# Copyright 2024 Bytedance Ltd. and/or its affiliates # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import os os.environ["NCCL_DEBUG"] = "WARN" import numpy as np import torch import torch.distributed from verl.protocol import DataProto, all_gather_data_proto from verl.utils.distributed import initialize_global_process_group def test_all_gather_data_proto(): device_mesh = torch.distributed.device_mesh.init_device_mesh("cuda", mesh_shape=[2, 2], mesh_dim_names=["dp", "tp"]) global_rank = torch.distributed.get_rank() obs = torch.tensor([[1 * global_rank, 2 * global_rank + 1], [3 * global_rank, 4 * global_rank + 1]]) labels = ["a", "b"] if global_rank % 2 == 0 else ["b", "a"] labels = np.array(labels, dtype=object) data = DataProto.from_dict(tensors={"obs": obs}, non_tensors={"labels": labels}, meta_info={"info": "test_info"}) all_gather_data_proto(data=data, process_group=device_mesh.get_group("dp")) if global_rank == 0: expected_obs = torch.tensor([[0, 1], [0, 1], [2, 5], [6, 9]], device="cuda") expected_labels = ["a", "b", "a", "b"] elif global_rank == 1: expected_obs = torch.tensor([[1, 3], [3, 5], [3, 7], [9, 13]], device="cuda") expected_labels = ["b", "a", "b", "a"] elif global_rank == 2: expected_obs = torch.tensor([[0, 1], [0, 1], [2, 5], [6, 9]], device="cuda") expected_labels = ["a", "b", "a", "b"] elif global_rank == 3: expected_obs = torch.tensor([[1, 3], [3, 5], [3, 7], [9, 13]], device="cuda") expected_labels = ["b", "a", "b", "a"] torch.testing.assert_close(data.batch["obs"], expected_obs, atol=0, rtol=0) assert (data.non_tensor_batch["labels"] == expected_labels).all() assert data.meta_info == {"info": "test_info"} def test_vocab_parallel_entropy(): from megatron.core import parallel_state as mpu from verl.utils.megatron.tensor_parallel import vocab_parallel_entropy from verl.utils.profiler import log_gpu_memory_usage from verl.utils.torch_functional import entropy_from_logits mpu.initialize_model_parallel( tensor_model_parallel_size=2, pipeline_model_parallel_size=1, virtual_pipeline_model_parallel_size=None ) batch_size = 2 seqlen = 128 vocab_size = 155136 logits = torch.randn(batch_size * seqlen, vocab_size, device="cuda", requires_grad=True) target = torch.randint(low=0, high=vocab_size, size=(batch_size * seqlen,), device="cuda", dtype=torch.int64) # broadcast across tp torch.distributed.broadcast( logits, mpu.get_tensor_model_parallel_src_rank(), group=mpu.get_tensor_model_parallel_group() ) torch.distributed.broadcast( target, mpu.get_tensor_model_parallel_src_rank(), group=mpu.get_tensor_model_parallel_group() ) tp_rank = mpu.get_tensor_model_parallel_rank() vocab_size_per_tp = vocab_size // mpu.get_tensor_model_parallel_world_size() # get the local logits of each tp vocab_parallel_logits = ( logits.clone().detach()[:, tp_rank * vocab_size_per_tp : (tp_rank + 1) * vocab_size_per_tp].requires_grad_() ) logits.grad = None vocab_parallel_logits.grad = None log_gpu_memory_usage("begin") output_entropy = vocab_parallel_entropy(vocab_parallel_logits) log_gpu_memory_usage("after forward") grad_output = torch.randn_like(output_entropy) output_entropy.backward(grad_output) log_gpu_memory_usage("after backward") target_entropy = entropy_from_logits(logits) torch.testing.assert_close(output_entropy, target_entropy) target_entropy.backward(grad_output) torch.testing.assert_close( logits.grad[:, tp_rank * vocab_size_per_tp : (tp_rank + 1) * vocab_size_per_tp], vocab_parallel_logits.grad ) # make sure logits is not altered torch.testing.assert_close( logits[:, tp_rank * vocab_size_per_tp : (tp_rank + 1) * vocab_size_per_tp], vocab_parallel_logits ) if mpu.get_tensor_model_parallel_rank() == 0: print("test_vocab_parallel_entropy passes") mpu.destroy_model_parallel() if __name__ == "__main__": local_rank, rank, world_size = initialize_global_process_group() test_all_gather_data_proto() test_vocab_parallel_entropy()