# Copyright 2024 Bytedance Ltd. and/or its affiliates # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import ray from verl import DataProto from verl.single_controller.base import Worker from verl.single_controller.base.decorator import Dispatch, register from verl.single_controller.ray.base import ( RayClassWithInitArgs, RayResourcePool, RayWorkerGroup, create_colocated_worker_cls, ) @ray.remote class Actor(Worker): def __init__(self) -> None: super().__init__() @register(dispatch_mode=Dispatch.DP_COMPUTE_PROTO) def add(self, data: DataProto): data.batch["a"] += self.rank return data @ray.remote class Critic(Worker): def __init__(self, config) -> None: super().__init__() self.config = config @register(dispatch_mode=Dispatch.DP_COMPUTE_PROTO) async def sub(self, data: DataProto): data.batch["a"] -= self.config["b"] return data def test_colocated_workers(): ray.init() import torch data = DataProto.from_dict({"a": torch.zeros(10)}) # create separate workers on the same resource pool actor_cls = RayClassWithInitArgs(cls=Actor) critic_cls = RayClassWithInitArgs(cls=Critic, config={"b": 10}) resource_pool = RayResourcePool(process_on_nodes=[2]) actor_wg = RayWorkerGroup(resource_pool=resource_pool, ray_cls_with_init=actor_cls) critic_wg = RayWorkerGroup(resource_pool=resource_pool, ray_cls_with_init=critic_cls) expected_actor_output = actor_wg.add(data) expected_critic_output = critic_wg.sub(data) # create colocated workers cls_dict = {"actor": actor_cls, "critic": critic_cls} ray_cls_with_init = create_colocated_worker_cls(cls_dict) wg_dict = RayWorkerGroup(resource_pool=resource_pool, ray_cls_with_init=ray_cls_with_init) spawn_wg = wg_dict.spawn(prefix_set=cls_dict.keys()) colocated_actor_wg = spawn_wg["actor"] colocated_critic_wg = spawn_wg["critic"] actor_output = colocated_actor_wg.add(data) critic_output = colocated_critic_wg.sub(data) torch.testing.assert_close(expected_actor_output.batch, actor_output.batch, atol=0, rtol=0) torch.testing.assert_close(expected_critic_output.batch, critic_output.batch, atol=0, rtol=0) ray.shutdown()