#!/usr/bin/env bash set -xeuo pipefail export CUDA_DEVICE_MAX_CONNECTIONS=1 # For megatron communication/computation overlapping export VERL_LOGGING_LEVEL=INFO export VERL_PPO_LOGGING_LEVEL=INFO NUM_GPUS=${NUM_GPUS:-8} MODEL_ID=${MODEL_ID:-Qwen/Qwen2.5-0.5B} MODEL_PATH=${MODEL_PATH:-${HOME}/models/${MODEL_ID}} huggingface-cli download "${MODEL_ID}" --local-dir "${MODEL_PATH}" USE_DUMMY_MODEL=${USE_DUMMY_MODEL:-False} DUMMY_MODEL_PATH=${DUMMY_MODEL_PATH:-${HOME}/dummy_models/${MODEL_ID}} if [ "$USE_DUMMY_MODEL" = "True" ]; then if [ -z "${DUMMY_MODEL_CONFIG_PATH}" ]; then echo "[ERROR] DUMMY_MODEL_CONFIG_PATH not set" exit 1 fi python scripts/init_random_model.py \ --hf_model_path "${MODEL_PATH}" \ --new_config_path "${DUMMY_MODEL_CONFIG_PATH}" \ --output_path "${DUMMY_MODEL_PATH}" MODEL_PATH="${DUMMY_MODEL_PATH}" fi TRAIN_FILES=${TRAIN_FILES:-${HOME}/data/gsm8k/train.parquet} VAL_FILES=${VAL_FILES:-${HOME}/data/gsm8k/test.parquet} ADV_ESTIMATOR=${ADV_ESTIMATOR:-gae} # Validation VAL_BEFORE_TRAIN=${VAL_BEFORE_TRAIN:-False} TEST_FREQ=${TEST_FREQ:--1} # Save & Resume RESUME_MODE=${RESUME_MODE:-disable} SAVE_FREQ=${SAVE_FREQ:--1} TOTAL_TRAIN_STEPS=${TOTAL_TRAIN_STEPS:-1} USE_DYNAMIC_BSZ=${USE_DYNAMIC_BSZ:-True} ppo_max_token_len_per_gpu=${PPO_MAX_TOKEN_LEN:-2400} forward_max_token_len_per_gpu=${FWD_MAX_TOKEN_LEN:-4800} train_traj_micro_bsz_per_gpu=${MICRO_BSZ:-2} # b n_resp_per_prompt=4 # g train_traj_micro_bsz=$((train_traj_micro_bsz_per_gpu * NUM_GPUS)) # b * n train_traj_mini_bsz=$((train_traj_micro_bsz * 2)) # 2 * b * n train_prompt_mini_bsz=$((train_traj_mini_bsz * n_resp_per_prompt)) # 2 * b * n / g train_prompt_bsz=$((train_prompt_mini_bsz * 2)) # 4 * b * n / g MAX_PROMPT_LENGTH=${MAX_PROMPT_LENGTH:-512} MAX_RESPONSE_LENGTH=${MAX_RESPONSE_LENGTH:-512} COMMON_PP=${COMMON_PP:-2} COMMON_VPP=${COMMON_VPP:-2} COMMON_CP=${COMMON_CP:-2} COMMON_TP=${COMMON_TP:-2} COMMON_EP=${COMMON_EP:-1} COMMON_ETP=${COMMON_ETP:-null} TRAIN_TP=${TRAIN_TP:-$COMMON_TP} INFER_TP=${INFER_TP:-$COMMON_TP} ACTOR_PP=${ACTOR_PP:-$COMMON_PP} ACTOR_VPP=${ACTOR_VPP:-$COMMON_VPP} ACTOR_CP=${ACTOR_CP:-$COMMON_CP} ACTOR_TP=${ACTOR_TP:-$TRAIN_TP} ACTOR_EP=${ACTOR_EP:-$COMMON_EP} ACTOR_ETP=${ACTOR_ETP:-$COMMON_ETP} ROLLOUT_TP=${ROLLOUT_TP:-$INFER_TP} REF_PP=${REF_PP:-$COMMON_PP} REF_VPP=${REF_VPP:-$COMMON_VPP} REF_CP=${REF_CP:-$COMMON_CP} REF_TP=${REF_TP:-$TRAIN_TP} REF_EP=${REF_EP:-$COMMON_EP} REF_ETP=${REF_ETP:-$COMMON_ETP} CRITIC_PP=${CRITIC_PP:-$COMMON_PP} CRITIC_VPP=${CRITIC_VPP