different scheduler in a pipeline.
```py
from diffusers import StableDiffusionXLPipeline, DDIMScheduler
ckpt_path = "https://huggingface.co/stabilityai/stable-diffusion-xl-base-1.0/blob/main/sd_xl_base_1.0_0.9vae.safetensors"
scheduler = DDIMScheduler()
pipeline = StableDiffusionXLPipeline.from_single_file(ckpt_path, scheduler=scheduler)
```
Or you could use a ControlNet model in the pipeline.
```py
from diffusers import StableDiffusionControlNetPipeline, ControlNetModel
ckpt_path = "https://huggingface.co/stable-diffusion-v1-5/stable-diffusion-v1-5/blob/main/v1-5-pruned-emaonly.safetensors"
controlnet = ControlNetModel.from_pretrained("lllyasviel/control_v11p_sd15_canny")
pipeline = StableDiffusionControlNetPipeline.from_single_file(ckpt_path, controlnet=controlnet)
```
### Customize configuration options
Models have a configuration file that define their attributes like the number of inputs in a UNet. Pipelines configuration options are available in the pipeline's class. For example, if you look at the [`StableDiffusionXLInstructPix2PixPipeline`] class, there is an option to scale the image latents with the `is_cosxl_edit` parameter.
These configuration files can be found in the models Hub repository or another location from which the configuration file originated (for example, a GitHub repository or locally on your device).
<hfoptions id="config-file">
<hfoption id="Hub configuration file">
> [!TIP]
> The [`~loaders.FromSingleFileMixin.from_single_file`] method automatically maps the checkpoint to the appropriate model repository, but there are cases where it is useful to use the `config` parameter. For example, if the model components in the checkpoint are different from the original checkpoint or if a checkpoint doesn't have the necessary metadata to correctly determine the configuration to use for the pipeline.
The [`~loaders.FromSingleFileMixin.from_single_file`] method automatically determines the configuration to use from the configuration file in the model repository. You could also explicitly specify the configuration to use by providing the repository id to the `config` parameter.
```py
from diffusers import StableDiffusionXLPipeline
ckpt_path = "https://huggingface.co/segmind/SSD-1B/blob/main/SSD-1B.safetensors"
repo_id = "segmind/SSD-1B"
pipeline = StableDiffusionXLPipeline.from_single_file(ckpt_path, config=repo_id)
```
The model loads the configuration file for the [UNet](https://huggingface.co/segmind/SSD-1B/blob/main/unet/config.json), [VAE](https://huggingface.co/segmind/SSD-1B/blob/main/vae/config.json), and [text encoder](https://huggingface.co/segmind/SSD-1B/blob/main/text_encoder/config.json) from their respective subfolders in the repository.
</hfoption>
<hfoption id="original configuration file">
The [`~loaders.FromSingleFileMixin.from_single_file`] method can also load the original configuration file of a pipeline that is stored elsewhere. Pass a local path or URL of the original configuration file to the `original_config` parameter.
```py
from diffusers import StableDiffusionXLPipeline
ckpt_path = "https://huggingface.co/stabilityai/stable-diffusion-xl-base-1.0/blob/main/sd_xl_base_1.0_0.9vae.safetensors"
original_config = "https://raw.githubusercontent.com/Stability-AI/generative-models/main/configs/inference/sd_xl_base.yaml"
pipeline = StableDiffusionXLPipeline.from_single_file(ckpt_path, original_config=original_config)
```
> [!TIP]
> Diffusers attempts to infer the pipeline components based on the type signatures of the pipeline class when you use `original_config` with `local_files_only=True`, instead of fetching the configuration files from the model repository on the Hub. This prevents backward breaking changes in code that can't connect to the internet to fetch the necessary configuration files.
>
> This is not as reliable as providing a path to a local model repository with the `config` parameter, and might lead to errors during pipeline configuration. To avoid errors, run the pipeline with `local_files_only=False` once to download the appropriate pipeline configuration files to the local cache.
</hfoption>
</hfoptions>
While the configuration files specify the pipeline or models default parameters, you can override them by providing the parameters directly to the [`~loaders.FromSingleFileMixin.from_single_file`] method. Any parameter supported by the model or pipeline class can be configured in this way.
<hfoptions id="override">
<hfoption id="pipeline">
For example, to scale the image latents in [`StableDiffusionXLInstructPix2PixPipeline`] pass the `is_cosxl_edit` parameter.
```python
from diffusers import StableDiffusionXLInstructPix2PixPipeline
ckpt_path = "https://huggingface.co/stabilityai/cosxl/blob/main/cosxl_edit.safetensors"
pipeline = StableDiffusionXLInstructPix2PixPipeline.from_single_file(ckpt_path, config="diffusers/sdxl-instructpix2pix-768", is_cosxl_edit=True)
```
</hfoption>
<hfoption id="model">
For example, to upcast the attention dimensions in a [`UNet2DConditionModel`] pass the `upcast_attention` parameter.
```python
from diffusers import UNet2DConditionModel
ckpt_path = "https://huggingface.co/stabilityai/stable-diffusion-xl-base-1.0/blob/main/sd_xl_base_1.0_0.9vae.safetensors"
model = UNet2DConditionModel.from_single_file(ckpt_path, upcast_attention=True)
```
</hfoption>
</hfoptions>
### Local files
In Diffusers>=v0.28.0, the [`~loaders.FromSingleFileMixin.from_single_file`] method attempts to configure a pipeline or model by inferring the model type from the keys in the checkpoint file. The inferred model type is used to determine the appropriate model repository on the Hugging Face Hub to configure the model or pipeline.
For example, any single file checkpoint based on the Stable Diffusion XL base model will use the [stabilityai/stable-diffusion-xl-base-1.0](https://huggingface.co/stabilityai/stable-diffusion-xl-base-1.0) model repository to configure the pipeline.
But if you're working in an environment with restricted internet access, you should download the configuration files with the [`~huggingface_hub.snapshot_download`] function, and the model checkpoint with the [`~huggingface_hub.hf_hub_download`] function. By default, these files are downloaded to the Hugging Face Hub [cache directory](https://huggingface.co/docs/huggingface_hub/en/guides/manage-cache), but you can specify a preferred directory to download the files to with the `local_dir` parameter.
Pass the configuration and checkpoint paths to the [`~loaders.FromSingleFileMixin.from_single_file`] method to load locally.
<hfoptions id="local">
<hfoption id="Hub cache directory">
```python
from huggingface_hub import hf_hub_download, snapshot_download
my_local_checkpoint_path = hf_hub_download(
repo_id="segmind/SSD-1B",
filename="SSD-1B.safetensors"
)
my_local_config_path = snapshot_download(
repo_id="segmind/SSD-1B",
allow_patterns=["*.json", "**/*.json", "*.txt", "**/*.txt"]
)
pipeline = StableDiffusionXLPipeline.from_single_file(my_local_checkpoint_path, config=my_local_config_path, local_files_only=True)
```
</hfoption>
<hfoption id="specific local directory">
```python
from huggingface_hub import hf_hub_download, snapshot_download
my_local_checkpoint_path = hf_hub_download(
repo_id="segmind/SSD-1B",
filename="SSD-1B.safetensors"
local_dir="my_local_checkpoints"
)
my_local_config_path = snapshot_download(
repo_id="segmind/SSD-1B",
allow_patterns=["*.json", "**/*.json", "*.txt", "**/*.txt"]
local_dir="my_local_config"
)
pipeline = StableDiffusionXLPipeline.from_single_file(my_local_checkpoint_path, config=my_local_config_path, local_files_only=True)
```
</hfoption>
</hfoptions>
#### Local files without symlink
> [!TIP]
> In huggingface_hub>=v0.23.0, the `local_dir_use_symlinks` argument isn't necessary for the [`~huggingface_hub.hf_hub_download`] and [`~huggingface_hub.snapshot_download`] functions.
