# Copyright 2025 Bytedance Ltd. and/or its affiliates # Copyright (c) 2022-2025, NVIDIA CORPORATION & AFFILIATES. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Functionality for CPU offloading of tensors saved for backward pass.""" from __future__ import annotations import functools import logging import os from typing import Any, Optional import torch from torch.distributed.fsdp import FullyShardedDataParallel as FSDP from verl.utils.device import get_torch_device from verl.utils.fsdp_utils import FSDPModule as FSDP2 logger = logging.getLogger(__file__) logger.setLevel(os.getenv("VERL_LOGGING_LEVEL", "WARN")) def _get_unique_tensor_key(tensor): key = (tensor.untyped_storage().data_ptr() + tensor.storage_offset(), tensor.dtype) return key class FSDPParameterFilter: def __init__(self): self.model_parameters_storage = set() def __call__(self, tensor): return tensor.untyped_storage().data_ptr() not in self.model_parameters_storage def update_model_parameters(self, model): new_storage = set() for p in model.parameters(): new_storage.add(p.data.untyped_storage().data_ptr()) self.model_parameters_storage = new_storage class CpuOffloadHookWithOffloadHandler: """Context-manager that offloads/recovers tensors through an offload hander. The hook just offloads/recovers the tensor object to the handler through `tensor_push` and `tensor_pop` interface. How the offload-handler manages the offloading, recovering or prefetching timing is transparent to this hook. """ def __init__( self, offload_handler: OffloadHandler, handler_extra_kwargs: Optional[dict[str, Any]] = None, ) -> None: if handler_extra_kwargs is None: handler_extra_kwargs = {} self.offload_handler: OffloadHandler = offload_handler self.handler_extra_kwargs: dict[str, Any] = handler_extra_kwargs self.inside_context = False def __enter__(self): self.inside_context = True torch._C._autograd._push_saved_tensors_default_hooks(self.on_save_for_backward, self.on_get_saved_tensor) def __exit__(self, *args: Any): self.inside_context = False torch._C._autograd._pop_saved_tensors_default_hooks() def on_save_for_backward(self, tensor: torch.Tensor) -> Any: retrieve_identifier = self.offload_handler.tensor_push(tensor, **self.handler_extra_kwargs) return retrieve_identifier def on_get_saved_tensor(self, saved_state: Any) -> torch.Tensor: tensor = self.offload_handler.tensor_pop(saved_state, **self.handler_extra_kwargs) return tensor class OffloadHandler: """A base class for CPU offload-handler.""" def __init__(self) -> None: pass def tensor_push(self, tensor: torch.Tensor, **kwargs) -> Any: """Tensor push.""" raise NotImplementedError( "`tensor_push is not implented in OffloadHandler class. Inherit this class and implement your " "custom tensor_push." ) def tensor_pop(self, tensor_tag: Any, **kwargs): """Tensor pop.""" raise NotImplementedError( "`tensor_pop is not implented in OffloadHandler class. Inherit this class and implement your " "custom tensor_pop." ) class GroupCommitFunction(torch.autograd.Function): """this is a dummy op with output identical to input. However, it is necessary for marking a timepoint for offload handler to accomplish all synchronizations. Implementing it as a function is necessary because we need to actions in both forward and backward. """ @staticmethod def forward(ctx, tensor, cpu_offload_handler): # pylint: disable=missing-function-docstring cpu_offload_handler.on_group_commit_forward() ctx.cpu_offload_handler = cpu_offload_handler # return the identical tensor return tensor @staticmethod def backward(ctx, grad_output): # pylint: disable=missing-function-docstring cpu_offload_handler = ctx.cpu_offload_handler cpu_offload_handler.on_group_commit_backward() return grad_output, None group_prefetch_offload_commit = GroupCommitFunction.apply class SynchronizedGroupOffloadHandler(OffloadHandler): """Offload Handler that offloads/reloads in a synchronized way. The device-to-host and host-to-device copying happen in the same stream as the computation kernels, thus the copying will block computation. """ def __init__(self, num_offload_group, tensor_need_offloading_checker=(lambda _: True)) -> None: super().