# all arguments are flatten into this file # they can also be splitted into separate files and referenced here # number of iterations to do, can be set to zero for deephf training n_iter: 5 # training and testing systems systems_train: # can also be files that containing system paths - ../system/batch/set.0[0-5]* # support glob - ../system/batch/set.060 - ../system/batch/set.061 - ../system/batch/set.062 systems_test: # if empty, use the last system of training set - ../system/batch/set.063 # directory setting workdir: "." share_folder: "share" # folder that stores all other settings # scf settings scf_input: # can also be specified by a separete file basis: ccpvdz # this is for force training dump_fields: [e_base, e_tot, dm_eig, conv, f_base, f_tot, grad_vx, l_f_delta, l_e_delta] verbose: 1 mol_args: incore_anyway: True scf_args: conv_tol: 1e-6 conv_tol_grad: 1e-2 level_shift: 0.1 diis_space: 20 conv_check: false # pyscf conv_check has bug scf_machine: sub_size: 5 # 5 systems will be in one task, default is 1 group_size: 2 # 2 tasks will be gathered into one group and submitted together ingroup_parallel: 2 # this will set numb_node to 2 in resources dispatcher: context: local batch: slurm remote_profile: null # use lazy local resources: numb_node: 2 # parallel in two nodes time_limit: '24:00:00' cpus_per_task: 8 mem_limit: 8 envs: PYSCF_MAX_MEMORY: 8000 # increase from 4G to 8G sub_res: # resources for each sub task cpus_per_task: 8 python: "python" # use python in path # train settings train_input: # model_args is ignored, since this is used as restart data_args: batch_size: 16 group_batch: 1 extra_label: true conv_filter: true conv_name: conv preprocess_args: preshift: false # restarting model already shifted. Will not recompute shift value prescale: false # same as above prefit_ridge: 1e1 prefit_trainable: false train_args: decay_rate: 0.5 decay_steps: 1000 display_epoch: 100 force_factor: 0.1 n_epoch: 5000 start_lr: 0.0001 train_machine: dispatcher: context: local batch: slurm remote_profile: null # use lazy local resources: time_limit: '24:00:00' cpus_per_task: 4 numb_gpu: 1 mem_limit: 8 python: "python" # use python in path # init settings init_model: false # do not use existing model in share_folder/init/model.pth init_scf: basis: ccpvdz # this is for pure energy training dump_fields: [e_base, e_tot, dm_eig, conv, l_e_delta] verbose: 1 mol_args: incore_anyway: True scf_args: conv_tol: 1e-8 conv_check: false # pyscf conv_check has bug init_train: model_args: # necessary as this is init training hidden_sizes: [200, 200, 200] output_scale: 100 use_resnet: true actv_fn: mygelu data_args: batch_size: 16 group_batch: 1 preprocess_args: preshift: true prescale: false prefit_ridge: 1e1 prefit_trainable: false train_args: decay_rate: 0.96 decay_steps: 500 display_epoch: 100 n_epoch: 50000 start_lr: 0.0003 # other settings cleanup: false strict: true