The [`~loaders.FromSingleFileMixin.from_single_file`] method relies on the [huggingface_hub](https://hf.co/docs/huggingface_hub/index) caching mechanism to fetch and store checkpoints and configuration files for models and pipelines. If you're working with a file system that does not support symlinking, you should download the checkpoint file to a local directory first, and disable symlinking with the `local_dir_use_symlink=False` parameter in the [`~huggingface_hub.hf_hub_download`] function and [`~huggingface_hub.snapshot_download`] functions.
```python
from huggingface_hub import hf_hub_download, snapshot_download
my_local_checkpoint_path = hf_hub_download(
repo_id="segmind/SSD-1B",
filename="SSD-1B.safetensors"
local_dir="my_local_checkpoints",
local_dir_use_symlinks=False
)
print("My local checkpoint: ", my_local_checkpoint_path)
my_local_config_path = snapshot_download(
repo_id="segmind/SSD-1B",
allow_patterns=["*.json", "**/*.json", "*.txt", "**/*.txt"]
local_dir_use_symlinks=False,
)
print("My local config: ", my_local_config_path)
```
Then you can pass the local paths to the `pretrained_model_link_or_path` and `config` parameters.
```python
pipeline = StableDiffusionXLPipeline.from_single_file(my_local_checkpoint_path, config=my_local_config_path, local_files_only=True)
```
<!--Copyright 2024 The HuggingFace Team. All rights reserved.
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
the License. You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on
an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the
specific language governing permissions and limitations under the License.
-->
# Overview
The inference pipeline supports and enables a wide range of techniques that are divided into two categories:
* Pipeline functionality: these techniques modify the pipeline or extend it for other applications. For example, pipeline callbacks add new features to a pipeline and a pipeline can also be extended for distributed inference.
* Improve inference quality: these techniques increase the visual quality of the generated images. For example, you can enhance your prompts with GPT2 to create better images with lower effort.
<!--Copyright 2024 The HuggingFace Team. All rights reserved.
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
the License. You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on
an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the
specific language governing permissions and limitations under the License.
-->
# Perturbed-Attention Guidance
[Perturbed-Attention Guidance (PAG)](https://ku-cvlab.github.io/Perturbed-Attention-Guidance/) is a new diffusion sampling guidance that improves sample quality across both unconditional and conditional settings, achieving this without requiring further training or the integration of external modules. PAG is designed to progressively enhance the structure of synthesized samples throughout the denoising process by considering the self-attention mechanisms' ability to capture structural information. It involves generating intermediate samples with degraded structure by substituting selected self-attention maps in diffusion U-Net with an identity matrix, and guiding the denoising process away from these degraded samples.
This guide will show you how to use PAG for various tasks and use cases.
## General tasks
You can apply PAG to the [`StableDiffusionXLPipeline`] for tasks such as text-to-image, image-to-image, and inpainting. To enable PAG for a specific task, load the pipeline using the [AutoPipeline](../api/pipelines/auto_pipeline) API with the `enable_pag=True` flag and the `pag_applied_layers` argument.
> [!TIP]
> 🤗 Diffusers currently only supports using PAG with selected SDXL pipelines and [`PixArtSigmaPAGPipeline`]. But feel free to open a [feature request](https://github.com/huggingface/diffusers/issues/new/choose) if you want to add PAG support to a new pipeline!
<hfoptions id="tasks">
<hfoption id="Text-to-image">
```py
from diffusers import AutoPipelineForText2Image
from diffusers.utils import load_image
import torch
pipeline = AutoPipelineForText2Image.from_pretrained(
"stabilityai/stable-diffusion-xl-base-1.0",
enable_pag=True,
pag_applied_layers=["mid"],
torch_dtype=torch.float16
)
pipeline.enable_model_cpu_offload()
```
> [!TIP]
> The `pag_applied_layers` argument allows you to specify which layers PAG is applied to. Additionally, you can use `set_pag_applied_layers` method to update these layers after the pipeline has been created. Check out the [pag_applied_layers](#pag_applied_layers) section to learn more about applying PAG to other layers.
If you already have a pipeline created and loaded, you can enable PAG on it using the `from_pipe` API with the `enable_pag` flag. Internally, a PAG pipeline is created based on the pipeline and task you specified. In the example below, since we used `AutoPipelineForText2Image` and passed a `StableDiffusionXLPipeline`, a `StableDiffusionXLPAGPipeline` is created accordingly. Note that this does not require additional memory, and you will have both `StableDiffusionXLPipeline` and `StableDiffusionXLPAGPipeline` loaded and ready to use. You can read more about the `from_pipe` API and how to reuse pipelines in diffuser [here](https://huggingface.co/docs/diffusers/using-diffusers/loading#reuse-a-pipeline).
```py
pipeline_sdxl = AutoPipelineForText2Image.from_pretrained("stabilityai/stable-diffusion-xl-base-1.0", torch_dtype=torch.float16)
pipeline = AutoPipelineForText2Image.from_pipe(pipeline_sdxl, enable_pag=True)
```
To generate an image, you will also need to pass a `pag_scale`. When `pag_scale` increases, images gain more semantically coherent structures and exhibit fewer artifacts. However overly large guidance scale can lead to smoother textures and slight saturation in the images, similarly to CFG. `pag_scale=3.0` is used in the official demo and works well in most of the use cases, but feel free to experiment and select the appropriate value according to your needs! PAG is disabled when `pag_scale=0`.
```py
prompt = "an insect robot preparing a delicious meal, anime style"
for pag_scale in [0.0, 3.0]:
generator = torch.Generator(device="cpu").manual_seed(0)
images = pipeline(
prompt=prompt,
num_inference_steps=25,
guidance_scale=7.0,
generator=generator,
pag_scale=pag_scale,
).images
```
<div class="flex flex-row gap-4">
<div class="flex-1">
<img class="rounded-xl" src="https://huggingface.co/datasets/YiYiXu/testing-images/resolve/main/pag_0.0_cfg_7.0_mid.png"/>
<figcaption class="mt-2 text-center text-sm text-gray-500">generated image without PAG</figcaption>
</div>
<div class="flex-1">
<img class="rounded-xl" src="https://huggingface.co/datasets/YiYiXu/testing-images/resolve/main/pag_3.0_cfg_7.0_mid.png"/>
<figcaption class="mt-2 text-center text-sm text-gray-500">generated image with PAG</figcaption>
</div>
</div>
</hfoption>
<hfoption id="Image-to-image">
You can use PAG with image-to-image pipelines.
```py
from diffusers import AutoPipelineForImage2Image
from diffusers.utils import load_image
import torch
pipeline = AutoPipelineForImage2Image.from_pretrained(
"stabilityai/stable-diffusion-xl-base-1.0",
enable_pag=True,
pag_applied_layers=["mid"],
torch_dtype=torch.float16
)
pipeline.enable_model_cpu_offload()
```
If you already have a image-to-image pipeline and would like enable PAG on it, you can run this
```py
pipeline_t2i = AutoPipelineForImage2Image.from_pretrained("stabilityai/stable-diffusion-xl-base-1.0", torch_dtype=torch.float16)
pipeline = AutoPipelineForImage2Image.from_pipe(pipeline_t2i, enable_pag=True)
```
It is also very easy to directly switch from a text-to-image pipeline to PAG enabled image-to-image pipeline
```py
pipeline_pag = AutoPipelineForText2Image.from_pretrained("stabilityai/stable-diffusion-xl-base-1.0", torch_dtype=torch.float16)
pipeline = AutoPipelineForImage2Image.from_pipe(pipeline_t2i, enable_pag=True)
```
If you have a PAG enabled text-to-image pipeline, you can directly switch to a image-to-image pipeline with PAG still enabled
```py
pipeline_pag = AutoPipelineForText2Image.from_pretrained("stabilityai/stable-diffusion-xl-base-1.0", enable_pag=True, torch_dtype=torch.float16)
pipeline = AutoPipelineForImage2Image.from_pipe(pipeline_t2i)
```
Now let's generate an image!
