# Copyright 2025 Bytedance Ltd. and/or its affiliates # Copyright (c) 2025, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import time import torch import torch.distributed as dist from verl.utils.device import get_device_id, get_torch_device from .saver import _megatron_calc_global_rank def _megatron_calc_layer_map(config): """Calculate the mapping of global layer_idx to local layer_idx Returns: layer_map (Dict: int -> tuple(int, int, int)): mapping from the global layer index to a tuple of (pp_rank, virtual_pp_rank, layer_idx inside model) """ from megatron.core import mpu pp_size = mpu.get_pipeline_model_parallel_world_size() virtual_pp_size = mpu.get_virtual_pipeline_model_parallel_world_size() or 1 layer_map = dict() num_layers_per_model = config.num_hidden_layers // pp_size // virtual_pp_size assert num_layers_per_model * pp_size * virtual_pp_size == config.num_hidden_layers for pp_rank_idx in range(pp_size): for virtual_pp_rank_idx in range(virtual_pp_size): layer_offset = ( virtual_pp_rank_idx * (config.num_hidden_layers // virtual_pp_size) + pp_rank_idx * num_layers_per_model ) for layer_idx in range(num_layers_per_model): layer_map[layer_offset + layer_idx] = ( pp_rank_idx, virtual_pp_rank_idx, layer_idx, ) return layer_map def load_state_dict_to_megatron_gptmodel(state_dict, wrapped_models, config, params_dtype, is_value_model=False): """Load merged state_dict to sharded Megatron module in training.""" from megatron.core import DistributedDataParallel as LocalDDP from megatron.core import mpu from megatron.core.transformer.module import Float16Module from torch.nn.parallel import DistributedDataParallel as torchDDP from verl.utils.logger import print_rank_0 from verl.utils.megatron_utils import unwrap_model start_time = time.time() def _get_gpt_model(model): return model def broadcast_params(module): for param in module.parameters(): torch.distributed.broadcast( param.data, src=mpu.get_data_parallel_src_rank(), group=mpu.get_data_parallel_group() ) dp_rank = mpu.get_data_parallel_rank() pp_rank = mpu.get_pipeline_model_parallel_rank() cp_rank = mpu.get_context_parallel_rank() src_rank = _megatron_calc_global_rank(tp_rank=0, dp_rank=0, pp_rank=0, cp_rank=cp_rank) pp_size = mpu.get_pipeline_model_parallel_world_size() virtual_pp_size = mpu.get_virtual_pipeline_model_parallel_world_size() or 1 mp_group = mpu.get_model_parallel_group() if torch.distributed.get_rank() == src_rank: assert mp_group.rank() == 0, f"mp_rank:[{mp_group.rank}] != 0 on rank #0" assert pp_rank == 0, f"pp_rank:[{pp_rank}] != 0 on rank #0" assert dp_rank == 0, f"dp_rank:[{dp_rank}] != 0 on rank #0" if not isinstance(wrapped_models, list | tuple): wrapped_models = list(wrapped_models) assert len(wrapped_models) == virtual_pp_size num_layers_per_model = config.num_hidden_layers // pp_size // virtual_pp_size assert num_layers_per_model * pp_size * virtual_pp_size == config.num_hidden_layers models = [None] * len(wrapped_models) for i, wrapped_model in enumerate(wrapped_models): models[i] = unwrap_model(wrapped_model, (torchDDP, LocalDDP, Float16Module)) gpt_model_module = _get_gpt_model(models[i]) assert len(gpt_model_module.decoder.layers) == num_layers_per_model def _broadcast_tensor(tensor, name) -> torch.Tensor: """broadcast tensor from rank0 across mp_group""" nonlocal state_dict nonlocal mp_group if