# Copyright 2024 Bytedance Ltd. and/or its affiliates # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ Utilities to create common models from huggingface """ import os import re import warnings from dataclasses import dataclass from typing import Optional import numpy as np import torch from torch import nn from transformers import ( AutoConfig, AutoModelForCausalLM, GenerationConfig, MistralForSequenceClassification, PretrainedConfig, PreTrainedModel, ) from transformers.modeling_outputs import CausalLMOutputWithPast from verl.models.registry import ModelRegistry from verl.utils.import_utils import is_trl_available class LambdaLayer(nn.Module): def __init__(self, fn): super().__init__() self.fn = fn def forward(self, *args, **kwargs): return self.fn(*args, **kwargs) def squeeze(x): return torch.squeeze(x, dim=-1) def update_model_config(module_config, override_config_kwargs): """Update the module config with the override_config_kwargs. Args: module_config: The module config from Huggingface Transformers. override_config_kwargs: The kwargs to override the module config. """ for key, val in override_config_kwargs.items(): if isinstance(val, dict): update_model_config(getattr(module_config, key), val) else: setattr(module_config, key, val) def get_huggingface_actor_config(model_name: str, override_config_kwargs=None, trust_remote_code=False) -> dict: if override_config_kwargs is None: override_config_kwargs = {} assert isinstance(override_config_kwargs, dict), ( f"override_config_kwargs must be a dict, got {type(override_config_kwargs)}" ) module_config = AutoConfig.from_pretrained(model_name, trust_remote_code=trust_remote_code) update_model_config(module_config, override_config_kwargs) return module_config def get_generation_config( model: str, trust_remote_code: bool = False, ) -> Optional[GenerationConfig]: try: return GenerationConfig.from_pretrained(model) except OSError: # Not found try: config = get_huggingface_actor_config( model, trust_remote_code=trust_remote_code, ) return GenerationConfig.from_model_config(config) except OSError: # Not found return None def create_huggingface_actor(model_name: str, override_config_kwargs=None, automodel_kwargs=None) -> nn.Module: """ Args: model_name: override_config_kwargs: Returns: """ if override_config_kwargs is None: override_config_kwargs = {} if automodel_kwargs is None: automodel_kwargs = {} assert isinstance(override_config_kwargs, dict), ( f"override_config_kwargs must be a dict, got {type(override_config_kwargs)}" ) module_config = get_huggingface_actor_config( model_name, override_config_kwargs, trust_remote_code=automodel_kwargs.get("trust_remote_code", False) ) module: nn.Module = AutoModelForCausalLM.from_config(module_config, **automodel_kwargs) return module def create_huggingface_critic(model_name: str, override_config_kwargs=None, automodel_kwargs=None) -> nn.Module: """ Args: model_name: override_config_kwargs: Returns: """ critic_module: nn.Module = create_huggingface_actor( model_name, override_config_kwargs=override_config_kwargs, automodel_kwargs=automodel_kwargs ) if automodel_kwargs is None: automodel_kwargs = {} torch_dtype = automodel_kwargs.get("torch_dtype", torch.float32) critic_module.lm_head = nn.Sequential( nn.Linear(critic_module.config.hidden_size, 1, dtype=torch_dtype), LambdaLayer(fn=squeeze) ) return critic_module def get_model_size(model: nn.Module, scale="auto"): n_params = sum(p.numel() for p in model.parameters()) if scale == "auto": if n_params > 1e9: scale = "B" elif n_params > 1e6: scale = "M" elif n_params > 1e3: scale = "K" else: scale = "" if scale == "B": n_params = n_params / 1e9 elif scale == "M": n_params = n_params / 1e6 elif scale == "K": n_params = n_params / 1e3 elif scale == "": pass else: raise NotImplementedError(f"Unknown scale {scale}") return n_params, scale def print_model_size(model: nn.Module, name: str = None): n_params, scale = get_model_size(model, scale="auto") if name is None: name = model.__class__.