```py
pag_scales = 4.0
guidance_scales = 7.0
url = "https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/diffusers/sdxl-text2img.png"
init_image = load_image(url)
prompt = "a dog catching a frisbee in the jungle"
generator = torch.Generator(device="cpu").manual_seed(0)
image = pipeline(
prompt,
image=init_image,
strength=0.8,
guidance_scale=guidance_scale,
pag_scale=pag_scale,
generator=generator).images[0]
```
</hfoption>
<hfoption id="Inpainting">
```py
from diffusers import AutoPipelineForInpainting
from diffusers.utils import load_image
import torch
pipeline = AutoPipelineForInpainting.from_pretrained(
"stabilityai/stable-diffusion-xl-base-1.0",
enable_pag=True,
torch_dtype=torch.float16
)
pipeline.enable_model_cpu_offload()
```
You can enable PAG on an exisiting inpainting pipeline like this
```py
pipeline_inpaint = AutoPipelineForInpaiting.from_pretrained("stabilityai/stable-diffusion-xl-base-1.0", torch_dtype=torch.float16)
pipeline = AutoPipelineForInpaiting.from_pipe(pipeline_inpaint, enable_pag=True)
```
This still works when your pipeline has a different task:
```py
pipeline_t2i = AutoPipelineForText2Image.from_pretrained("stabilityai/stable-diffusion-xl-base-1.0", torch_dtype=torch.float16)
pipeline = AutoPipelineForInpaiting.from_pipe(pipeline_t2i, enable_pag=True)
```
Let's generate an image!
```py
img_url = "https://raw.githubusercontent.com/CompVis/latent-diffusion/main/data/inpainting_examples/overture-creations-5sI6fQgYIuo.png"
mask_url = "https://raw.githubusercontent.com/CompVis/latent-diffusion/main/data/inpainting_examples/overture-creations-5sI6fQgYIuo_mask.png"
init_image = load_image(img_url).convert("RGB")
mask_image = load_image(mask_url).convert("RGB")
prompt = "A majestic tiger sitting on a bench"
pag_scales = 3.0
guidance_scales = 7.5
generator = torch.Generator(device="cpu").manual_seed(1)
images = pipeline(
prompt=prompt,
image=init_image,
mask_image=mask_image,
strength=0.8,
num_inference_steps=50,
guidance_scale=guidance_scale,
generator=generator,
pag_scale=pag_scale,
).images
images[0]
```
</hfoption>
</hfoptions>
## PAG with ControlNet
To use PAG with ControlNet, first create a `controlnet`. Then, pass the `controlnet` and other PAG arguments to the `from_pretrained` method of the AutoPipeline for the specified task.
```py
from diffusers import AutoPipelineForText2Image, ControlNetModel
import torch
controlnet = ControlNetModel.from_pretrained(
"diffusers/controlnet-canny-sdxl-1.0", torch_dtype=torch.float16
)
pipeline = AutoPipelineForText2Image.from_pretrained(
"stabilityai/stable-diffusion-xl-base-1.0",
controlnet=controlnet,
enable_pag=True,
pag_applied_layers="mid",
torch_dtype=torch.float16
)
pipeline.enable_model_cpu_offload()
```
<Tip>
If you already have a controlnet pipeline and want to enable PAG, you can use the `from_pipe` API: `AutoPipelineForText2Image.from_pipe(pipeline_controlnet, enable_pag=True)`
</Tip>
You can use the pipeline in the same way you normally use ControlNet pipelines, with the added option to specify a `pag_scale` parameter. Note that PAG works well for unconditional generation. In this example, we will generate an image without a prompt.
```py
from diffusers.utils import load_image
canny_image = load_image(
"https://huggingface.co/datasets/YiYiXu/testing-images/resolve/main/pag_control_input.png"
)
for pag_scale in [0.0, 3.0]:
generator = torch.Generator(device="cpu").manual_seed(1)
images = pipeline(
prompt="",
controlnet_conditioning_scale=controlnet_conditioning_scale,
image=canny_image,
num_inference_steps=50,
guidance_scale=0,
generator=generator,
pag_scale=pag_scale,
).images
images[0]
```
<div class="flex flex-row gap-4">
<div class="flex-1">
<img class="rounded-xl" src="https://huggingface.co/datasets/YiYiXu/testing-images/resolve/main/pag_0.0_controlnet.png"/>
<figcaption class="mt-2 text-center text-sm text-gray-500">generated image without PAG</figcaption>
</div>
<div class="flex-1">
<img class="rounded-xl" src="https://huggingface.co/datasets/YiYiXu/testing-images/resolve/main/pag_3.0_controlnet.png"/>
<figcaption class="mt-2 text-center text-sm text-gray-500">generated image with PAG</figcaption>
</div>
</div>
## PAG with IP-Adapter
[IP-Adapter](https://hf.co/papers/2308.06721) is a popular model that can be plugged into diffusion models to enable image prompting without any changes to the underlying model. You can enable PAG on a pipeline with IP-Adapter loaded.
```py
from diffusers import AutoPipelineForText2Image
from diffusers.utils import load_image
from transformers import CLIPVisionModelWithProjection
import torch
image_encoder = CLIPVisionModelWithProjection.from_pretrained(
"h94/IP-Adapter",
subfolder="models/image_encoder",
torch_dtype=torch.float16
)
pipeline = AutoPipelineForText2Image.from_pretrained(
"stabilityai/stable-diffusion-xl-base-1.0",
image_encoder=image_encoder,
enable_pag=True,
torch_dtype=torch.float16
).to("cuda")
pipeline.load_ip_adapter("h94/IP-Adapter", subfolder="sdxl_models", weight_name="ip-adapter-plus_sdxl_vit-h.bin")
pag_scales = 5.0
ip_adapter_scales = 0.8
image = load_image("https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/diffusers/ip_adapter_diner.png")
pipeline.set_ip_adapter_scale(ip_adapter_scale)
generator = torch.Generator(device="cpu").manual_seed(0)
images = pipeline(
prompt="a polar bear sitting in a chair drinking a milkshake",
ip_adapter_image=image,
negative_prompt="deformed, ugly, wrong proportion, low res, bad anatomy, worst quality, low quality",
num_inference_steps=25,
guidance_scale=3.0,
generator=generator,
pag_scale=pag_scale,
).images
images[0]
```
PAG reduces artifacts and improves the overall compposition.
<div class="flex flex-row gap-4">
<div class="flex-1">
<img class="rounded-xl" src="https://huggingface.co/datasets/YiYiXu/testing-images/resolve/main/pag_0.0_ipa_0.8.png"/>
<figcaption class="mt-2 text-center text-sm text-gray-500">generated image without PAG</figcaption>
</div>
<div class="flex-1">
<img class="rounded-xl" src="https://huggingface.co/datasets/YiYiXu/testing-images/resolve/main/pag_5.0_ipa_0.8.png"/>
<figcaption class="mt-2 text-center text-sm text-gray-500">generated image with PAG</figcaption>
</div>
</div>
## Configure parameters
### pag_applied_layers
The `pag_applied_layers` argument allows you to specify which layers PAG is applied to. By default, it applies only to the mid blocks. Changing this setting will significantly impact the output. You can use the `set_pag_applied_layers` method to adjust the PAG layers after the pipeline is created, helping you find the optimal layers for your model.
