# Copyright 2024 Bytedance Ltd. and/or its affiliates # Copyright 2023-2024 SGLang Team # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ Note that we don't combine the main with ray_trainer as ray_trainer is used by other main. """ import os import hydra import ray from verl.trainer.ppo.reward import load_reward_manager from .sppo_ray_trainer import RaySPPOTrainer @hydra.main(config_path="config", config_name="sppo_trainer", version_base=None) def main(config): run_ppo(config) def run_ppo(config) -> None: # TODO(linjunrong.ocss884): this ENV is left for resolving SGLang conflict with ray devices # isolation, will solve in the future os.environ["ENSURE_CUDA_VISIBLE_DEVICES"] = os.environ.get("CUDA_VISIBLE_DEVICES", "") if not ray.is_initialized(): # this is for local ray cluster ray.init( runtime_env={ "env_vars": {"TOKENIZERS_PARALLELISM": "true", "NCCL_DEBUG": "WARN", "VLLM_LOGGING_LEVEL": "WARN"} }, num_cpus=config.ray_init.num_cpus, ) runner = TaskRunner.remote() ray.get(runner.run.remote(config)) @ray.remote(num_cpus=1) # please make sure main_task is not scheduled on head class TaskRunner: def run(self, config): # print initial config from pprint import pprint from omegaconf import OmegaConf from verl.utils.fs import copy_to_local pprint(OmegaConf.to_container(config, resolve=True)) # resolve=True will eval symbol values OmegaConf.resolve(config) # download the checkpoint from hdfs local_path = copy_to_local(config.actor_rollout_ref.model.path) # instantiate tokenizer from verl.utils import hf_processor, hf_tokenizer trust_remote_code = config.data.get("trust_remote_code", False) tokenizer = hf_tokenizer(local_path, trust_remote_code=trust_remote_code) processor = hf_processor(local_path, use_fast=True) # used for multimodal LLM, could be none # define worker classes if config.actor_rollout_ref.actor.strategy in {"fsdp", "fsdp2"}: assert config.critic.strategy in {"fsdp", "fsdp2"} from verl.single_controller.ray import RayWorkerGroup from .sppo_worker import SPPOActorRolloutRefWorker # , CriticWorker actor_rollout_cls = SPPOActorRolloutRefWorker ray_worker_group_cls = RayWorkerGroup elif config.actor_rollout_ref.actor.strategy == "megatron": assert config.actor_rollout_ref.actor.strategy == config.critic.strategy from verl.single_controller.ray.megatron import NVMegatronRayWorkerGroup from verl.workers.megatron_workers import ActorRolloutRefWorker actor_rollout_cls = ActorRolloutRefWorker ray_worker_group_cls = NVMegatronRayWorkerGroup else: raise NotImplementedError from verl.trainer.ppo.ray_trainer import ResourcePoolManager, Role # sppo does not use critic role_worker_mapping = { Role.ActorRollout: ray.remote(actor_rollout_cls), } global_pool_id = "global_pool" resource_pool_spec = { global_pool_id: [config.trainer.n_gpus_per_node] * config.trainer.nnodes, } mapping = { Role.ActorRollout: global_pool_id, } # we should adopt a multi-source reward function here # - for rule-based rm, we directly call a reward score # - for model-based rm, we call a model # - for code related prompt, we send to a sandbox if there are test cases # - finally, we combine all the rewards together # - The reward type depends on the tag of the data if config.reward_model.enable: if config.reward_model.strategy in {"fsdp", "fsdp2"}: from verl.workers.fsdp_workers import RewardModelWorker elif config.reward_model.strategy == "megatron": from verl.workers.megatron_workers import RewardModelWorker else: raise NotImplementedError role_worker_mapping[Role.RewardModel] = ray.remote(RewardModelWorker) mapping[Role.RewardModel] = global_pool_id # use reference model if config.algorithm.use_kl_in_reward or config.actor_rollout_ref.actor.use_kl_loss: role_worker_mapping[Role.RefPolicy] = ray.remote(SPPOActorRolloutRefWorker) mapping[Role.RefPolicy] = global_pool_id reward_fn = load_reward_manager( config, tokenizer, num_examine=0, **config.reward_model.get("reward_kwargs", {}) ) val_reward_fn = load_reward_manager(config, tokenizer, num_examine=1) resource_pool_manager = ResourcePoolManager(resource_pool_spec=resource_pool_spec, mapping=mapping) trainer = RaySPPOTrainer( config=config, tokenizer=tokenizer, processor=processor, role_worker_mapping=role_worker_mapping, resource_pool_manager=resource_pool_manager, ray_worker_group_cls=ray_worker_group_cls, reward_fn=reward_fn, val_reward_fn=val_reward_fn, ) trainer.init_workers() trainer.fit() if __name__ == "__main__": main()