#!/usr/bin/env bash set -e -x OUTPUT_FILE="/tmp/output_ray_trainer.txt" export PATH=$PATH:~/.local/bin rm -rf $OUTPUT_FILE python3 tests/e2e/arithmetic_sequence/rl/main_trainer.py \ algorithm.adv_estimator=gae \ data.train_files=tests/e2e/arithmetic_sequence/data/train.parquet \ data.val_files=tests/e2e/arithmetic_sequence/data/test.parquet \ data.train_batch_size=800 \ data.val_batch_size=200 \ data.max_prompt_length=16 \ data.max_response_length=32 \ data.return_raw_input_ids=True \ actor_rollout_ref.model.path=tests/e2e/arithmetic_sequence/model \ actor_rollout_ref.model.external_lib=tests.e2e.envs.digit_completion \ actor_rollout_ref.actor.ppo_micro_batch_size_per_gpu=200 \ actor_rollout_ref.actor.entropy_coeff=0 \ actor_rollout_ref.actor.optim.lr=1e-4 \ actor_rollout_ref.actor.use_kl_loss=False \ actor_rollout_ref.rollout.log_prob_micro_batch_size_per_gpu=200 \ actor_rollout_ref.rollout.name=hf \ actor_rollout_ref.rollout.use_fire_sampling=True \ actor_rollout_ref.rollout.tensor_model_parallel_size=1 \ critic.ppo_micro_batch_size_per_gpu=200 \ critic.model.path=tests/e2e/arithmetic_sequence/model \ critic.optim.lr=1e-3 \ algorithm.use_kl_in_reward=False \ trainer.total_epochs=200 \ trainer.experiment_name=arithmetic_sequences \ trainer.logger=['console'] \ trainer.n_gpus_per_node=1 \ trainer.test_freq=1 \ trainer.save_freq=110 | tee $OUTPUT_FILE; python3 tests/e2e/check_results.py --output_file=$OUTPUT_FILE --target 0.19 rm -rf $OUTPUT_FILE