#!/usr/bin/env bash set -xeuo pipefail project_name='DAPO' exp_name='DAPO-Qwen2.5-7b-MATH-0527a1' adv_estimator=grpo use_kl_in_reward=False kl_coef=0.0 use_kl_loss=False kl_loss_coef=0.0 clip_ratio_low=0.2 clip_ratio_high=0.28 max_prompt_length=$((1024 * 2)) max_response_length=$((1024 * 8)) enable_overlong_buffer=True overlong_buffer_len=$((1024 * 4)) overlong_penalty_factor=1.0 loss_agg_mode="token-mean" train_prompt_bsz=512 n_resp_per_prompt=16 train_prompt_mini_bsz=32 # Ray # RAY_ADDRESS=${RAY_ADDRESS:-"http://localhost:8265"} # WORKING_DIR=${WORKING_DIR:-"${PWD}"} # RUNTIME_ENV=${RUNTIME_ENV:-"${WORKING_DIR}/verl/trainer/runtime_env.yaml"} NNODES=${NNODES:-8} NGPUS_PER_NODE=${NGPUS_PER_NODE:-8} # Paths RAY_DATA_HOME=${RAY_DATA_HOME:-"${HOME}/verl"} # very important! please modify the max_position_embeddings in config.json to 32768 after downloading from huggingface MODEL_PATH=${MODEL_PATH:-"${RAY_DATA_HOME}/models/Qwen2.5-Math-7B"} CKPTS_DIR=${CKPTS_DIR:-"${RAY_DATA_HOME}/ckpts/${project_name}/${exp_name}"} TRAIN_FILE=${TRAIN_FILE:-"${RAY_DATA_HOME}/data/dapo-math-17k.parquet"} TEST_FILE=${TEST_FILE:-"${RAY_DATA_HOME}/data/aime-2024.parquet"} # Algorithm temperature=1.0 top_p=1.0 top_k=-1 # 0 for HF rollout, -1 for vLLM rollout val_top_p=0.7 # Performance Related Parameter sp_size=4 use_dynamic_bsz=True actor_ppo_max_token_len=$(((max_prompt_length + max_response_length) * 2)) infer_ppo_max_token_len=$(((max_prompt_length + max_response_length) * 3)) offload=True gen_tp=4 fsdp_size=32 # reference run wandb: https://wandb.ai/verl-org/DAPO%20Reproduction%20on%20verl/runs/ow47vvon?nw=nwusertongyuxuan361 python3 -m verl.trainer.main_ppo \ data.train_files="${TRAIN_FILE}" \ data.val_files="${TEST_FILE}" \ data.prompt_key=prompt \ data.truncation='left' \ data.max_prompt_length=${max_prompt_length} \ data.max_response_length=${max_response_length} \ data.train_batch_size=${train_prompt_bsz} \ actor_rollout_ref.rollout.n=${n_resp_per_prompt} \ algorithm.adv_estimator=${adv_estimator} \ algorithm.use_kl_in_reward=${use_kl_in_reward} \ algorithm.kl_ctrl.kl_coef=${kl_coef} \ actor_rollout_ref.actor.use_kl_loss=${use_kl_loss} \ actor_rollout_ref.actor.kl_loss_coef=${kl_loss_coef} \ actor_rollout_ref.actor.clip_ratio_low=${clip_ratio_low} \ actor_rollout_ref.actor.clip_ratio_high=${clip_ratio_high} \ actor_rollout_ref.actor.clip_ratio_c=10.0 \ actor_rollout_ref.model.use_remove_padding=True \ +actor_rollout_ref.model.override_config.max_position_embeddings=32768 \ actor_rollout_ref.actor.use_dynamic_bsz=${use_dynamic_bsz} \ actor_rollout_ref.ref.log_prob_use_dynamic_bsz=${use_dynamic_bsz} \ actor_rollout_ref.rollout.log_prob_use_dynamic_bsz=${use_dynamic_bsz} \ actor_rollout_ref.actor.ppo_max_token_len_per_gpu=${actor_ppo_max_token_len} \ actor_rollout_ref.ref.log_prob_max_token_len_per_gpu=${infer_ppo_max_token_len} \ actor_rollout_ref.rollout.log_prob_max_token_len_per_gpu=${infer_ppo_max_token_len} \ actor_rollout_ref.rollout.name=vllm \ actor_rollout_ref.model.path="${MODEL_PATH}" \ actor_rollout_ref.model.enable_gradient_checkpointing=True \ actor_rollout_ref.actor.optim.lr=1e-6 \ actor_rollout_ref.actor.optim.lr_warmup_steps=10 \ actor_rollout_ref.actor.optim.weight_decay=0.1 \ actor_rollout_ref.actor.ppo_mini_batch_size=${train_prompt_mini_bsz} \ actor_rollout_ref.actor.fsdp_config.param_offload=${offload} \ actor_rollout_ref.actor.fsdp_config.optimizer_offload=${offload} \ actor_rollout_ref.actor.entropy_coeff=0 \ actor_rollout_ref.actor.grad_clip=1.0 \ actor_rollout_ref.actor.loss_agg_mode=${loss_agg_mode} \ actor_rollout_ref.actor.ulysses_sequence_parallel_size=${sp_size} \ actor_rollout_ref.rollout.gpu_memory_utilization=0.80 \ actor_rollout_ref.rollout.tensor_model_parallel_size=${gen_tp} \ actor_rollout_ref.rollout.enable_chunked_prefill=True \ actor_rollout_ref.rollout.max_num_batched_tokens=$((max_prompt_length + max_response_length)) \ actor_rollout_ref.rollout.temperature=${temperature} \ actor_rollout_ref.rollout.top_p=${top_p} \ actor_rollout_ref.rollout.top_k=${top_k} \ actor_rollout_ref.rollout.val_kwargs.temperature=${temperature} \ actor_rollout_ref.rollout.val_kwargs.top_p=${val_top_p} \ actor_rollout_ref.rollout.val_kwargs.top_k=${top_k} \ actor_rollout_ref.rollout.val_kwargs.do_sample=True \ actor_rollout_ref.rollout.val_kwargs.n=1 \ actor_rollout_ref.ref.fsdp_config.param_offload=${offload} \ actor_rollout_ref.ref.ulysses_sequence_parallel_size=${sp_size} \ actor_rollout_ref.actor.fsdp_config.fsdp_size=${fsdp_size} \ reward_model.reward_manager=dapo \ +reward_model.reward_kwargs.overlong_buffer_cfg.enable=${enable_overlong_buffer} \ +reward_model.reward_kwargs.overlong_buffer_cfg.len=${overlong_buffer_len} \ +reward_model.reward_kwargs.overlong_buffer_cfg.penalty_factor=${overlong_penalty_factor} \ +reward_model.reward_kwargs.overlong_buffer_cfg.log=False \ +reward_model.reward_kwargs.max_resp_len=${max_response_length} \ trainer.logger='["console","wandb"]' \ trainer.project_name="${project_name}" \ trainer.experiment_name="${exp_name}" \ trainer.n_gpus_per_node="${NGPUS_PER_NODE}" \ trainer.nnodes="${NNODES}" \ trainer.val_before_train=True \ trainer.test_freq=10 \ trainer.save_freq=10 \ trainer.total_epochs=10 \ trainer.total_training_steps=200 \ trainer.default_local_dir="${CKPTS_DIR}" \ trainer.resume_mode=auto \ trainer.log_val_generations=10