__init__() self.num_offload_group = num_offload_group self.tensor_need_offloading_checker = tensor_need_offloading_checker self.groupid_reset() def groupid_reset(self): """Groupid reset.""" # Data structures to label saved tensors and book-keep their cpu copies. # Currently, on push, create a new cpu tensor and copies; on pop, copies # the tensor back to gpu and deletes the cpu tensor. # These will increment whenever `group_commit()` is invoked self.current_group, self.tensor_count_current_group = (0, 0) self.torch_tensor_count = 0 self.tensor_tag_to_state = {} def on_group_commit_forward(self): """On group commit forward.""" # finishing up with updating current group and tensor count self.current_group += 1 # increment self.tensor_count_current_group = 0 # reset def on_group_commit_backward(self): """On group commit backward.""" self.current_group -= 1 assert self.current_group >= 0 @staticmethod def offload(src_tensor, pin_memory=True): """Offload.""" cpu_backup = torch.empty( src_tensor.size(), dtype=src_tensor.dtype, layout=src_tensor.layout, device="cpu", pin_memory=pin_memory, ) cpu_backup.copy_(src_tensor, non_blocking=True) state = (src_tensor.device, cpu_backup) return state @staticmethod def reload(state, non_blocking=None): """Reload.""" dev, cpu_backup = state if non_blocking is None: non_blocking = cpu_backup.is_pinned() return cpu_backup.to(dev, non_blocking=non_blocking) def tensor_push(self, tensor: torch.Tensor, **kwargs): """Tensor push.""" # obtain a unique tensor tag tensor_tag = (self.current_group, self.tensor_count_current_group) self.tensor_count_current_group += 1 assert tensor_tag not in self.tensor_tag_to_state if self.current_group < self.num_offload_group and self.tensor_need_offloading_checker(tensor): state = SynchronizedGroupOffloadHandler.offload(tensor) self.tensor_tag_to_state[tensor_tag] = state else: # will be offloaded together after group commit self.tensor_tag_to_state[tensor_tag] = tensor return tensor_tag def tensor_pop(self, tensor_tag, **kwargs): """Tensor pop.""" assert tensor_tag in self.tensor_tag_to_state state = self.tensor_tag_to_state.pop(tensor_tag) if isinstance(state, tuple): tensor = SynchronizedGroupOffloadHandler.reload(state) else: tensor = state return tensor class AsyncDoubleBufferGroupOffloadHandler(SynchronizedGroupOffloadHandler): """Compared to synchronize, this uses more memory because of the buffer but achieves better performance due to the overlapping. D2h and h2d copying are completely hidden behind computation if computation time of a layer is longer than host-device communication time. Bulk offloading with delay and bulk reloading with prefetch are implemented.""" def __init__( self, num_offload_group, # must be <= actual number of groups (number of commits) num_model_group, tensor_need_offloading_checker=(lambda t: True), ) -> None: super().__init__( num_offload_group=num_offload_group, tensor_need_offloading_checker=tensor_need_offloading_checker, ) # Number of layers in the model self.num_layers = num_model_group # Data Structure to maintain reference to activation tensors self.tensor_tag_to_buf = {} # Tracking the number of layers offloaded self.offloaded_group_count = 0 # Core data structure that decides the window for offloading self.layer_window_map = {} self.group_offload_mapping = {} # Logic to make offloading load balance across computation # for optimal CPU/GPU interconnect usage constant = 0 for i in range(self.num_offload_group): self.layer_window_map[i] = ((self.num_layers // self.num_offload_group) * (i + 1)) - 1 if i < (self.num_layers % self.num_offload_group): self.layer_window_map[i] += i + 1 constant = i + 1 else: self.layer_window_map[i] += constant # allocate streams and events for synchronization self.d2h_stream = get_torch_device().Stream() self.h2d_stream = get_torch_device().Stream() def tensor_push(self, tensor: torch.Tensor, **kwargs) -> Any: torch_stray_tensor = isinstance( tensor, torch._subclasses.fake_tensor.FakeTensor | torch._subclasses.functional_tensor.FunctionalTensor, ) need_offload = not torch_stray_tensor need_offload = need_offload and self.tensor_need_offloading_checker(tensor) if need_offload: # obtain a unique tensor tag tensor_tag = (self.current_group, self.tensor_count_current_group) self.tensor_count_current_group += 1 assert tensor_tag not in self.tensor_tag_to_state self.tensor_tag_to_state[tensor_tag] = tensor if self.current_group < self.num_offload_group: self.tensor_tag_to_buf[tensor_tag] = tensor else: tensor_tag = tensor return tensor_tag def tensor_pop(self, tensor_tag, **kwargs): """Tensor pop.""" if isinstance(tensor_tag, torch.Tensor): return tensor_tag assert tensor_tag in self.tensor_tag_to_state tensor = self.tensor_tag_to_state.pop(tensor_tag) self.tensor_tag_to_buf.pop(tensor_tag, None) # the tensor should have been copied back in on_group_commit_backward() # which invokes bulk_reload_group. assert not isinstance(tensor, tuple) return tensor def bulk_offload_group(self, group_to_offload): """Bulk