:-$COMMON_VPP} CRITIC_CP=${CRITIC_CP:-$COMMON_CP} CRITIC_TP=${CRITIC_TP:-$TRAIN_TP} CRITIC_EP=${CRITIC_EP:-$COMMON_EP} CRITIC_ETP=${CRITIC_ETP:-$COMMON_ETP} RM_PP=${RM_PP:-$COMMON_PP} RM_VPP=${RM_VPP:-$COMMON_VPP} RM_CP=${RM_CP:-$COMMON_CP} RM_TP=${RM_TP:-$TRAIN_TP} RM_EP=${RM_EP:-$COMMON_EP} RM_ETP=${RM_ETP:-$COMMON_ETP} ALL_OFFLOAD=${ALL_OFFLOAD:-False} COMMON_PARAM_OFFLOAD=${COMMON_PARAM_OFFLOAD:-$ALL_OFFLOAD} COMMON_GRAD_OFFLOAD=${COMMON_GRAD_OFFLOAD:-$ALL_OFFLOAD} COMMON_OPTIMIZER_OFFLOAD=${COMMON_OPTIMIZER_OFFLOAD:-$ALL_OFFLOAD} ACTOR_PARAM_OFFLOAD=${ACTOR_PARAM_OFFLOAD:-$COMMON_PARAM_OFFLOAD} ACTOR_GRAD_OFFLOAD=${ACTOR_GRAD_OFFLOAD:-$COMMON_GRAD_OFFLOAD} ACTOR_OPTIMIZER_OFFLOAD=${ACTOR_OPTIMIZER_OFFLOAD:-$COMMON_OPTIMIZER_OFFLOAD} REF_PARAM_OFFLOAD=${REF_PARAM_OFFLOAD:-$COMMON_PARAM_OFFLOAD} CRITIC_PARAM_OFFLOAD=${CRITIC_PARAM_OFFLOAD:-$COMMON_PARAM_OFFLOAD} CRITIC_GRAD_OFFLOAD=${CRITIC_GRAD_OFFLOAD:-$COMMON_GRAD_OFFLOAD} CRITIC_OPTIMIZER_OFFLOAD=${CRITIC_OPTIMIZER_OFFLOAD:-$COMMON_OPTIMIZER_OFFLOAD} RM_PARAM_OFFLOAD=${RM_PARAM_OFFLOAD:-$COMMON_PARAM_OFFLOAD} USE_MBRIDGE=${USE_MBRIDGE:-False} USE_FUSED_KERNELS=${USE_FUSED_KERNELS:-False} LR_WARMUP_STEPS=${LR_WARMUP_STEPS:-null} CHECKPOINT_CONTENTS=['model','hf_model','optimizer','extra'] SKIP_SAVE_HF_MODEL=${SKIP_SAVE_HF_MODEL:-0} if [ $SKIP_SAVE_HF_MODEL -eq 1 ]; then CHECKPOINT_CONTENTS=['model','optimizer','extra'] fi USE_DIST_CKPT=${USE_DIST_CKPT:-False} DIST_CKPT_PATH=${DIST_CKPT_PATH:-${HOME}/dist_ckpt/${MODEL_ID}} if [ "$USE_DIST_CKPT" = "True" ]; then if [ "$USE_DUMMY_MODEL" = "True" ]; then DIST_CKPT_PATH=${HOME}/dist_ckpt_dummy/${MODEL_ID} fi python scripts/converter_hf_to_mcore.py \ --hf_model_path "${MODEL_PATH}" \ --output_path "${DIST_CKPT_PATH}" fi ENGINE=${ENGINE:-"vllm"} exp_name="$(basename "${MODEL_ID,,}")-megatron-gsm8k-minimal" if [ "$ENGINE" = "vllm" ]; then MODE=${MODE:-"sync"} ROLLOUT_MODE_ARG="actor_rollout_ref.rollout.mode=${MODE}" if [ "$MODE" = "async" ]; then ROLLOUT_MODE_ARG="${ROLLOUT_MODE_ARG} data.return_raw_chat=True" fi else ROLLOUT_MODE_ARG="" fi python3 -m verl.trainer.main_ppo --config-path=config \ --config-name='ppo_megatron_trainer.yaml'\ algorithm.adv_estimator="${ADV_ESTIMATOR}" \ data.train_files="${TRAIN_FILES}" \ data.val_files="${VAL_FILES}" \ data.train_batch_size=${train_prompt_bsz} \ data.max_prompt_length=${MAX_PROMPT_LENGTH} \ data.max_response_length=${MAX_RESPONSE_LENGTH} \ data.filter_overlong_prompts=True \ data.truncation='error' \ actor_rollout_ref.model.path="${MODEL_PATH}" \ actor_rollout_ref.model.use_fused_kernels=${USE_FUSED_KERNELS} \ actor_rollout_ref.actor.optim.lr_warmup_steps=$LR_WARMUP_STEPS \ actor_rollout_ref.actor.ppo_mini_batch_size=${train_prompt_mini_bsz} \ actor_rollout_ref.actor.ppo_micro_batch_size_per_gpu=${train_traj_micro_bsz_per_gpu} \ actor_rollout_ref.actor.use_dynamic_bsz=${USE_DYNAMIC_BSZ} \ actor_rollout_ref.actor.ppo_max_token_len_per_gpu=${ppo_max_token_len_per_gpu} \ actor_rollout_ref.actor.megatron.use_mbridge=${USE_MBRIDGE} \ actor_rollout_ref.actor.megatron.pipeline_model_parallel_size=$ACTOR_PP \ actor_rollout_ref.actor.megatron.virtual_pipeline_model_parallel_size=$ACTOR_VPP \ actor_rollout_ref.actor.megatron.context_parallel_size=$ACTOR_CP \ actor_rollout_ref.actor.megatron.tensor_model_parallel_size=$ACTOR_TP \ actor_rollout_ref.actor.megatron.expert_model_parallel_size=$ACTOR_EP \ actor_rollout_ref.actor.megatron.expert_tensor_parallel_size=$ACTOR_ETP \ actor_rollout_ref.actor.megatron.param_offload=${ACTOR_PARAM_OFFLOAD} \ actor_rollout_ref.actor.megatron.optimizer_offload=${ACTOR_OPTIMIZER_OFFLOAD} \ actor_rollout_ref.actor.megatron.grad_offload=${ACTOR_GRAD_OFFLOAD} \ actor_rollout_ref.actor.megatron.use_dist_checkpointing=${USE_DIST_CKPT} \ actor_rollout_ref.actor.megatron.dist_checkpointing_path=${DIST_CKPT_PATH} \ actor_rollout_ref.actor.use_kl_loss=True \ actor_rollout_ref.actor.kl_loss_coef=0.001 \ actor_rollout_ref.actor.kl_loss_type=low_var_kl \ actor_rollout_ref.actor.checkpoint.save_contents=$CHECKPOINT_CONTENTS \ actor_rollout_ref.rollout.name="${ENGINE}" ${ROLLOUT_MODE_ARG}\ actor_rollout_ref.rollout.tensor_model_parallel_size=$ROLLOUT_TP \ actor_rollout_ref.rollout.gpu_memory_utilization=0.6 \ actor_rollout_ref.rollout.n=${n_resp_per_prompt} \ actor_rollout_ref.rollout.update_weights_bucket_megabytes=128 \ actor_rollout_ref.rollout.log_prob_micro_batch_size_per_gpu=${train_traj_micro_bsz_per_gpu} \ actor_rollout_ref.ref.log_prob_micro_batch_size_per_gpu=${train_traj_micro_bsz_per_gpu} \ actor_rollout_ref.ref.megatron.use_mbridge=${USE_MBRIDGE} \ actor_rollout_ref.ref.megatron.pipeline_model_parallel_size=$REF_PP \ actor_rollout_ref.ref.megatron.virtual_pipeline_model_parallel_size=$REF_VPP \ actor_rollout_ref.ref.megatron.context_parallel_size=$REF_CP \ actor_rollout_ref.ref.megatron.tensor_model_parallel_size=$REF_TP \ actor_rollout_ref.ref.megatron.expert_model_parallel_size=$REF_EP \ actor_rollout_ref.ref.megatron.expert_tensor_parallel_size=$REF_ETP \ actor_rollout_ref.ref.megatron.param_offload=${REF_PARAM_OFFLOAD} \ actor_rollout_ref.ref.megatron.use_dist_checkpointing=${USE_DIST_CKPT} \ actor_rollout_ref.ref.megatron.dist_checkpointing_path=${DIST_CKPT_PATH} \ critic.optim.lr=2e-5 \ critic.optim.lr_warmup_steps=$LR_WARMUP_STEPS \ critic.model.path="${MODEL_PATH}" \ critic.ppo_micro_batch_size_per_gpu=${train_traj_micro_bsz_per_gpu} \ critic.ppo_max_token_len_per_gpu=${forward_max_token_len_per_gpu} \ critic.megatron.use_mbridge=${USE_MBRIDGE} \ critic.megatron.pipeline_model_parallel_size=$CRITIC_PP \ critic.megatron.virtual_pipeline_model_parallel_size=$CRITIC_VPP \ critic.megatron.context_parallel_size=$CRITIC_CP \ critic.megatron.tensor_model_parallel_size=$CRITIC_TP \ critic.megatron.expert_model_parallel_size=$CRITIC_EP \ critic.megatron.expert_tensor_parallel_size=$CRITIC_ETP \ critic.megatron.param_offload=${CRITIC_PARAM_OFFLOAD} \ critic.megatron.optimizer_offload=${CRITIC_OPTIMIZER_OFFLOAD} \ critic.megatron.grad_offload=${CRITIC_GRAD_OFFLOAD} \ critic.megatron.use_dist_checkpointing=${USE_DIST_CKPT} \ critic.megatron.dist_checkpointing_path=${DIST_CKPT_PATH} \ critic.checkpoint.save_contents=$CHECKPOINT_CONTENTS \ reward_model.enable=True \ reward_model.model.path="${MODEL_PATH}" \ reward_model.micro_batch_size_per_gpu=${train_traj_micro_bsz_per_gpu} \ reward_model.megatron.use_mbridge=${USE_MBRIDGE} \ reward_model.megatron.pipeline_model_parallel_size=$RM_PP \ reward_model.megatron.virtual_pipeline_model_parallel_size=$RM_VPP \ reward_model.megatron.context_parallel_size=$RM_CP \ reward_model.megatron.tensor_model_parallel_size=$RM_TP \ reward_model.megatron.expert_model_parallel_size=$RM_EP \ reward_model.megatron.expert_tensor_parallel_size=$RM_ETP \ reward_model.megatron.param_offload=${RM_PARAM_OFFLOAD} \ reward_model.megatron.use_dist_checkpointing=${USE_DIST_CKPT} \ reward_model.megatron.dist_checkpointing_path=${DIST_CKPT_PATH} \ algorithm.use_kl_in_reward=False \ algorithm.kl_penalty=kl \ algorithm.kl_ctrl.kl_coef=0.001 \ trainer.critic_warmup=0 \ trainer.logger=console \ trainer.project_name='verl-test' \ trainer.experiment_name="${exp_name}" \ trainer.nnodes=1 \ trainer.n_gpus_per_node=${NUM_GPUS} \ trainer.val_before_train="${VAL_BEFORE_TRAIN}" \ trainer.test_freq="${TEST_FREQ}" \ trainer.save_freq="${SAVE_FREQ}" \ trainer.resume_mode="${RESUME_MODE}" \ trainer.total_epochs=2 \ trainer.total_training_steps="${TOTAL_TRAIN_STEPS}" $@