As an example, here is the images generated with `pag_layers = ["down.block_2"]` and `pag_layers = ["down.block_2", "up.block_1.attentions_0"]`
```py
prompt = "an insect robot preparing a delicious meal, anime style"
pipeline.set_pag_applied_layers(pag_layers)
generator = torch.Generator(device="cpu").manual_seed(0)
images = pipeline(
prompt=prompt,
num_inference_steps=25,
guidance_scale=guidance_scale,
generator=generator,
pag_scale=pag_scale,
).images
images[0]
```
<div class="flex flex-row gap-4">
<div class="flex-1">
<img class="rounded-xl" src="https://huggingface.co/datasets/YiYiXu/testing-images/resolve/main/pag_3.0_cfg_7.0_down2_up1a0.png"/>
<figcaption class="mt-2 text-center text-sm text-gray-500">down.block_2 + up.block1.attentions_0</figcaption>
</div>
<div class="flex-1">
<img class="rounded-xl" src="https://huggingface.co/datasets/YiYiXu/testing-images/resolve/main/pag_3.0_cfg_7.0_down2.png"/>
<figcaption class="mt-2 text-center text-sm text-gray-500">down.block_2</figcaption>
</div>
</div>
<!--Copyright 2024 The HuggingFace Team. All rights reserved.
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
the License. You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on
an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the
specific language governing permissions and limitations under the License.
-->
# Push files to the Hub
[[open-in-colab]]
🤗 Diffusers provides a [`~diffusers.utils.PushToHubMixin`] for uploading your model, scheduler, or pipeline to the Hub. It is an easy way to store your files on the Hub, and also allows you to share your work with others. Under the hood, the [`~diffusers.utils.PushToHubMixin`]:
1. creates a repository on the Hub
2. saves your model, scheduler, or pipeline files so they can be reloaded later
3. uploads folder containing these files to the Hub
This guide will show you how to use the [`~diffusers.utils.PushToHubMixin`] to upload your files to the Hub.
You'll need to log in to your Hub account with your access [token](https://huggingface.co/settings/tokens) first:
```py
from huggingface_hub import notebook_login
notebook_login()
```
## Models
To push a model to the Hub, call [`~diffusers.utils.PushToHubMixin.push_to_hub`] and specify the repository id of the model to be stored on the Hub:
```py
from diffusers import ControlNetModel
controlnet = ControlNetModel(
block_out_channels=(32, 64),
layers_per_block=2,
in_channels=4,
down_block_types=("DownBlock2D", "CrossAttnDownBlock2D"),
cross_attention_dim=32,
conditioning_embedding_out_channels=(16, 32),
)
controlnet.push_to_hub("my-controlnet-model")
```
For models, you can also specify the [*variant*](loading#checkpoint-variants) of the weights to push to the Hub. For example, to push `fp16` weights:
```py
controlnet.push_to_hub("my-controlnet-model", variant="fp16")
```
The [`~diffusers.utils.PushToHubMixin.push_to_hub`] function saves the model's `config.json` file and the weights are automatically saved in the `safetensors` format.
Now you can reload the model from your repository on the Hub:
```py
model = ControlNetModel.from_pretrained("your-namespace/my-controlnet-model")
```
## Scheduler
To push a scheduler to the Hub, call [`~diffusers.utils.PushToHubMixin.push_to_hub`] and specify the repository id of the scheduler to be stored on the Hub:
```py
from diffusers import DDIMScheduler
scheduler = DDIMScheduler(
beta_start=0.00085,
beta_end=0.012,
beta_schedule="scaled_linear",
clip_sample=False,
set_alpha_to_one=False,
)
scheduler.push_to_hub("my-controlnet-scheduler")
```
The [`~diffusers.utils.PushToHubMixin.push_to_hub`] function saves the scheduler's `scheduler_config.json` file to the specified repository.
Now you can reload the scheduler from your repository on the Hub:
```py
scheduler = DDIMScheduler.from_pretrained("your-namepsace/my-controlnet-scheduler")
```
## Pipeline
You can also push an entire pipeline with all it's components to the Hub. For example, initialize the components of a [`StableDiffusionPipeline`] with the parameters you want:
```py
from diffusers import (
UNet2DConditionModel,
AutoencoderKL,
DDIMScheduler,
StableDiffusionPipeline,
)
from transformers import CLIPTextModel, CLIPTextConfig, CLIPTokenizer
unet = UNet2DConditionModel(
block_out_channels=(32, 64),
layers_per_block=2,
sample_size=32,
in_channels=4,
out_channels=4,
down_block_types=("DownBlock2D", "CrossAttnDownBlock2D"),
up_block_types=("CrossAttnUpBlock2D", "UpBlock2D"),
cross_attention_dim=32,
)
scheduler = DDIMScheduler(
beta_start=0.00085,
beta_end=0.012,
beta_schedule="scaled_linear",
clip_sample=False,
set_alpha_to_one=False,
)
vae = AutoencoderKL(
block_out_channels=[32, 64],
in_channels=3,
out_channels=3,
down_block_types=["DownEncoderBlock2D", "DownEncoderBlock2D"],
up_block_types=["UpDecoderBlock2D", "UpDecoderBlock2D"],
latent_channels=4,
)
text_encoder_config = CLIPTextConfig(
bos_token_id=0,
eos_token_id=2,
hidden_size=32,
intermediate_size=37,
layer_norm_eps=1e-05,
num_attention_heads=4,
num_hidden_layers=5,
pad_token_id=1,
vocab_size=1000,
)
text_encoder = CLIPTextModel(text_encoder_config)
tokenizer = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip")
```
Pass all of the components to the [`StableDiffusionPipeline`] and call [`~diffusers.utils.PushToHubMixin.push_to_hub`] to push the pipeline to the Hub:
```py
components = {
"unet": unet,
"scheduler": scheduler,
"vae": vae,
"text_encoder": text_encoder,
"tokenizer": tokenizer,
"safety_checker": None,
"feature_extractor": None,
}
pipeline = StableDiffusionPipeline(**components)
pipeline.push_to_hub("my-pipeline")
```
The [`~diffusers.utils.PushToHubMixin.push_to_hub`] function saves each component to a subfolder in the repository. Now you can reload the pipeline from your repository on the Hub:
```py
pipeline = StableDiffusionPipeline.from_pretrained("your-namespace/my-pipeline")
```
## Privacy
Set `private=True` in the [`~diffusers.utils.PushToHubMixin.push_to_hub`] function to keep your model, scheduler, or pipeline files private:
```py
controlnet.push_to_hub("my-controlnet-model-private", private=True)
```
Private repositories are only visible to you, and other users won't be able to clone the repository and your repository won't appear in search results. Even if a user has the URL to your private repository, they'll receive a `404 - Sorry, we can't find the page you are looking for`. You must be [logged in](https://huggingface.co/docs/huggingface_hub/quick-start#login) to load a model from a private repository.
\ No newline at end of file
<!--Copyright 2024 The HuggingFace Team. All rights reserved.
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
the License. You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on
an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the
specific language governing permissions and limitations under the License.
-->
# Reproducible pipelines
Diffusion models are inherently random which is what allows it to generate different outputs every time it is run. But there are certain times when you want to generate the same output every time, like when you're testing, replicating results, and even [improving image quality](#deterministic-batch-generation). While you can't expect to get identical results across platforms, you can expect reproducible results across releases and platforms within a certain tolerance range (though even this may vary).
This guide will show you how to control randomness for deterministic generation on a CPU and GPU.