offload group.""" offload_mapping = {} offload_size = 0 with get_torch_device().stream(self.d2h_stream): for tensor_tag, state in self.tensor_tag_to_state.items(): group_id, _ = tensor_tag if group_id == group_to_offload: assert not isinstance(state, tuple) key = _get_unique_tensor_key(state) if key not in offload_mapping: offload_mapping[key] = state # if offload, return the reference to cpu copy self.tensor_tag_to_state[tensor_tag] = (key, state.shape) for key, tensor in offload_mapping.items(): state = SynchronizedGroupOffloadHandler.offload(tensor) offload_size += tensor.numel() * tensor.element_size() offload_mapping[key] = state self.group_offload_mapping[group_to_offload] = offload_mapping def synchronize_on_group_commit_forward(self, current_group): """Synchronize on group commit forward.""" # For the first group, kickstart the offload after we have # the first compute completion if current_group == 0: self.d2h_stream.wait_stream(get_torch_device().current_stream()) self.bulk_offload_group(current_group) # Window map data structure helps us synchronize based on number # of layers offloaded if self.layer_window_map[self.offloaded_group_count] == current_group: # Stream synchronization both ways self.d2h_stream.wait_stream(get_torch_device().current_stream()) get_torch_device().current_stream().wait_stream(self.d2h_stream) # Time to free the activation memory after usage for tensor_tag, _ in self.tensor_tag_to_buf.items(): if tensor_tag[0] == self.offloaded_group_count: self.tensor_tag_to_buf[tensor_tag] = None # Time to offload the next group if self.offloaded_group_count < (self.num_offload_group - 1): self.bulk_offload_group(self.offloaded_group_count + 1) # Increment the offload group count to keep track self.offloaded_group_count += 1 def on_group_commit_forward(self): """This function will cause host device synchronization""" # handle synchronization events self.synchronize_on_group_commit_forward(self.current_group) super().on_group_commit_forward() @torch.no_grad def bulk_reload_group(self, group_to_reload): """Bulk reload group.""" assert group_to_reload < self.num_offload_group with get_torch_device().stream(self.h2d_stream): # move back tensors offload_mapping = self.group_offload_mapping.pop(group_to_reload) assert offload_mapping is not None for key, state in offload_mapping.items(): offload_mapping[key] = SynchronizedGroupOffloadHandler.reload(state) for tensor_label, state in self.tensor_tag_to_state.items(): group_id, _ = tensor_label if group_id == group_to_reload and not isinstance(state, torch.Tensor): assert isinstance(state, tuple), f"{group_id} {state}" key, shape = state recovered_tensor = offload_mapping[key].view(shape) self.tensor_tag_to_state[tensor_label] = recovered_tensor def on_group_commit_backward(self): # first decrement the current group. # after last commit in forward, the group will +1; in backward it -1. # Finally it should be decremented to 0. self.current_group -= 1 assert self.current_group >= 0 # Layer window data structure helps us to reload at right times if self.layer_window_map[self.offloaded_group_count - 1] == self.current_group: # Stream synchronization both ways self.h2d_stream.wait_stream(get_torch_device().current_stream()) get_torch_device().current_stream().wait_stream(self.h2d_stream) # Time to reload the next group self.bulk_reload_group(self.offloaded_group_count - 1) # Decrease the offloading group counter self.offloaded_group_count -= 1 if self.offloaded_group_count > 1 else 0 # Last group computation needs to wait till all the reloads complete if self.current_group == 0: get_torch_device().current_stream().wait_stream(self.h2d_stream) self.offloaded_group_count = 0 def get_activation_offload_context( num_layers: int = 1, model_layers: int = 1, tensor_need_offloading_checker=(lambda t: True) ): cpu_offload_handler = AsyncDoubleBufferGroupOffloadHandler( num_offload_group=num_layers, num_model_group=model_layers, tensor_need_offloading_checker=tensor_need_offloading_checker, ) def group_prefetch_offload_commit_async(tensor): return group_prefetch_offload_commit(tensor, cpu_offload_handler) return ( CpuOffloadHookWithOffloadHandler(offload_handler=cpu_offload_handler), group_prefetch_offload_commit_async, ) class ActivationHandler: def __init__(self, offload_ctx, sync_func, tensor_filter, enable_ckpt): self._offload_ctx = offload_ctx self._sync_func = sync_func self._enable_ckpt = enable_ckpt self._tensor_filter = tensor_filter if enable_ckpt: self.checkpoint_fn = functools.partial( torch.utils.checkpoint.checkpoint, use_reentrant=True, ) def pre_forward(self, module): if module.training: self._offload_ctx.