__name__ print(f"{name} contains {n_params:.2f}{scale} parameters") def create_random_mask( input_ids: torch.Tensor, max_ratio_of_valid_token: float, max_ratio_of_left_padding: float, min_ratio_of_valid_token: float = 0, ): """Create a random mask given input_ids. Support left padding and right padding. Process: - Sample valid token length - Sample left_padding length - Generate padding Args: input_ids: shape (batch_size, seq_len) Returns: """ assert max_ratio_of_valid_token > 0 and max_ratio_of_valid_token <= 1.0 assert max_ratio_of_left_padding >= 0 and max_ratio_of_left_padding < 1.0 assert min_ratio_of_valid_token <= max_ratio_of_valid_token batch_size, sequence_length = input_ids.shape max_num_valid_tokens = int(sequence_length * max_ratio_of_valid_token) min_num_valid_tokens = max(1, int(sequence_length * min_ratio_of_valid_token)) max_left_padding = int(sequence_length * max_ratio_of_left_padding) assert max_num_valid_tokens + max_left_padding <= sequence_length assert max_num_valid_tokens > 0 and max_ratio_of_valid_token <= sequence_length masks = torch.ones_like(input_ids, dtype=torch.int64) # TODO: we can make this faster for i in range(batch_size): num_left_padding = np.random.randint(low=0, high=max_left_padding + 1, dtype=np.int64) num_valid = np.random.randint(low=min_num_valid_tokens, high=max_num_valid_tokens + 1, dtype=np.int64) for index in range(num_left_padding): masks[i, index] = 0 for index in range(num_left_padding + num_valid, sequence_length): masks[i, index] = 0 return masks def compute_position_id_with_mask(mask): return torch.clip(torch.cumsum(mask, dim=-1) - 1, min=0, max=None) def convert_weight_keys(state_dict: dict[str, torch.Tensor], model: PreTrainedModel): # convert state dict keys: https://github.com/huggingface/transformers/pull/38385 if not hasattr(model, "_checkpoint_conversion_mapping"): return state_dict reverse_key_mapping = {v: k for k, v in model._checkpoint_conversion_mapping.items()} original_weights = {} for key, value in state_dict.items(): for pattern, replacement in reverse_key_mapping.items(): replacement = replacement.lstrip("^") # strip off un-needed chars and patterns replacement = re.sub(r"\(.*\)", "", replacement) key, n_replace = re.subn(pattern, replacement, key) # Early exit of the loop if n_replace > 0: break original_weights[key] = value return original_weights def check_exclude_modules(config, key: str) -> bool: """ A helper method to check if the passed module's key name matches any of the exclude modules in the adapter_config. Adapted from https://github.com/huggingface/peft/blob/main/src/peft/tuners/tuners_utils.py Args: config (`LoraConfig` | `LycorisConfig`): A config to match exclude modules from key (`str`): A key to search any matches in config Returns: True of match object if key matches any exclude modules from config, False if no match found """ if hasattr(config, "exclude_modules") and config.exclude_modules: if isinstance(config.exclude_modules, str): if re.fullmatch(config.exclude_modules, key): return True elif key in config.exclude_modules: return True elif any(key.endswith(f".{exclude_key}") for exclude_key in config.exclude_modules): return True return False def check_target_modules(config, key: str) -> bool: """ A helper method to check if the passed module's key name matches any of the target modules in the adapter_config. Adapted from https://github.com/huggingface/peft/blob/main/src/peft/tuners/tuners_utils.py Args: config (`LoraConfig` | `LycorisConfig`): A config to match target modules from key (`str`): A key to search any matches in config Returns: True of match object if key matches any target modules from config, False if no match found """ if isinstance(config.target_modules, str): target_module_found = re.fullmatch(config.target_modules, key) elif key in config.target_modules: # this module is specified directly in target_modules target_module_found = True else: target_module_found = any(key.endswith(f".{target_key}") for target_key in config.target_modules) layer_indexes = getattr(config, "layers_to_transform", None) layers_pattern = getattr(config, "layers_pattern", None) is_using_layer_indexes = layer_indexes is not None and ( len(layer_indexes) != 0 if isinstance(layer_indexes, list) else True ) if is_using_layer_indexes and target_module_found: layer_index = None # TODO: It's still unclear how empty layers_pattern (None, [], or "") should behave # For now, empty layers_pattern means any layer pattern is ok if layers_pattern is None or len(layers_pattern) == 0: layer_index = re.match(r".*\.[^.]*\.(\d+)\.", key) else: layers_pattern = [layers_pattern] if isinstance(layers_pattern, str) else layers_pattern for pattern in layers_pattern: layer_index = re.match(rf".*\.{pattern}\.(\d+)\.", key) if layer_index is not None: break if layer_index is None: target_module_found = False else: layer_index = int(layer_index.group(1)) if isinstance(layer_indexes, int): target_module_found = layer_index == layer_indexes else: target_module_found = layer_index in layer_indexes return target_module_found def normalize_model_name(name, pp_rank, vpp_rank, transformer_config, layer_name="layers"): """ Transform the model name in each model_chunk in each pp stage into the name in inference engine """ from verl.utils.megatron_utils import get_transformer_layer_offset layer_offset = get_transformer_layer_offset(pp_rank, vpp_rank, transformer_config) if layer_name in name: # belong to an intermediate layer split_name = name.split(".") # find the num next to split_name for i, name in enumerate(split_name): if name == layer_name: break layer_num_idx = i + 1 # check the name assert len(split_name) >= layer_num_idx + 1, f"split_name = {split_name}" assert split_name[layer_num_idx].isdigit(), f"split_name = {split_name}" # increment layer_num_idx by layer_offset split_name[layer_num_idx] = str(int(split_name[layer_num_idx]) + layer_offset) name = ".".join(split_name) # weight name in inference_tp_model return name def normalize_pp_vpp_params(params, num_hidden_layers, layer_name="layers"): """ Normalize the pp vpp params into a complete named parameters. This is useful when gather parameters from pp ranks and passed to a model without pp params: Iterable[List[Dict[str, param]]] params contains a list of pp, with a list of vpp named_parameters in each vpp chunk. output: Dict[str, param] """ pp_size = len(params) for pp_rank in range(len(params)): vpp_size = len(params[pp_rank]) for vpp_rank in range(vpp_size): for name, param in params[pp_rank][vpp_rank].items(): normalized_name = normalize_model_name( name, pp_rank, vpp_rank, pp_size, vpp_size, num_hidden_layers, layer_name=layer_name ) yield normalized_name, param def get_parallel_model_from_config( config, megatron_config, pre_process=None, post_process=None, share_embeddings_and_output_weights=False, value=False ): from megatron.core import ModelParallelConfig assert isinstance(megatron_config, ModelParallelConfig) model_class = _get_parallel_model_architecture_from_config(config, value) model = model_class( config, megatron_config, pre_process=pre_process, post_process=post_process, share_embeddings_and_output_weights=share_embeddings_and_output_weights, ) return model def _get_parallel_model_architecture_from_config(config: PretrainedConfig, value=False) -> type[nn.Module]: architectures = getattr(config, "architectures", []) for arch in architectures: model_cls = ModelRegistry.load_model_cls(arch, value) print("after load model cls") if model_cls is not None: return model_cls raise ValueError( f"Model architectures {architectures} are not supported for now. Supported architectures: " f"{ModelRegistry.get_supported_archs()}" ) def _load_hf_model(config, model_config, is_value_model, local_cache_path): """Helper function containing the loading hf model logic""" from accelerate import init_empty_weights from megatron.core import parallel_state as mpu from verl.models.mcore.saver import _megatron_calc_global_rank assert hasattr(model_config, "architectures"), "architectures cannot be empty when load weight!" architectures = getattr(model_config, "architectures", []) local_cache_path = os.path.expanduser(local_cache_path) if config.model.path.startswith("hdfs:"): from verl.utils.fs import copy_to_local print(f"start download from {config.model.path}") local_model_path = copy_to_local( src=config.model.path, cache_dir=local_cache_path, use_shm=config.model.get("use_shm", False) ) print("finish download") else: local_model_path = config.model.path print(f"load from local dir {local_model_path}") src_rank = _megatron_calc_global_rank(tp_rank=0, dp_rank=0, pp_rank=0, cp_rank=mpu.get_context_parallel_rank()) cpu_init_weights = lambda: torch.device("cpu") init_context = init_empty_weights if