> [!TIP]
> We strongly recommend reading PyTorch's [statement about reproducibility](https://pytorch.org/docs/stable/notes/randomness.html):
>
> "Completely reproducible results are not guaranteed across PyTorch releases, individual commits, or different platforms. Furthermore, results may not be reproducible between CPU and GPU executions, even when using identical seeds."
## Control randomness
During inference, pipelines rely heavily on random sampling operations which include creating the
Gaussian noise tensors to denoise and adding noise to the scheduling step.
Take a look at the tensor values in the [`DDIMPipeline`] after two inference steps.
```python
from diffusers import DDIMPipeline
import numpy as np
ddim = DDIMPipeline.from_pretrained( "google/ddpm-cifar10-32", use_safetensors=True)
image = ddim(num_inference_steps=2, output_type="np").images
print(np.abs(image).sum())
```
Running the code above prints one value, but if you run it again you get a different value.
Each time the pipeline is run, [torch.randn](https://pytorch.org/docs/stable/generated/torch.randn.html) uses a different random seed to create the Gaussian noise tensors. This leads to a different result each time it is run and enables the diffusion pipeline to generate a different random image each time.
But if you need to reliably generate the same image, that depends on whether you're running the pipeline on a CPU or GPU.
> [!TIP]
> It might seem unintuitive to pass `Generator` objects to a pipeline instead of the integer value representing the seed. However, this is the recommended design when working with probabilistic models in PyTorch because a `Generator` is a *random state* that can be passed to multiple pipelines in a sequence. As soon as the `Generator` is consumed, the *state* is changed in place which means even if you passed the same `Generator` to a different pipeline, it won't produce the same result because the state is already changed.
<hfoptions id="hardware">
<hfoption id="CPU">
To generate reproducible results on a CPU, you'll need to use a PyTorch [Generator](https://pytorch.org/docs/stable/generated/torch.Generator.html) and set a seed. Now when you run the code, it always prints a value of `1491.1711` because the `Generator` object with the seed is passed to all the random functions in the pipeline. You should get a similar, if not the same, result on whatever hardware and PyTorch version you're using.
```python
import torch
import numpy as np
from diffusers import DDIMPipeline
ddim = DDIMPipeline.from_pretrained("google/ddpm-cifar10-32", use_safetensors=True)
generator = torch.Generator(device="cpu").manual_seed(0)
image = ddim(num_inference_steps=2, output_type="np", generator=generator).images
print(np.abs(image).sum())
```
</hfoption>
<hfoption id="GPU">
Writing a reproducible pipeline on a GPU is a bit trickier, and full reproducibility across different hardware is not guaranteed because matrix multiplication - which diffusion pipelines require a lot of - is less deterministic on a GPU than a CPU. For example, if you run the same code example from the CPU example, you'll get a different result even though the seed is identical. This is because the GPU uses a different random number generator than the CPU.
```python
import torch
import numpy as np
from diffusers import DDIMPipeline
ddim = DDIMPipeline.from_pretrained("google/ddpm-cifar10-32", use_safetensors=True)
ddim.to("cuda")
generator = torch.Generator(device="cuda").manual_seed(0)
image = ddim(num_inference_steps=2, output_type="np", generator=generator).images
print(np.abs(image).sum())
```
To avoid this issue, Diffusers has a [`~utils.torch_utils.randn_tensor`] function for creating random noise on the CPU, and then moving the tensor to a GPU if necessary. The [`~utils.torch_utils.randn_tensor`] function is used everywhere inside the pipeline. Now you can call [torch.manual_seed](https://pytorch.org/docs/stable/generated/torch.manual_seed.html) which automatically creates a CPU `Generator` that can be passed to the pipeline even if it is being run on a GPU.
```python
import torch
import numpy as np
from diffusers import DDIMPipeline
ddim = DDIMPipeline.from_pretrained("google/ddpm-cifar10-32", use_safetensors=True)
ddim.to("cuda")
generator = torch.manual_seed(0)
image = ddim(num_inference_steps=2, output_type="np", generator=generator).images
print(np.abs(image).sum())
```
> [!TIP]
> If reproducibility is important to your use case, we recommend always passing a CPU `Generator`. The performance loss is often negligible and you'll generate more similar values than if the pipeline had been run on a GPU.
Finally, more complex pipelines such as [`UnCLIPPipeline`], are often extremely
susceptible to precision error propagation. You'll need to use
exactly the same hardware and PyTorch version for full reproducibility.
</hfoption>
</hfoptions>
## Deterministic algorithms
You can also configure PyTorch to use deterministic algorithms to create a reproducible pipeline. The downside is that deterministic algorithms may be slower than non-deterministic ones and you may observe a decrease in performance.
Non-deterministic behavior occurs when operations are launched in more than one CUDA stream. To avoid this, set the environment variable [CUBLAS_WORKSPACE_CONFIG](https://docs.nvidia.com/cuda/cublas/index.html#results-reproducibility) to `:16:8` to only use one buffer size during runtime.
PyTorch typically benchmarks multiple algorithms to select the fastest one, but if you want reproducibility, you should disable this feature because the benchmark may select different algorithms each time. Set Diffusers [enable_full_determinism](https://github.com/huggingface/diffusers/blob/142f353e1c638ff1d20bd798402b68f72c1ebbdd/src/diffusers/utils/testing_utils.py#L861) to enable deterministic algorithms.
```py
enable_full_determinism()
```
Now when you run the same pipeline twice, you'll get identical results.
```py
import torch
from diffusers import DDIMScheduler, StableDiffusionPipeline
pipe = StableDiffusionPipeline.from_pretrained("stable-diffusion-v1-5/stable-diffusion-v1-5", use_safetensors=True).to("cuda")
pipe.scheduler = DDIMScheduler.from_config(pipe.scheduler.config)
g = torch.Generator(device="cuda")
prompt = "A bear is playing a guitar on Times Square"
g.manual_seed(0)
result1 = pipe(prompt=prompt, num_inference_steps=50, generator=g, output_type="latent").images
g.manual_seed(0)
result2 = pipe(prompt=prompt, num_inference_steps=50, generator=g, output_type="latent").images
print("L_inf dist =", abs(result1 - result2).max())
"L_inf dist = tensor(0., device='cuda:0')"
```
## Deterministic batch generation
A practical application of creating reproducible pipelines is *deterministic batch generation*. You generate a batch of images and select one image to improve with a more detailed prompt. The main idea is to pass a list of [Generator's](https://pytorch.org/docs/stable/generated/torch.Generator.html) to the pipeline and tie each `Generator` to a seed so you can reuse it.
Let's use the [stable-diffusion-v1-5/stable-diffusion-v1-5](https://huggingface.co/stable-diffusion-v1-5/stable-diffusion-v1-5) checkpoint and generate a batch of images.
```py
import torch
from diffusers import DiffusionPipeline
from diffusers.utils import make_image_grid
pipeline = DiffusionPipeline.from_pretrained(
"stable-diffusion-v1-5/stable-diffusion-v1-5", torch_dtype=torch.float16, use_safetensors=True
)
pipeline = pipeline.to("cuda")
```
Define four different `Generator`s and assign each `Generator` a seed (`0` to `3`). Then generate a batch of images and pick one to iterate on.
> [!WARNING]
> Use a list comprehension that iterates over the batch size specified in `range()` to create a unique `Generator` object for each image in the batch. If you multiply the `Generator` by the batch size integer, it only creates *one* `Generator` object that is used sequentially for each image in the batch.