torch.distributed.get_rank() == src_rank: if name in state_dict: weight = state_dict[name] tensor_shape = weight.shape else: tensor_shape = None else: weight = None tensor_shape = None obj_list = [tensor_shape] dist.broadcast_object_list(obj_list, src=src_rank, group=mp_group) tensor_shape = obj_list[0] if tensor_shape is None: # all or none ranks in the mp_group should reach here print_rank_0(f"tensor:[{name}] not in state_dict, skip load") return if tensor is None: tensor = torch.empty( tensor_shape, dtype=params_dtype, device=get_device_id(), requires_grad=False, ) if torch.distributed.get_rank() == src_rank: tensor.data.copy_(weight) dist.broadcast(tensor, src=src_rank, group=mp_group) def _broadcast_tp_shard_tensor_vocab(tensor, name, chunk_dim=0, mutate_func=None) -> torch.Tensor: """broadcast tensor in tp shards across mp_group""" nonlocal state_dict nonlocal mp_group tp_rank = mpu.get_tensor_model_parallel_rank() tp_size = mpu.get_tensor_model_parallel_world_size() if torch.distributed.get_rank() == src_rank: if name in state_dict: full_weight = state_dict[name] if mutate_func is not None: full_weight = mutate_func(full_weight) tensor_chunk = torch.chunk(full_weight, tp_size, dim=chunk_dim) chunk_shape = tensor_chunk[0].shape else: chunk_shape = None else: chunk_shape = None obj_list = [chunk_shape] dist.broadcast_object_list(obj_list, src=src_rank, group=mp_group) chunk_shape = obj_list[0] if chunk_shape is None: # all or none ranks in the mp_group should reach here print_rank_0(f"tp_shard tensor:[{name}] not in state_dict, skip loading") return if tensor is None: sync_tensor = torch.empty( chunk_shape, dtype=params_dtype, device=get_device_id(), requires_grad=False, ) else: assert tensor.shape == chunk_shape, ( f"rank #{torch.distributed.get_rank()} tensor {name} shape {tensor.shape} != {chunk_shape}" ) sync_tensor = torch.empty_like(tensor, device=get_device_id(), requires_grad=False) for i in range(tp_size): if torch.distributed.get_rank() == src_rank: sync_tensor.data.copy_(tensor_chunk[i]) dist.broadcast(sync_tensor, src=src_rank, group=mp_group) if (i == tp_rank) and (tensor is not None): tensor.data.copy_(sync_tensor) def _broadcast_tp_shard_tensor(tensor, name, chunk_dim=0, mutate_func=None) -> torch.Tensor: """broadcast tensor in tp shards across mp_group""" nonlocal state_dict nonlocal mp_group tp_rank = mpu.get_tensor_model_parallel_rank() tp_size = mpu.get_tensor_model_parallel_world_size() if torch.distributed.get_rank() == src_rank: if name in state_dict: full_weight = state_dict[name] if mutate_func is not None: full_weight = mutate_func(full_weight) tensor_chunk = torch.chunk(full_weight, tp_size, dim=chunk_dim) chunk_shape = tensor_chunk[0].shape else: chunk_shape = None else: chunk_shape = None obj_list = [chunk_shape] dist.broadcast_object_list(obj_list, src=src_rank, group=mp_group) chunk_shape = obj_list[0] if chunk_shape is None: # all or none ranks in the mp_group should reach here print_rank_0(f"tp_shard tensor:[{name}] not in state_dict, skip loading") return if tensor is None: sync_tensor = torch.empty( chunk_shape, dtype=params_dtype, device=get_device_id(), requires_grad=False, ) else: assert tensor.shape == chunk_shape, ( f"rank #{torch.distributed.get_rank()} tensor {name} shape {tensor.shape} != {chunk_shape}" ) sync_tensor = torch.empty_like(tensor, device=get_device_id(), requires_grad=False) for i in range(tp_size): if torch.distributed.get_rank() == src_rank: sync_tensor.data.copy_(tensor_chunk[i]) dist.broadcast(sync_tensor, src=src_rank, group=mp_group) if (i == tp_rank) and (tensor is not None): tensor.data.copy_(sync_tensor) def _broadcast_tp_shard_tensor_gate_up(tensor, gate_name, up_name) -> torch.Tensor: """broadcast tensor in tp shards across mp_group""" nonlocal state_dict nonlocal mp_group tp_rank = mpu.get_tensor_model_parallel_rank() tp_size = mpu.get_tensor_model_parallel_world_size() if torch.distributed.get_rank() == src_rank: gate_weight = state_dict[gate_name] up_weight = state_dict[up_name] new_gate_up_weight = torch.empty( config.intermediate_size * 2, config.hidden_size, dtype=params_dtype, device=get_device_id() ) for i in range(tp_size): intermediate_size_tp = config.intermediate_size // tp_size gate_weight_tp = gate_weight[i * intermediate_size_tp : (i + 1) * intermediate_size_tp] up_weight_tp = up_weight[i * intermediate_size_tp : (i + 1) * intermediate_size_tp] new_gate_up_weight[intermediate_size_tp * 2 * i : intermediate_size_tp * 2 * (i + 1)].copy_( torch.cat([gate_weight_tp, up_weight_tp], dim=0) ) tensor_chunk = torch.chunk(new_gate_up_weight, tp_size, dim=0) chunk_shape = tensor_chunk[0].shape else: chunk_shape = None obj_list = [chunk_shape] dist.broadcast_object_list(obj_list, src=src_rank, group=mp_group) chunk_shape = obj_list[0] if chunk_shape is None: # all or none ranks in the mp_group should reach here print_rank_0(f"tp_shard tensor:[{gate_name, up_name}] not in state_dict, skip loading") return if tensor is None: sync_tensor = torch.empty( chunk_shape, dtype=params_dtype, device=get_device_id(), requires_grad=False, ) else: assert tensor.shape == chunk_shape, ( f"rank #{torch.distributed.get_rank() == src_rank:} tensor {gate_name, up_name} shape " f"{tensor.shape} != {chunk_shape}" ) sync_tensor = torch.empty_like(tensor, device=get_device_id(), requires_grad=False) for i in range(tp_size): if torch.distributed.get_rank() == src_rank: sync_tensor.data.copy_(tensor_chunk[i]) dist.broadcast(sync_tensor, src=src_rank, group=mp_group) if (i == tp_rank) and (tensor is not None): tensor.data.copy_(sync_tensor) def _broadcast_tp_shard_tensor_qkv(tensor, q_name, k_name, v_name, bias=False) -> torch.Tensor: """broadcast tensor in tp shards across mp_group""" nonlocal state_dict nonlocal mp_group tp_rank = mpu.get_tensor_model_parallel_rank() tp_size = mpu.get_tensor_model_parallel_world_size() if torch.distributed.get_rank() == src_rank: assert q_name in state_dict and k_name in state_dict and v_name in state_dict full_weight_q = state_dict[q_name] full_weight_k = state_dict[k_name] full_weight_v = state_dict[v_name] hidden_size_per_head = getattr(config, "head_dim", config.hidden_size // config.num_attention_heads) if config.num_key_value_heads >= tp_size: q_size_tp = hidden_size_per_head * config.num_attention_heads // tp_size kv_size_tp = hidden_size_per_head * config.num_key_value_heads // tp_size total_size = q_size_tp + 2 * kv_size_tp sizes = [total_size * tp_size] if not bias: sizes.append(config.hidden_size) new_weight_qkv = torch.empty(*sizes, dtype=params_dtype, device=get_device_id()) for i in range(tp_size): q_part = full_weight_q[i * q_size_tp : (i + 1) * q_size_tp] k_part = full_weight_k[i * kv_size_tp : (i + 1) * kv_size_tp] v_part = full_weight_v[i * kv_size_tp : (i + 1) * kv_size_tp] num_query_groups_per_partition = models[0].config.num_query_groups // tp_size new_weight_qkv_this_tp = new_weight_qkv[i * total_size : (i + 1) * total_size] q_part_per_head = torch.chunk(q_part, num_query_groups_per_partition, dim=0) k_part_per_head = torch.chunk(k_part, num_query_groups_per_partition, dim=0) v_part_per_head = torch.chunk(v_part, num_query_groups_per_partition, dim=0) total_size_per_head = total_size // num_query_groups_per_partition for j in range(num_query_groups_per_partition): new_weight_qkv_this_tp[j * total_size_per_head : (j + 1) * total_size_per_head].copy_( torch.cat([q_part_per_head[j], k_part_per_head[j], v_part_per_head[j]], dim=0) ) else: q_size_tp = hidden_size_per_head * config.num_attention_heads // tp_size kv_size_tp = hidden_size_per_head total_size = q_size_tp + 2 * kv_size_tp sizes = [total_size * tp_size] if not bias: sizes.append(config.hidden_size) new_weight_qkv = torch.empty(*sizes, dtype=params_dtype, device=get_device_id()) for i in range(tp_size): q_part = full_weight_q[i * q_size_tp : (i + 1) * q_size_tp] start_idx = i * config.num_key_value_heads // tp_size * hidden_size_per_head end_idx = (i * config.num_key_value_heads // tp_size + 1) * hidden_size_per_head k_part = full_weight_k[start_idx:end_idx] v_part = full_weight_v[start_idx:end_idx] new_weight_qkv_this_tp = new_weight_qkv[i * total_size : (i + 1) * total_size] q_part_per_head = torch.chunk(q_part, config.num_attention_heads, dim=0) k_part_per_head = torch.chunk(k_part, config.num_attention_heads, dim=0) v_part_per_head = torch.chunk(v_part, config.num_attention_heads, dim=0) total_size_per_head = total_size // config.num_attention_heads for j in range(config.num_attention_heads): new_weight_qkv_this_tp[j * total_size_per_head : (j + 1) * total_size_per_head].copy_( torch.cat([q_part_per_head[j], k_part_per_head[j], v_part_per_head[j]], dim=0) ) tensor_chunk = torch.chunk(new_weight_qkv, tp_size, dim=0) chunk_shape = tensor_chunk[0].shape else: chunk_shape = None obj_list = [chunk_shape] dist.broadcast_object_list(obj_list, src=src_rank, group=mp_group) chunk_shape = obj_list[0] if chunk_shape is None: # all or none ranks in the mp_group should reach here print_rank_0(f"tp_shard tensor:[{q_name, k_name, v_name}] not in state_dict, skip loading") return if tensor is None: sync_tensor = torch.empty( chunk_shape, dtype=params_dtype, device=get_device_id(), requires_grad=False, ) else: assert tensor.shape == chunk_shape, ( f"rank #{torch.distributed.get_rank()} tensor {q_name} shape {tensor.shape} != {chunk_shape}" ) sync_tensor = torch.empty_like(tensor, device=get_device_id(), requires_grad=False) for i in range(tp_size): if torch.distributed.get_rank() == src_rank: sync_tensor.data.copy_(tensor_chunk[i]) dist.broadcast(sync_tensor, src=src_rank, group=mp_group) if (i == tp_rank) and (tensor is not None): tensor.data.copy_(sync_tensor) if dp_rank == 0: # Embeddings # ------------------- print_rank_0("loading embeddings...") gpt_model_module = _get_gpt_model(models[0]) embed_tokens_weight = None if pp_rank == 0: embed_tokens_weight = gpt_model_module.embedding.word_embeddings.weight _broadcast_tp_shard_tensor_vocab(embed_tokens_weight, "model.embed_tokens.weight") # Transformer layers # ------------------- layer_map = _megatron_calc_layer_map(config) for layer in range(config.num_hidden_layers): layer_name = f"model.layers.