torch.distributed.get_rank() != src_rank else cpu_init_weights with init_context(), warnings.catch_warnings(): warnings.simplefilter("ignore") # TODO: to find a better way to load mistral7b-rm lm_head if "mistral7b-rm" in config.model.path: model = MistralForSequenceClassification.from_pretrained( local_model_path, torch_dtype="auto", # device_map="auto", # disable auto device_map, the HF weight is only loaded to CPU in src_rank # low_cpu_mem_usage=True ) # use score head instead of lm_head state_dict = model.state_dict() state_dict["lm_head.weight"] = state_dict["score.weight"] state_dict["model.embed_tokens.weight"] = state_dict["model.embed_tokens.weight"][ :32000 ] # workaround, 32001 -> 32000 is_value_model = True else: model = AutoModelForCausalLM.from_pretrained( local_model_path, torch_dtype="auto", # device_map="auto", # disable auto device_map, the HF weight is only loaded to CPU in src_rank # low_cpu_mem_usage=True ) state_dict = model.state_dict() return architectures, model, state_dict, is_value_model def get_hf_model_path(config, local_cache_path="~/.cache/verl/rlhf"): local_cache_path = os.path.expanduser(local_cache_path) if config.model.path.startswith("hdfs:"): from verl.utils.fs import copy_to_local local_model_path = copy_to_local( src=config.model.path, cache_dir=local_cache_path, use_shm=config.model.get("use_shm", False) ) else: local_model_path = config.model.path return local_model_path def load_megatron_model_weights( config, model_config, parallel_model, params_dtype, is_value_model=False, local_cache_path="~/.cache/verl/rlhf" ): """Load weights for verl customized model.""" architectures, model, state_dict, is_value_model = _load_hf_model( config, model_config, is_value_model, local_cache_path ) from verl.models.weight_loader_registry import get_weight_loader print(f"before weight loader: architectures = {architectures}...") for arch in architectures: print(f"call weight loader arch = {arch}, model config = {model.config}") weight_loader = get_weight_loader(arch) weight_loader( state_dict=state_dict, wrapped_models=parallel_model, config=model.config, params_dtype=params_dtype, is_value_model=is_value_model, tie_word_embeddings=model_config.tie_word_embeddings, ) return model.config def load_megatron_gptmodel_weights( config, model_config, parallel_model, params_dtype, is_value_model=False, local_cache_path="~/.cache/verl/rlhf" ): """Load weights for mcore GPT model.""" _, model, state_dict, is_value_model = _load_hf_model(config, model_config, is_value_model, local_cache_path) from verl.models.mcore.loader import load_state_dict_to_megatron_gptmodel load_state_dict_to_megatron_gptmodel( state_dict=state_dict, wrapped_models=parallel_model, config=model.config, params_dtype=params_dtype, is_value_model=is_value_model, ) del state_dict, model # pad input_ids_rmpad, cu_seqlens and max_seqlen_in_batch to be divisible by tp def pad_packed_inputs(unpad_tokens: torch.Tensor, cu_seqlens, max_seqlen_in_batch, size): """pad the tokens such that the total length is a multiple of size. This function is useful when applying sequence parallel and context parallel Args: unpad_tokens: (total_nnz, ...). Tokens after removing padding cu_seqlens: (total_nnz + 1,) max_seqlen_in_batch: int Returns: """ F = nn.functional total_nnz = unpad_tokens.shape[0] pad_size = 0 if total_nnz % size == 0 else size - total_nnz % size # we assume adding a new data in the batch with seqlen pad_size if pad_size > 0: if unpad_tokens.ndim == 1: unpad_tokens = F.pad(unpad_tokens, (0, pad_size)) elif unpad_tokens.ndim == 2: unpad_tokens = F.pad(unpad_tokens, (0, 0, 0, pad_size)) else: raise NotImplementedError(f"Padding dim {unpad_tokens.ndim()} is not supported") cu_seqlens = F.pad(cu_seqlens, (0, 1), value=pad_size + cu_seqlens[-1]) max_seqlen_in_batch = max(max_seqlen_in_batch, pad_size) return unpad_tokens, cu_seqlens, max_seqlen_in_batch def load_mcore_dist_weights(parallel_model, dist_weight_path, is_value_model=False): from megatron.core import dist_checkpointing from megatron.core.dist_checkpointing.serialization import StrictHandling from verl.utils.megatron_utils import unwrap_model # strict = StrictHandling.IGNORE_ALL if is_value_model else StrictHandling.ASSUME_OK_UNEXPECTED strict = StrictHandling.ASSUME_OK_UNEXPECTED for model in parallel_model: ssd = unwrap_model(model).sharded_state_dict() if is_value_model: for k in list(ssd.keys()): if "output_layer" in k: ssd.pop(k) dist_checkpointing.load(ssd, dist_weight_path, strict=strict) return def get_parallel_gptmodel_from_config( tfconfig, hf_config, pre_process=None, post_process=None, share_embeddings_and_output_weights=False, value=False ): from megatron.core.models.gpt.gpt_layer_specs import get_gpt_decoder_block_spec from megatron.core.models.gpt.gpt_model import GPTModel use_te = True assert tfconfig.normalization == "RMSNorm", "only RMSNorm is supported for now" transformer_layer_spec = get_gpt_decoder_block_spec(tfconfig, use_transformer_engine=use_te) rope_scaling_args = {} if hf_config.rope_scaling is not None: assert hf_config.rope_scaling["type"] == "linear", "only linear scaling is supported for now" rope_scaling_args["seq_len_interpolation_factor"] = hf_config.rope_scaling["factor"] parallel_model = GPTModel( config=tfconfig, transformer_layer_spec=transformer_layer_spec, vocab_size=hf_config.vocab_size, max_sequence_length=hf_config.max_position_embeddings, pre_process=pre_process, post_process=post_process, share_embeddings_and_output_weights=share_embeddings_and_output_weights, position_embedding_type="rope", rotary_base=hf_config.rope_theta, **rope_scaling_args, ) # # for layer in parallel_model.decoder.layers: # layer.self_attention.core_attention.flash_attention.softmax_scale = None if post_process and value: from verl.models.llama.megatron.layers.parallel_linear import LinearForLastLayer parallel_model.output_layer = LinearForLastLayer( input_size=tfconfig.hidden_size, output_size=1, config=tfconfig ) return parallel_model def patch_valuehead_model(model) -> None: from types import MethodType from transformers import PreTrainedModel from trl import AutoModelForCausalLMWithValueHead def tie_weights(self: "AutoModelForCausalLMWithValueHead") -> None: if isinstance(self.pretrained_model, PreTrainedModel): self.pretrained_model.tie_weights() def get_input_embeddings(self: "AutoModelForCausalLMWithValueHead") -> torch.nn.Module: if isinstance(self.pretrained_model, PreTrainedModel): return self.pretrained_model.get_input_embeddings() def get_output_embeddings(self: "AutoModelForCausalLMWithValueHead") -> torch.nn.Module: if isinstance(self.pretrained_model, PreTrainedModel): return self.pretrained_model.get_output_embeddings() def can_generate(self): return False ignore_modules = [name for name, _ in model.named_parameters() if "pretrained_model" in name] model._keys_to_ignore_on_save = ignore_modules model.tie_weights = MethodType(tie_weights, model) model.get_input_embeddings = MethodType(get_input_embeddings, model) model.get_output_embeddings = MethodType(get_output_embeddings, model) model.can_generate = MethodType(can_generate, model) model._no_split_modules = getattr(model.pretrained_model, "_no_split_modules", []) def load_valuehead_model(local_path, torch_dtype, model_config, trust_remote_code): from transformers import AutoModelForCausalLM, AutoModelForTokenClassification, AutoModelForVision2Seq try: model = AutoModelForTokenClassification.from_pretrained( pretrained_model_name_or_path=local_path, torch_dtype=torch_dtype, config=model_config, attn_implementation="flash_attention_2", trust_remote_code=trust_remote_code, ) return model except BaseException as e: if not is_trl_available(): raise RuntimeError( f"model({local_path}) is not a value head model, please install trl to make it valid" ) from e assert is_trl_available() from trl import AutoModelForCausalLMWithValueHead if type(model_config) in AutoModelForVision2Seq._model_mapping.keys(): module_class = AutoModelForVision2Seq else: module_class = AutoModelForCausalLM ori_model = module_class.from_pretrained( pretrained_model_name_or_path=local_path, torch_dtype=torch_dtype, config=model_config, attn_implementation="flash_attention_2", trust_remote_code=trust_remote_code, ) model = AutoModelForCausalLMWithValueHead.from_pretrained(ori_model) patch_valuehead_model(model) return model @dataclass class CausalLMOutputForPPO(CausalLMOutputWithPast): log_probs: Optional[torch.FloatTensor] = None entropy: Optional[torch.FloatTensor] = None