>
> ```py
> [torch.Generator().manual_seed(seed)] * 4
> ```
```python
generator = [torch.Generator(device="cuda").manual_seed(i) for i in range(4)]
prompt = "Labrador in the style of Vermeer"
images = pipeline(prompt, generator=generator, num_images_per_prompt=4).images[0]
make_image_grid(images, rows=2, cols=2)
```
<div class="flex justify-center">
<img src="https://huggingface.co/datasets/diffusers/diffusers-images-docs/resolve/main/reusabe_seeds.jpg"/>
</div>
Let's improve the first image (you can choose any image you want) which corresponds to the `Generator` with seed `0`. Add some additional text to your prompt and then make sure you reuse the same `Generator` with seed `0`. All the generated images should resemble the first image.
```python
prompt = [prompt + t for t in [", highly realistic", ", artsy", ", trending", ", colorful"]]
generator = [torch.Generator(device="cuda").manual_seed(0) for i in range(4)]
images = pipeline(prompt, generator=generator).images
make_image_grid(images, rows=2, cols=2)
```
<div class="flex justify-center">
<img src="https://huggingface.co/datasets/diffusers/diffusers-images-docs/resolve/main/reusabe_seeds_2.jpg"/>
</div>
<!--Copyright 2024 The HuggingFace Team. All rights reserved.
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
the License. You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on
an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the
specific language governing permissions and limitations under the License.
-->
# Scheduler features
The scheduler is an important component of any diffusion model because it controls the entire denoising (or sampling) process. There are many types of schedulers, some are optimized for speed and some for quality. With Diffusers, you can modify the scheduler configuration to use custom noise schedules, sigmas, and rescale the noise schedule. Changing these parameters can have profound effects on inference quality and speed.
This guide will demonstrate how to use these features to improve inference quality.
> [!TIP]
> Diffusers currently only supports the `timesteps` and `sigmas` parameters for a select list of schedulers and pipelines. Feel free to open a [feature request](https://github.com/huggingface/diffusers/issues/new/choose) if you want to extend these parameters to a scheduler and pipeline that does not currently support it!
## Timestep schedules
The timestep or noise schedule determines the amount of noise at each sampling step. The scheduler uses this to generate an image with the corresponding amount of noise at each step. The timestep schedule is generated from the scheduler's default configuration, but you can customize the scheduler to use new and optimized sampling schedules that aren't in Diffusers yet.
For example, [Align Your Steps (AYS)](https://research.nvidia.com/labs/toronto-ai/AlignYourSteps/) is a method for optimizing a sampling schedule to generate a high-quality image in as little as 10 steps. The optimal [10-step schedule](https://github.com/huggingface/diffusers/blob/a7bf77fc284810483f1e60afe34d1d27ad91ce2e/src/diffusers/schedulers/scheduling_utils.py#L51) for Stable Diffusion XL is:
```py
from diffusers.schedulers import AysSchedules
sampling_schedule = AysSchedules["StableDiffusionXLTimesteps"]
print(sampling_schedule)
"[999, 845, 730, 587, 443, 310, 193, 116, 53, 13]"
```
You can use the AYS sampling schedule in a pipeline by passing it to the `timesteps` parameter.
```py
pipeline = StableDiffusionXLPipeline.from_pretrained(
"SG161222/RealVisXL_V4.0",
torch_dtype=torch.float16,
variant="fp16",
).to("cuda")
pipeline.scheduler = DPMSolverMultistepScheduler.from_config(pipeline.scheduler.config, algorithm_type="sde-dpmsolver++")
prompt = "A cinematic shot of a cute little rabbit wearing a jacket and doing a thumbs up"
generator = torch.Generator(device="cpu").manual_seed(2487854446)
image = pipeline(
prompt=prompt,
negative_prompt="",
generator=generator,
timesteps=sampling_schedule,
).images[0]
```
<div class="flex gap-4">
<div>
<img class="rounded-xl" src="https://huggingface.co/datasets/YiYiXu/testing-images/resolve/main/ays.png"/>
<figcaption class="mt-2 text-center text-sm text-gray-500">AYS timestep schedule 10 steps</figcaption>
</div>
<div>
<img class="rounded-xl" src="https://huggingface.co/datasets/YiYiXu/testing-images/resolve/main/10.png"/>
<figcaption class="mt-2 text-center text-sm text-gray-500">Linearly-spaced timestep schedule 10 steps</figcaption>
</div>
<div>
<img class="rounded-xl" src="https://huggingface.co/datasets/YiYiXu/testing-images/resolve/main/25.png"/>
<figcaption class="mt-2 text-center text-sm text-gray-500">Linearly-spaced timestep schedule 25 steps</figcaption>
</div>
</div>
## Timestep spacing
The way sample steps are selected in the schedule can affect the quality of the generated image, especially with respect to [rescaling the noise schedule](#rescale-noise-schedule), which can enable a model to generate much brighter or darker images. Diffusers provides three timestep spacing methods:
- `leading` creates evenly spaced steps
- `linspace` includes the first and last steps and evenly selects the remaining intermediate steps
- `trailing` only includes the last step and evenly selects the remaining intermediate steps starting from the end
It is recommended to use the `trailing` spacing method because it generates higher quality images with more details when there are fewer sample steps. But the difference in quality is not as obvious for more standard sample step values.
```py
import torch
from diffusers import StableDiffusionXLPipeline, DPMSolverMultistepScheduler
pipeline = StableDiffusionXLPipeline.from_pretrained(
"SG161222/RealVisXL_V4.0",
torch_dtype=torch.float16,
variant="fp16",
).to("cuda")
pipeline.scheduler = DPMSolverMultistepScheduler.from_config(pipeline.scheduler.config, timestep_spacing="trailing")
prompt = "A cinematic shot of a cute little black cat sitting on a pumpkin at night"
generator = torch.Generator(device="cpu").manual_seed(2487854446)
image = pipeline(
prompt=prompt,
negative_prompt="",
generator=generator,
num_inference_steps=5,
).images[0]
image
```
<div class="flex gap-4">
<div>
<img class="rounded-xl" src="https://huggingface.co/datasets/stevhliu/testing-images/resolve/main/trailing_spacing.png"/>
<figcaption class="mt-2 text-center text-sm text-gray-500">trailing spacing after 5 steps</figcaption>
</div>
<div>
<img class="rounded-xl" src="https://huggingface.co/datasets/stevhliu/testing-images/resolve/main/leading_spacing.png"/>
<figcaption class="mt-2 text-center text-sm text-gray-500">leading spacing after 5 steps</figcaption>
</div>
</div>
## Sigmas
The `sigmas` parameter is the amount of noise added at each timestep according to the timestep schedule. Like the `timesteps` parameter, you can customize the `sigmas` parameter to control how much noise is added at each step. When you use a custom `sigmas` value, the `timesteps` are calculated from the custom `sigmas` value and the default scheduler configuration is ignored.
For example, you can manually pass the [sigmas](https://github.com/huggingface/diffusers/blob/6529ee67ec02fcf58d2fd9242164ea002b351d75/src/diffusers/schedulers/scheduling_utils.py#L55) for something like the 10-step AYS schedule from before to the pipeline.
```py
import torch
from diffusers import DiffusionPipeline, EulerDiscreteScheduler
model_id = "stabilityai/stable-diffusion-xl-base-1.0"
pipeline = DiffusionPipeline.from_pretrained(
"stabilityai/stable-diffusion-xl-base-1.0",
torch_dtype=torch.float16,
variant="fp16",
).to("cuda")
pipeline.scheduler = EulerDiscreteScheduler.from_config(pipeline.scheduler.config)
sigmas = [14.615, 6.315, 3.771, 2.181, 1.342, 0.862, 0.555, 0.380, 0.234, 0.113, 0.0]
prompt = "anthropomorphic capybara wearing a suit and working with a computer"
generator = torch.Generator(device='cuda').manual_seed(123)
image = pipeline(
prompt=prompt,
num_inference_steps=10,
sigmas=sigmas,
generator=generator
).images[0]
```
When you take a look at the scheduler's `timesteps` parameter, you'll see that it is the same as the AYS timestep schedule because the `timestep` schedule is calculated from the `sigmas`.
