#!/usr/bin/env bash set -xeuo pipefail # in e2e_sppo.yml, we set NUM_GPUS=8 L20 NUM_GPUS=${NUM_GPUS:-8} gsm8k_train_path=./data/math/train.parquet gsm8k_test_path=./data/math/test.parquet train_files="['$gsm8k_train_path']" test_files="['$gsm8k_test_path']" exp_name="Qwen2.5-0.5B-Instruct-sppo-minimal" python3 -m recipe.sppo.main_sppo \ data.train_files="$train_files" \ data.val_files="$test_files" \ data.train_batch_size=1024 \ data.max_prompt_length=1024 \ data.max_response_length=512 \ data.filter_overlong_prompts=True \ data.truncation='error' \ data.return_raw_chat=True \ actor_rollout_ref.model.path="./models/Qwen2.5-0.5B-Instruct" \ actor_rollout_ref.actor.optim.lr=1e-6 \ actor_rollout_ref.model.use_remove_padding=True \ actor_rollout_ref.model.use_fused_kernels=True \ actor_rollout_ref.actor.optim.lr_warmup_steps_ratio=0.1 \ actor_rollout_ref.actor.ppo_mini_batch_size=256 \ actor_rollout_ref.actor.ppo_micro_batch_size_per_gpu=16 \ actor_rollout_ref.actor.use_kl_loss=False \ actor_rollout_ref.model.enable_gradient_checkpointing=True \ actor_rollout_ref.actor.fsdp_config.param_offload=False \ actor_rollout_ref.actor.fsdp_config.optimizer_offload=False \ actor_rollout_ref.rollout.log_prob_micro_batch_size_per_gpu=16 \ actor_rollout_ref.rollout.tensor_model_parallel_size=1 \ actor_rollout_ref.rollout.name=sglang \ actor_rollout_ref.rollout.gpu_memory_utilization=0.6 \ algorithm.use_kl_in_reward=False \ trainer.critic_warmup=0 \ trainer.logger=console \ trainer.val_before_train=False \ trainer.n_gpus_per_node=$NUM_GPUS \ trainer.nnodes=1 \ trainer.save_freq=-1 \ trainer.total_training_steps=1 \ trainer.total_epochs=2 $@