export HIP_VISIBLE_DEVICES=0,1,2,3,4,5,6,7 #export ROCR_VISIBLE_DEVICES=$HIP_VISIBLE_DEVICES #export CUDA_VISIBLE_DEVICES=$HIP_VISIBLE_DEVICES export RAY_EXPERIMENTAL_NOSET_HIP_VISIBLE_DEVICES=1 #unset ROCR_VISIBLE_DEVICES # PYTHONUNBUFFERED=1 python3 -m verl.trainer.main_ppo \ # data.train_files=/data/gsm8k/train.parquet \ # data.val_files=/data/gsm8k/test.parquet \ # data.train_batch_size=256 \ # data.max_prompt_length=512 \ # data.max_response_length=256 \ # actor_rollout_ref.model.path=/model/Qwen2.5-0.5B-Instruct \ # actor_rollout_ref.actor.optim.lr=1e-6 \ # actor_rollout_ref.actor.ppo_mini_batch_size=64 \ # actor_rollout_ref.actor.ppo_micro_batch_size_per_gpu=4 \ # actor_rollout_ref.rollout.log_prob_micro_batch_size_per_gpu=4 \ # actor_rollout_ref.rollout.tensor_model_parallel_size=1 \ # actor_rollout_ref.rollout.gpu_memory_utilization=0.4 \ # actor_rollout_ref.ref.log_prob_micro_batch_size_per_gpu=4 \ # critic.optim.lr=1e-5 \ # critic.model.path=/model/Qwen2.5-0.5B-Instruct \ # critic.ppo_micro_batch_size_per_gpu=4 \ # algorithm.kl_ctrl.kl_coef=0.001 \ # trainer.logger=console \ # trainer.val_before_train=False \ # trainer.n_gpus_per_node=1 \ # trainer.nnodes=1 \ # trainer.save_freq=10 \ # trainer.test_freq=10 \ # trainer.total_epochs=15 2>&1 | tee verl_demo.log PYTHONUNBUFFERED=1 python3 -m verl.trainer.main_ppo \ algorithm.adv_estimator=grpo \ data.train_files=/data/gsm8k/train.parquet \ data.val_files=/data/gsm8k/test.parquet \ data.train_batch_size=1024 \ data.max_prompt_length=512 \ data.max_response_length=1024 \ data.filter_overlong_prompts=True \ data.truncation='error' \ actor_rollout_ref.model.path=/model/Qwen2.5-0.5B-Instruct \ actor_rollout_ref.actor.optim.lr=1e-6 \ actor_rollout_ref.model.use_remove_padding=True \ actor_rollout_ref.actor.ppo_mini_batch_size=256 \ actor_rollout_ref.actor.ppo_micro_batch_size_per_gpu=32 \ actor_rollout_ref.actor.use_kl_loss=True \ actor_rollout_ref.actor.kl_loss_coef=0.001 \ actor_rollout_ref.actor.kl_loss_type=low_var_kl \ actor_rollout_ref.actor.entropy_coeff=0 \ actor_rollout_ref.model.enable_gradient_checkpointing=True \ actor_rollout_ref.actor.fsdp_config.param_offload=False \ actor_rollout_ref.actor.fsdp_config.optimizer_offload=False \ actor_rollout_ref.rollout.log_prob_micro_batch_size_per_gpu=32 \ actor_rollout_ref.rollout.tensor_model_parallel_size=1 \ actor_rollout_ref.rollout.name=vllm \ actor_rollout_ref.rollout.gpu_memory_utilization=0.6 \ actor_rollout_ref.rollout.n=5 \ actor_rollout_ref.ref.log_prob_micro_batch_size_per_gpu=32 \ actor_rollout_ref.ref.fsdp_config.param_offload=True \ trainer.critic_warmup=0 \ trainer.logger=['console'] \ trainer.project_name='test' \ trainer.experiment_name='qwen2_5_0_5b_function_rm' \ trainer.n_gpus_per_node=8 \ trainer.default_local_dir=/verl/qwen2_5_14b_verl_grpo_8 \ trainer.nnodes=1 \ trainer.save_freq=5 \ trainer.test_freq=5 \ trainer.total_epochs=1 # export CUDA_VISIBLE_DEVICES=0 # export RAY_DISABLE_GPU_AUTODETECTION=1 # PYTHONUNBUFFERED=1 python3 -m verl.trainer.main_ppo \ # data.train_files=/data/gsm8k/train.parquet \ # data.val_files=/data/gsm8k/test.parquet \ # data.train_batch_size=256 \ # data.max_prompt_length=512 \ # data.max_response_length=256 \ # actor_rollout_ref.model.path=/model/Qwen2.5-0.5B-Instruct \ # actor_rollout_ref.actor.optim.lr=1e-6 \ # actor_rollout_ref.actor.ppo_mini_batch_size=64 \ # actor_rollout_ref.actor.ppo_micro_batch_size_per_gpu=4 \ # actor_rollout_ref.rollout.log_prob_micro_batch_size_per_gpu=4 \ # actor_rollout_ref.rollout.tensor_model_parallel_size=1 \ # actor_rollout_ref.rollout.gpu_memory_utilization=0.4 \ # actor_rollout_ref.ref.log_prob_micro_batch_size_per_gpu=4 \ # critic.optim.lr=1e-5 \ # critic.model.path=/model/Qwen2.5-0.5B-Instruct \ # critic.ppo_micro_batch_size_per_gpu=4 \ # algorithm.kl_ctrl.kl_coef=0.001 \ # trainer.logger=console \ # trainer.val_before_train=False \ # trainer.n_gpus_per_node=1 \ # trainer.nnodes=1 \ # trainer.save_freq=10 \ # trainer.test_freq=10 \ # trainer.total_epochs=15 2>&1 | tee verl_demo.log