```py
print(f" timesteps: {pipe.scheduler.timesteps}")
"timesteps: tensor([999., 845., 730., 587., 443., 310., 193., 116., 53., 13.], device='cuda:0')"
```
### Karras sigmas
> [!TIP]
> Refer to the scheduler API [overview](../api/schedulers/overview) for a list of schedulers that support Karras sigmas.
>
> Karras sigmas should not be used for models that weren't trained with them. For example, the base Stable Diffusion XL model shouldn't use Karras sigmas but the [DreamShaperXL](https://hf.co/Lykon/dreamshaper-xl-1-0) model can since they are trained with Karras sigmas.
Karras scheduler's use the timestep schedule and sigmas from the [Elucidating the Design Space of Diffusion-Based Generative Models](https://hf.co/papers/2206.00364) paper. This scheduler variant applies a smaller amount of noise per step as it approaches the end of the sampling process compared to other schedulers, and can increase the level of details in the generated image.
Enable Karras sigmas by setting `use_karras_sigmas=True` in the scheduler.
```py
import torch
from diffusers import StableDiffusionXLPipeline, DPMSolverMultistepScheduler
pipeline = StableDiffusionXLPipeline.from_pretrained(
"SG161222/RealVisXL_V4.0",
torch_dtype=torch.float16,
variant="fp16",
).to("cuda")
pipeline.scheduler = DPMSolverMultistepScheduler.from_config(pipeline.scheduler.config, algorithm_type="sde-dpmsolver++", use_karras_sigmas=True)
prompt = "A cinematic shot of a cute little rabbit wearing a jacket and doing a thumbs up"
generator = torch.Generator(device="cpu").manual_seed(2487854446)
image = pipeline(
prompt=prompt,
negative_prompt="",
generator=generator,
).images[0]
```
<div class="flex gap-4">
<div>
<img class="rounded-xl" src="https://huggingface.co/datasets/stevhliu/testing-images/resolve/main/karras_sigmas_true.png"/>
<figcaption class="mt-2 text-center text-sm text-gray-500">Karras sigmas enabled</figcaption>
</div>
<div>
<img class="rounded-xl" src="https://huggingface.co/datasets/stevhliu/testing-images/resolve/main/karras_sigmas_false.png"/>
<figcaption class="mt-2 text-center text-sm text-gray-500">Karras sigmas disabled</figcaption>
</div>
</div>
## Rescale noise schedule
In the [Common Diffusion Noise Schedules and Sample Steps are Flawed](https://hf.co/papers/2305.08891) paper, the authors discovered that common noise schedules allowed some signal to leak into the last timestep. This signal leakage at inference can cause models to only generate images with medium brightness. By enforcing a zero signal-to-noise ratio (SNR) for the timstep schedule and sampling from the last timestep, the model can be improved to generate very bright or dark images.
> [!TIP]
> For inference, you need a model that has been trained with *v_prediction*. To train your own model with *v_prediction*, add the following flag to the [train_text_to_image.py](https://github.com/huggingface/diffusers/blob/main/examples/text_to_image/train_text_to_image.py) or [train_text_to_image_lora.py](https://github.com/huggingface/diffusers/blob/main/examples/text_to_image/train_text_to_image_lora.py) scripts.
>
> ```bash
> --prediction_type="v_prediction"
> ```
For example, load the [ptx0/pseudo-journey-v2](https://hf.co/ptx0/pseudo-journey-v2) checkpoint which was trained with `v_prediction` and the [`DDIMScheduler`]. Configure the following parameters in the [`DDIMScheduler`]:
* `rescale_betas_zero_snr=True` to rescale the noise schedule to zero SNR
* `timestep_spacing="trailing"` to start sampling from the last timestep
Set `guidance_rescale` in the pipeline to prevent over-exposure. A lower value increases brightness but some of the details may appear washed out.
```py
from diffusers import DiffusionPipeline, DDIMScheduler
pipeline = DiffusionPipeline.from_pretrained("ptx0/pseudo-journey-v2", use_safetensors=True)
pipeline.scheduler = DDIMScheduler.from_config(
pipeline.scheduler.config, rescale_betas_zero_snr=True, timestep_spacing="trailing"
)
pipeline.to("cuda")
prompt = "cinematic photo of a snowy mountain at night with the northern lights aurora borealis overhead, 35mm photograph, film, professional, 4k, highly detailed"
generator = torch.Generator(device="cpu").manual_seed(23)
image = pipeline(prompt, guidance_rescale=0.7, generator=generator).images[0]
image
```
<div class="flex gap-4">
<div>
<img class="rounded-xl" src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/diffusers/no-zero-snr.png"/>
<figcaption class="mt-2 text-center text-sm text-gray-500">default Stable Diffusion v2-1 image</figcaption>
</div>
<div>
<img class="rounded-xl" src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/diffusers/zero-snr.png"/>
<figcaption class="mt-2 text-center text-sm text-gray-500">image with zero SNR and trailing timestep spacing enabled</figcaption>
</div>
</div>
<!--Copyright 2024 The HuggingFace Team. All rights reserved.
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
the License. You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on
an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the
specific language governing permissions and limitations under the License.
-->
# Load schedulers and models
[[open-in-colab]]
Diffusion pipelines are a collection of interchangeable schedulers and models that can be mixed and matched to tailor a pipeline to a specific use case. The scheduler encapsulates the entire denoising process such as the number of denoising steps and the algorithm for finding the denoised sample. A scheduler is not parameterized or trained so they don't take very much memory. The model is usually only concerned with the forward pass of going from a noisy input to a less noisy sample.
This guide will show you how to load schedulers and models to customize a pipeline. You'll use the [stable-diffusion-v1-5/stable-diffusion-v1-5](https://hf.co/stable-diffusion-v1-5/stable-diffusion-v1-5) checkpoint throughout this guide, so let's load it first.
```py
import torch
from diffusers import DiffusionPipeline
pipeline = DiffusionPipeline.from_pretrained(
"stable-diffusion-v1-5/stable-diffusion-v1-5", torch_dtype=torch.float16, use_safetensors=True
).to("cuda")
```
You can see what scheduler this pipeline uses with the `pipeline.scheduler` attribute.
```py
pipeline.scheduler
PNDMScheduler {
"_class_name": "PNDMScheduler",
"_diffusers_version": "0.21.4",
"beta_end": 0.012,
"beta_schedule": "scaled_linear",
"beta_start": 0.00085,
"clip_sample": false,
"num_train_timesteps": 1000,
"set_alpha_to_one": false,
"skip_prk_steps": true,
"steps_offset": 1,
"timestep_spacing": "leading",
"trained_betas": null
}
```
## Load a scheduler
Schedulers are defined by a configuration file that can be used by a variety of schedulers. Load a scheduler with the [`SchedulerMixin.from_pretrained`] method, and specify the `subfolder` parameter to load the configuration file into the correct subfolder of the pipeline repository.
For example, to load the [`DDIMScheduler`]:
```py
from diffusers import DDIMScheduler, DiffusionPipeline
ddim = DDIMScheduler.from_pretrained("stable-diffusion-v1-5/stable-diffusion-v1-5", subfolder="scheduler")
```
Then you can pass the newly loaded scheduler to the pipeline.
```python
pipeline = DiffusionPipeline.from_pretrained(
"stable-diffusion-v1-5/stable-diffusion-v1-5", scheduler=ddim, torch_dtype=torch.float16, use_safetensors=True
).to("cuda")
```
## Compare schedulers
Schedulers have their own unique strengths and weaknesses, making it difficult to quantitatively compare which scheduler works best for a pipeline. You typically have to make a trade-off between denoising speed and denoising quality. We recommend trying out different schedulers to find one that works best for your use case. Call the `pipeline.scheduler.compatibles` attribute to see what schedulers are compatible with a pipeline.