__enter__() self._tensor_filter.update_model_parameters(module) def post_forward(self, module): if module.training: self._offload_ctx.__exit__(None, None, None) def _pack_kwargs(self, *args, **kwargs): kwarg_keys = [] flat_args = list(args) for k, v in kwargs.items(): kwarg_keys.append(k) flat_args.append(v) return tuple(flat_args), tuple(kwarg_keys) def _unpack_kwargs(self, flat_args, kwarg_keys): assert len(kwarg_keys) <= len(flat_args), f"too many keys {len(kwarg_keys)} vs. {len(flat_args)}" if len(kwarg_keys) == 0: return flat_args, {} args = flat_args[: -len(kwarg_keys)] kwargs = dict(zip(kwarg_keys, flat_args[-len(kwarg_keys) :], strict=True)) return args, kwargs def _ckpt_forward(self, forward_method, *args, **kwargs): flat_args, kwarg_keys = self._pack_kwargs(*args, **kwargs) def my_function(*inputs): # unpack back into args and kwargs nonlocal forward_method, kwarg_keys unpacked_args, unpacked_kwargs = self._unpack_kwargs(inputs, kwarg_keys) # run original module return forward_method(*unpacked_args, **unpacked_kwargs) return self.checkpoint_fn( my_function, *flat_args, ) def forward(self, module, forward_method, *args, **kwargs): if not module.training: return forward_method(*args, **kwargs) if not self._enable_ckpt: ret = forward_method(*args, **kwargs) else: ret = self._ckpt_forward(forward_method, *args, **kwargs) binded_tensor = ret if isinstance(ret, tuple): binded_tensor = ret[0] binded_tensor = self._sync_func(binded_tensor) final_ret = binded_tensor if isinstance(ret, tuple): final_ret = (final_ret,) + ret[1:] return final_ret def wrap_module_forward_method(self, module): orig_method = module.forward handler = self @functools.wraps(orig_method) def wrapped_method(model_self, *args, **kwargs): nonlocal handler handler.pre_forward(model_self) out = handler.forward(model_self, orig_method, *args, **kwargs) handler.post_forward(model_self) return out module.forward = wrapped_method.__get__(module, type(module)) def enable_activation_offloading(model, strategy, enable_ckpt=False): """ Enable activation offloading for the model. It groups activations by TransformerLayer and offloads activation groups asynchronously. This means that the offloading of the i-th activation group and the computation of the i+1-th activation group happen at the same time, and there are at most two activation groups in GPU memory. Args: model: the model to enable activation offloading strategy: the training strategy of the model, such as "fsdp" enable_ckpt: whether activation checkpointing(also called gradient checkpointing) has been enabled for the model Note: For best efficiency, activation offloading is usually combined with activation checkpointing. However, this implementation of activation offloading is conflicted with the implementation of activation checkpointing in some training strategies. This function resolves this conflict, and therefore requires the "strategy" and "enable_ckpt" arguments. Returns: """ assert strategy == "fsdp" or strategy == "fsdp2", "activation offloading only supports fsdp strategy" layers = [] def get_layers(module): for name, child in module.named_children(): if not isinstance(child, FSDP | FSDP2): get_layers(child) else: wrapped_module = child if isinstance(child, FSDP): wrapped_module = child._fsdp_wrapped_module # In some cases, torch.nn.Embedding is wrapped with FSDP alone. However, the activation # size of torch.nn.Embedding is small, so it's not necessary to offload it. if not isinstance(wrapped_module, torch.nn.Embedding): layers.append(child) get_layers(model) if len(layers) < 3: logger.warning(f"Find only {len(layers)} fsdp layers, not neccessary to enable async activation offloading") return tensor_filter = FSDPParameterFilter() context, sync_func = get_activation_offload_context(len(layers) - 1, len(layers), tensor_filter) if enable_ckpt: # The implementation of activation checkpointing in transformers library is incompatible with # activation offloading, # so it will be disabled, but this implementation supports another version of activation checkpointing, so that # these two features can be enabled at the same time. for module in model.modules(): if hasattr(module, "gradient_checkpointing_disable"): module.gradient_checkpointing_disable() handler = ActivationHandler(context, sync_func, tensor_filter, enable_ckpt) for layer in layers: module = layer if isinstance(layer, FSDP): module = module._fsdp_wrapped_module handler.wrap_module_forward_method(module)