{layer}" print_rank_0(f"loading layer #{layer}, with layer_name model.layers.{layer}...") dst_pp_rank, dst_virtual_pp_rank, dst_layer_idx = layer_map[layer] gpt_model_module = _get_gpt_model(models[dst_virtual_pp_rank]) sync_layer = gpt_model_module.decoder.layers[dst_layer_idx] _broadcast_tensor( sync_layer.self_attention.linear_qkv.layer_norm_weight if dst_pp_rank == pp_rank else None, f"{layer_name}.input_layernorm.weight", ) if f"{layer_name}.self_attn.q_norm.weight" in state_dict: _broadcast_tensor( sync_layer.self_attention.q_layernorm.weight if dst_pp_rank == pp_rank else None, f"{layer_name}.self_attn.q_norm.weight", ) _broadcast_tensor( sync_layer.self_attention.k_layernorm.weight if dst_pp_rank == pp_rank else None, f"{layer_name}.self_attn.k_norm.weight", ) _broadcast_tp_shard_tensor_qkv( sync_layer.self_attention.linear_qkv.weight if dst_pp_rank == pp_rank else None, f"{layer_name}.self_attn.q_proj.weight", f"{layer_name}.self_attn.k_proj.weight", f"{layer_name}.self_attn.v_proj.weight", ) if f"{layer_name}.self_attn.q_proj.bias" in state_dict: _broadcast_tp_shard_tensor_qkv( sync_layer.self_attention.linear_qkv.bias if dst_pp_rank == pp_rank else None, f"{layer_name}.self_attn.q_proj.bias", f"{layer_name}.self_attn.k_proj.bias", f"{layer_name}.self_attn.v_proj.bias", bias=True, ) _broadcast_tp_shard_tensor( sync_layer.self_attention.linear_proj.weight if dst_pp_rank == pp_rank else None, f"{layer_name}.self_attn.o_proj.weight", chunk_dim=1, ) _broadcast_tensor( sync_layer.mlp.linear_fc1.layer_norm_weight if dst_pp_rank == pp_rank else None, f"{layer_name}.post_attention_layernorm.weight", ) _broadcast_tp_shard_tensor_gate_up( sync_layer.mlp.linear_fc1.weight if dst_pp_rank == pp_rank else None, f"{layer_name}.mlp.gate_proj.weight", f"{layer_name}.mlp.up_proj.weight", ) _broadcast_tp_shard_tensor( sync_layer.mlp.linear_fc2.weight if dst_pp_rank == pp_rank else None, f"{layer_name}.mlp.down_proj.weight", chunk_dim=1, ) # Final Layernorm # ------------------- print_rank_0("loading final layernorm...") gpt_model_module = _get_gpt_model(models[-1]) _broadcast_tensor( getattr(gpt_model_module.decoder.final_layernorm, "weight", None), "model.norm.weight", ) print_rank_0("loading lm_head...") lm_head_weight = None if pp_rank + 1 == pp_size: lm_head_weight = gpt_model_module.output_layer.weight if is_value_model: # if torch.distributed.get_rank() == src_rank: if "lm_head.weight" in state_dict and state_dict["lm_head.weight"].shape[0] == 1: _broadcast_tensor(lm_head_weight, "lm_head.weight") elif "reward_head.weight" in state_dict and state_dict["reward_head.weight"].shape[0] == 1: _broadcast_tensor(lm_head_weight, "reward_head.weight") print_rank_0("load lm_head from value_head weight") else: _broadcast_tensor(None, "lm_head.weight") print_rank_0("fail to match lm_head in value_model") # else: # _broadcast_tensor(lm_head_weight, "lm_head.weight") else: _broadcast_tp_shard_tensor(lm_head_weight, "lm_head.weight") dist.barrier() # Broadcast weights inside data parallel groups for wrapped_model in wrapped_models: broadcast_params(wrapped_model) pass get_torch_device().empty_cache() print_rank_0(f"loading megatron ckpt done, time elapsed {time.time() - start_time}s")