Let's compare the [`LMSDiscreteScheduler`], [`EulerDiscreteScheduler`], [`EulerAncestralDiscreteScheduler`], and the [`DPMSolverMultistepScheduler`] on the following prompt and seed.
```py
import torch
from diffusers import DiffusionPipeline
pipeline = DiffusionPipeline.from_pretrained(
"stable-diffusion-v1-5/stable-diffusion-v1-5", torch_dtype=torch.float16, use_safetensors=True
).to("cuda")
prompt = "A photograph of an astronaut riding a horse on Mars, high resolution, high definition."
generator = torch.Generator(device="cuda").manual_seed(8)
```
To change the pipelines scheduler, use the [`~ConfigMixin.from_config`] method to load a different scheduler's `pipeline.scheduler.config` into the pipeline.
<hfoptions id="schedulers">
<hfoption id="LMSDiscreteScheduler">
[`LMSDiscreteScheduler`] typically generates higher quality images than the default scheduler.
```py
from diffusers import LMSDiscreteScheduler
pipeline.scheduler = LMSDiscreteScheduler.from_config(pipeline.scheduler.config)
image = pipeline(prompt, generator=generator).images[0]
image
```
</hfoption>
<hfoption id="EulerDiscreteScheduler">
[`EulerDiscreteScheduler`] can generate higher quality images in just 30 steps.
```py
from diffusers import EulerDiscreteScheduler
pipeline.scheduler = EulerDiscreteScheduler.from_config(pipeline.scheduler.config)
image = pipeline(prompt, generator=generator).images[0]
image
```
</hfoption>
<hfoption id="EulerAncestralDiscreteScheduler">
[`EulerAncestralDiscreteScheduler`] can generate higher quality images in just 30 steps.
```py
from diffusers import EulerAncestralDiscreteScheduler
pipeline.scheduler = EulerAncestralDiscreteScheduler.from_config(pipeline.scheduler.config)
image = pipeline(prompt, generator=generator).images[0]
image
```
</hfoption>
<hfoption id="DPMSolverMultistepScheduler">
[`DPMSolverMultistepScheduler`] provides a balance between speed and quality and can generate higher quality images in just 20 steps.
```py
from diffusers import DPMSolverMultistepScheduler
pipeline.scheduler = DPMSolverMultistepScheduler.from_config(pipeline.scheduler.config)
image = pipeline(prompt, generator=generator).images[0]
image
```
</hfoption>
</hfoptions>
<div class="flex gap-4">
<div>
<img class="rounded-xl" src="https://huggingface.co/datasets/patrickvonplaten/images/resolve/main/diffusers_docs/astronaut_lms.png" />
<figcaption class="mt-2 text-center text-sm text-gray-500">LMSDiscreteScheduler</figcaption>
</div>
<div>
<img class="rounded-xl" src="https://huggingface.co/datasets/patrickvonplaten/images/resolve/main/diffusers_docs/astronaut_euler_discrete.png" />
<figcaption class="mt-2 text-center text-sm text-gray-500">EulerDiscreteScheduler</figcaption>
</div>
</div>
<div class="flex gap-4">
<div>
<img class="rounded-xl" src="https://huggingface.co/datasets/patrickvonplaten/images/resolve/main/diffusers_docs/astronaut_euler_ancestral.png" />
<figcaption class="mt-2 text-center text-sm text-gray-500">EulerAncestralDiscreteScheduler</figcaption>
</div>
<div>
<img class="rounded-xl" src="https://huggingface.co/datasets/patrickvonplaten/images/resolve/main/diffusers_docs/astronaut_dpm.png" />
<figcaption class="mt-2 text-center text-sm text-gray-500">DPMSolverMultistepScheduler</figcaption>
</div>
</div>
Most images look very similar and are comparable in quality. Again, it often comes down to your specific use case so a good approach is to run multiple different schedulers and compare the results.
### Flax schedulers
To compare Flax schedulers, you need to additionally load the scheduler state into the model parameters. For example, let's change the default scheduler in [`FlaxStableDiffusionPipeline`] to use the super fast [`FlaxDPMSolverMultistepScheduler`].
> [!WARNING]
> The [`FlaxLMSDiscreteScheduler`] and [`FlaxDDPMScheduler`] are not compatible with the [`FlaxStableDiffusionPipeline`] yet.
```py
import jax
import numpy as np
from flax.jax_utils import replicate
from flax.training.common_utils import shard
from diffusers import FlaxStableDiffusionPipeline, FlaxDPMSolverMultistepScheduler
scheduler, scheduler_state = FlaxDPMSolverMultistepScheduler.from_pretrained(
"stable-diffusion-v1-5/stable-diffusion-v1-5",
subfolder="scheduler"
)
pipeline, params = FlaxStableDiffusionPipeline.from_pretrained(
"stable-diffusion-v1-5/stable-diffusion-v1-5",
scheduler=scheduler,
variant="bf16",
dtype=jax.numpy.bfloat16,
)
params["scheduler"] = scheduler_state
```
Then you can take advantage of Flax's compatibility with TPUs to generate a number of images in parallel. You'll need to make a copy of the model parameters for each available device and then split the inputs across them to generate your desired number of images.
```py
# Generate 1 image per parallel device (8 on TPUv2-8 or TPUv3-8)
prompt = "A photograph of an astronaut riding a horse on Mars, high resolution, high definition."
num_samples = jax.device_count()
prompt_ids = pipeline.prepare_inputs([prompt] * num_samples)
prng_seed = jax.random.PRNGKey(0)
num_inference_steps = 25
# shard inputs and rng
params = replicate(params)
prng_seed = jax.random.split(prng_seed, jax.device_count())
prompt_ids = shard(prompt_ids)
images = pipeline(prompt_ids, params, prng_seed, num_inference_steps, jit=True).images
images = pipeline.numpy_to_pil(np.asarray(images.reshape((num_samples,) + images.shape[-3:])))
```
## Models
Models are loaded from the [`ModelMixin.from_pretrained`] method, which downloads and caches the latest version of the model weights and configurations. If the latest files are available in the local cache, [`~ModelMixin.from_pretrained`] reuses files in the cache instead of re-downloading them.
Models can be loaded from a subfolder with the `subfolder` argument. For example, the model weights for [stable-diffusion-v1-5/stable-diffusion-v1-5](https://hf.co/stable-diffusion-v1-5/stable-diffusion-v1-5) are stored in the [unet](https://hf.co/stable-diffusion-v1-5/stable-diffusion-v1-5/tree/main/unet) subfolder.
```python
from diffusers import UNet2DConditionModel
unet = UNet2DConditionModel.from_pretrained("stable-diffusion-v1-5/stable-diffusion-v1-5", subfolder="unet", use_safetensors=True)
```
They can also be directly loaded from a [repository](https://huggingface.co/google/ddpm-cifar10-32/tree/main).
```python
from diffusers import UNet2DModel
unet = UNet2DModel.from_pretrained("google/ddpm-cifar10-32", use_safetensors=True)
```
To load and save model variants, specify the `variant` argument in [`ModelMixin.from_pretrained`] and [`ModelMixin.save_pretrained`].
```python
from diffusers import UNet2DConditionModel
unet = UNet2DConditionModel.from_pretrained(
"stable-diffusion-v1-5/stable-diffusion-v1-5", subfolder="unet", variant="non_ema", use_safetensors=True
)
unet.save_pretrained("./local-unet", variant="non_ema")
```
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment