# Copyright 2024 Bytedance Ltd. and/or its affiliates # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ Apply monkey-patch function to models """ import importlib.metadata import sys from functools import lru_cache from typing import Optional import torch from packaging import version from transformers.modeling_flash_attention_utils import _flash_attention_forward from transformers.modeling_utils import PreTrainedModel from verl.utils.import_utils import is_trl_available from verl.utils.ulysses import ( gather_heads_scatter_seq, gather_seq_scatter_heads, get_ulysses_sequence_parallel_group, get_ulysses_sequence_parallel_world_size, slice_input_tensor, ) def repeat_kv(hidden_states: torch.Tensor, n_rep: int) -> torch.Tensor: """ This is the equivalent of torch.repeat_interleave(x, dim=2, repeats=n_rep). The hidden states go from (batch, seqlen, num_key_value_heads, head_dim) to (batch, seqlen, num_attention_heads, head_dim) """ batch, slen, num_key_value_heads, head_dim = hidden_states.shape if n_rep == 1: return hidden_states hidden_states = hidden_states[:, :, :, None, :].expand(batch, slen, num_key_value_heads, n_rep, head_dim) return hidden_states.reshape(batch, slen, num_key_value_heads * n_rep, head_dim) def _ulysses_flash_attention_forward( query_states: torch.Tensor, key_states: torch.Tensor, value_states: torch.Tensor, *args, position_ids: Optional[torch.Tensor] = None, **kwargs, ): """Insert all-to-all before and after flash attention. DeepSpeed-Ulysses: https://arxiv.org/pdf/2309.14509 Args: query_states (torch.Tensor): (batch_size, seqlen/sp_size, nheads, head_dim) key_states (torch.Tensor): (batch_size, seqlen/sp_size, nheads_k, head_dim) value_states (torch.Tensor): (batch_size, seqlen/sp_size, nheads_k, head_dim) position_ids (torch.Tensor, optional): (batch_size, seqlen/sp_size) Returns: torch.Tensor: (batch_size, seqlen/sp_size, nheads, head_dim) """ ulysses_sp_size = get_ulysses_sequence_parallel_world_size() ########## AlltoAll for Ulysses ########## if ulysses_sp_size > 1: assert position_ids is not None, "position_ids is required for Ulysses sequence parallelism" # NOTE: repeat kv heads to be divided by sequence parallel. Instead of repeating nheads_q//nheads_k, # we choose to repeat sp_size//nheads_k, since flash_attention supports MQA/GQA. # For example: # - nheads_k=4, sp=8, repeats=2 # - nheads_k=8, sp=8, repeats=1 # - nheads_k=16, sp=8, repeats=1 repeats = max(ulysses_sp_size // key_states.size(2), 1) key_states = repeat_kv(key_states, repeats) value_states = repeat_kv(value_states, repeats) # (bsz, seq_len/n, n_head, head_dim) -> (bsz, seq_len, n_head/n, head_dim) query_states = gather_seq_scatter_heads(query_states, seq_dim=1, head_dim=2) key_states = gather_seq_scatter_heads(key_states, seq_dim=1, head_dim=2) value_states = gather_seq_scatter_heads(value_states, seq_dim=1, head_dim=2) # TODO: all_gather position_ids because `prepare_fa2_from_position_ids` needs it, we can eliminate # this all_gather by passing cu_seq_lens_q, cu_seq_lens_k, max_length_k, max_length_q explicitly. # https://github.com/huggingface/transformers/pull/33932 # (bsz, seq_len/n) -> (bsz, seq_len) position_ids_list = [torch.empty_like(position_ids) for _ in range(ulysses_sp_size)] torch.distributed.all_gather(position_ids_list, position_ids, group=get_ulysses_sequence_parallel_group()) position_ids = torch.concat(position_ids_list, dim=-1) # (bsz, seq_len, n_head/n, head_dim) attn_output = _flash_attention_forward( query_states, key_states, value_states, *args, position_ids=position_ids, **kwargs ) ########## AlltoAll for Ulysses ########## if ulysses_sp_size > 1: # (bsz, seq_len, n_head/n, head_dim) -> (bsz, seq_len/n, n_head, head_dim) attn_output = gather_heads_scatter_seq(attn_output, seq_dim=1, head_dim=2) return attn_output def patch_vlm_for_ulysses_input_slicing(model_class: type): """ Applies a monkey patch to the forward method of a given model class to enable Ulysses sequence parallelism input slicing. """ def _create_ulysses_wrapped_decoder_forward(original_forward): def ulysses_wrapped_decoder_forward(self, *args, **kwargs): inputs_embeds = kwargs.get("inputs_embeds") call_kwargs = kwargs.copy() current_ulysses_sp_size = get_ulysses_sequence_parallel_world_size() slice_now = ( inputs_embeds is not None and current_ulysses_sp_size > 1 and getattr(self, "_needs_initial_slice", True) ) if slice_now: call_kwargs["inputs_embeds"] = slice_input_tensor(inputs_embeds, dim=1, padding=False) self._needs_initial_slice = False try: return original_forward(self, *args, **call_kwargs) finally: if slice_now: self._needs_initial_slice = True return ulysses_wrapped_decoder_forward original_forward = model_class.forward wrapped_forward = _create_ulysses_wrapped_decoder_forward(original_forward) model_class.forward = wrapped_forward print(f"Monkey patch {model_class.__name__}.forward for Ulysses SP input slicing.") def patch_forward_with_backends( model: PreTrainedModel, use_fused_kernels: bool = False, fused_kernels_backend: str = None, ): """ Choose the forward function based on the model and backend. Args: model (PreTrainedModel): The model to apply the monkey patch. use_fused_kernels (bool): Whether to use fused kernels. fused_kernels_backend (str): The backend to use for fused kernels. """ if not use_fused_kernels or fused_kernels_backend not in ["triton", "torch"]: print( f"Skipping monkey patch for {model.__class__.__name__} as use_fused_kernels is " f"{use_fused_kernels} or fused_kernels_backend is {fused_kernels_backend}" ) return forward_with_torch_backend_function = model.__class__.forward forward_with_triton_backend_function = model.__class__.forward if model.config.model_type == "qwen2_5_vl": from verl.models.transformers.qwen2_5_vl import forward_with_torch_backend, forward_with_triton_backend forward_with_torch_backend_function = forward_with_torch_backend forward_with_triton_backend_function = forward_with_triton_backend elif model.config.model_type == "qwen2_vl": from verl.models.transformers.qwen2_vl import forward_with_torch_backend, forward_with_triton_backend forward_with_torch_backend_function = forward_with_torch_backend forward_with_triton_backend_function = forward_with_triton_backend else: from verl.models.transformers.dense_common import forward_with_torch_backend, forward_with_triton_backend forward_with_torch_backend_function = forward_with_torch_backend forward_with_triton_backend_function = forward_with_triton_backend if fused_kernels_backend == "triton": model.__class__.forward = forward_with_triton_backend_function print(f"Using Triton backend for fused kernels in {model.__class__.__name__}") elif fused_kernels_backend == "torch": model.__class__.forward = forward_with_torch_backend_function print(f"Using Torch backend for fused kernels in {model.__class__.__name__}") else: raise ValueError(f"Unsupported fused_kernels_backend: {fused_kernels_backend}. Choose 'triton' or 'torch'.") def apply_monkey_patch( model: PreTrainedModel, ulysses_sp_size: int = 1, use_remove_padding: bool = True, use_fused_kernels: bool = False, fused_kernels_backend: str = None, ): """ Apply monkey patch to the models for ulysses sequence parallel and fused kernel. In the end of this function forward function of the model is patched for fused kernel. If the model is not supported with fused kernel, please return after patch. """ """Replace _flash_attention_forward to _ulysses_flash_attention_forward""" module = sys.modules[model.__module__] try: num_attention_heads, num_key_value_heads = model.config.num_attention_heads, model.config.num_key_value_heads except AttributeError: num_attention_heads, num_key_value_heads = ( model.config.text_config.num_attention_heads, model.config.text_config.num_key_value_heads, ) assert num_attention_heads % ulysses_sp_size == 0, ( f"num_attention_heads {num_attention_heads} must be divisible by ulysses_sp_size {ulysses_sp_size}" ) assert num_key_value_heads % ulysses_sp_size == 0 or ulysses_sp_size % num_key_value_heads == 0, ( f"num_key_value_heads {num_key_value_heads} must be divisible by ulysses_sp_size " f"{ulysses_sp_size}or vise versa. Upon ulysses_sp_size % num_key_value_heads == 0," f"kv heads are repeated to ensure correctness." ) if is_trl_available(): from trl import AutoModelForCausalLMWithValueHead # type: ignore def state_dict(self, *args, **kwargs): return torch.nn.Module.state_dict(self, *args, **kwargs) AutoModelForCausalLMWithValueHead.state_dict = state_dict print("Monkey patch state_dict in AutoModelForCausalLMWithValueHead. ") # TODO: VLM models only, unify monkey patch to LLM models. if model.config.model_type == "qwen2_5_vl": if is_transformers_version_in_range(min_version="4.53.0"): from transformers.models.qwen2_5_vl.modeling_qwen2_5_vl import Qwen2_5_VLAttention # TODO: Support transformers 4.53 raise ValueError("Transformers 4.53 is not supported") else: from transformers.models.qwen2_5_vl.modeling_qwen2_5_vl import ( Qwen2_5_VLFlashAttention2 as Qwen2_5_VLAttention, ) if use_remove_padding or ulysses_sp_size > 1: from verl.models.transformers.qwen2_vl import ulysses_flash_attn_forward Qwen2_5_VLAttention.forward = ulysses_flash_attn_forward print("Monkey patch FlashAttention2.forward in Qwen2.5VL") if ulysses_sp_size > 1: if is_transformers_version_in_range(min_version="4.52.0"): from transformers.models.qwen2_5_vl.modeling_qwen2_5_vl import Qwen2_5_VLTextModel patch_vlm_for_ulysses_input_slicing(Qwen2_5_VLTextModel) else: from transformers.models.qwen2_5_vl.modeling_qwen2_5_vl import Qwen2_5_VLModel patch_vlm_for_ulysses_input_slicing(Qwen2_5_VLModel) elif model.config.model_type == "qwen2_vl": if is_transformers_version_in_range(min_version="4.53.0"): from transformers.models.qwen2_vl.modeling_qwen2_vl import Qwen2VLAttention # TODO: Support transformers 4.53 raise ValueError("Transformers 4.53 is not supported") else: from transformers.models.qwen2_vl.modeling_qwen2_vl import Qwen2VLFlashAttention2 as Qwen2VLAttention if use_remove_padding or ulysses_sp_size > 1: from verl.models.transformers.qwen2_vl import ulysses_flash_attn_forward Qwen2VLAttention.forward = ulysses_flash_attn_forward print("Monkey patch FlashAttention2.forward in Qwen2VL") if ulysses_sp_size > 1: if is_transformers_version_in_range(min_version="4.52.0"): from transformers.models.qwen2_vl.modeling_qwen2_vl import Qwen2VLTextModel patch_vlm_for_ulysses_input_slicing(Qwen2VLTextModel) else: from transformers.models.qwen2_vl.modeling_qwen2_vl import Qwen2VLModel patch_vlm_for_ulysses_input_slicing(Qwen2VLModel) elif model.config.model_type == "kimi_vl": if use_remove_padding or ulysses_sp_size > 1: # TODO: Changes need to be made when transformers are adapted. from verl.models.transformers.kimi_vl import _ulysses_flash_attn_forward module.DeepseekV3FlashAttention2.forward = _ulysses_flash_attn_forward print("Monkey patch FlashAttention2.forward in KimiVL") if ulysses_sp_size > 1: patch_vlm_for_ulysses_input_slicing(module.DeepseekV3ForCausalLM) if use_fused_kernels: print("Not support fused kernels for KimiVL") return # transformers<=4.47.1 if use_remove_padding or ulysses_sp_size > 1: if hasattr(module, "_flash_attention_forward"): module._flash_attention_forward = _ulysses_flash_attention_forward print(f"Monkey patch _flash_attention_forward in {model.__module__}") else: # transformers>=4.48.0 from transformers.integrations import flash_attention flash_attention._flash_attention_forward = _ulysses_flash_attention_forward print(f"Monkey patch _flash_attention_forward in {flash_attention.__name__}") patch_forward_with_backends(model, use_fused_kernels=use_fused_kernels, fused_kernels_backend=fused_kernels_backend) @lru_cache def is_transformers_version_in_range(min_version: Optional[str] = None, max_version: Optional[str] = None) -> bool: try: # Get the installed version of the transformers library transformers_version_str = importlib.metadata.version("transformers") except importlib.metadata.PackageNotFoundError as e: raise ModuleNotFoundError("The `transformers` package is not installed.") from e transformers_version = version.parse(transformers_version_str) lower_bound_check = True if min_version is not None: lower_bound_check = version.parse(min_version) <= transformers_version upper_bound_check = True if max_version is not None: upper_bound_check = transformers_version <= version.parse(max_version) return lower_bound_check and upper_bound_check