# Copyright 2024 Bytedance Ltd. and/or its affiliates # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Copied from https://github.com/dariush-bahrami/character-tokenizer/blob/master/charactertokenizer/core.py CharacterTokenzier for Hugging Face Transformers. This is heavily inspired from CanineTokenizer in transformers package. """ import json import os from pathlib import Path from typing import Dict, List, Optional, Sequence, Union from transformers.tokenization_utils import AddedToken, PreTrainedTokenizer class CharTokenizer(PreTrainedTokenizer): def __init__(self, characters: Sequence[str], model_max_length: int, chat_template, **kwargs): """Character tokenizer for Hugging Face transformers. Args: characters (Sequence[str]): List of desired characters. Any character which is not included in this list will be replaced by a special token called [UNK] with id=6. Following are list of all of the special tokens with their corresponding ids: "[CLS]": 0 "[SEP]": 1 "[BOS]": 2 "[MASK]": 3 "[PAD]": 4 "[RESERVED]": 5 "[UNK]": 6 an id (starting at 7) will be assigned to each character. model_max_length (int): Model maximum sequence length. """ eos_token_str = 'E' sep_token_str = 'S' pad_token_str = 'P' unk_token_str = 'U' self.characters = characters self.model_max_length = model_max_length eos_token = AddedToken(eos_token_str, lstrip=False, rstrip=False) sep_token = AddedToken(sep_token_str, lstrip=False, rstrip=False) pad_token = AddedToken(pad_token_str, lstrip=False, rstrip=False) unk_token = AddedToken(unk_token_str, lstrip=False, rstrip=False) self._vocab_str_to_int = { sep_token_str: 0, eos_token_str: 1, pad_token_str: 2, unk_token_str: 3, **{ ch: i + 4 for i, ch in enumerate(characters) }, } self._vocab_int_to_str = {v: k for k, v in self._vocab_str_to_int.items()} super().__init__( eos_token=eos_token, sep_token=sep_token, pad_token=pad_token, unk_token=unk_token, add_prefix_space=False, model_max_length=model_max_length, **kwargs, ) self.chat_template = chat_template @property def vocab_size(self) -> int: return len(self._vocab_str_to_int) def get_vocab(self): return self._vocab_str_to_int def _tokenize(self, text: str) -> List[str]: return list(text) def _convert_token_to_id(self, token: str) -> int: return self._vocab_str_to_int.get(token, self._vocab_str_to_int["U"]) def _convert_id_to_token(self, index: int) -> str: return self._vocab_int_to_str[index] def convert_tokens_to_string(self, tokens): return "".join(tokens) def build_inputs_with_special_tokens(self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None) -> List[int]: sep = [self.sep_token_id] cls = [self.cls_token_id] result = cls + token_ids_0 + sep if token_ids_1 is not None: result += token_ids_1 + sep return result def get_special_tokens_mask( self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None, already_has_special_tokens: bool = False, ) -> List[int]: if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_0=token_ids_0, token_ids_1=token_ids_1, already_has_special_tokens=True, ) result = [1] + ([0] * len(token_ids_0)) + [1] if token_ids_1 is not None: result += ([0] * len(token_ids_1)) + [1] return result def get_config(self) -> Dict: return { "char_ords": [ord(ch) for ch in self.characters], "model_max_length": self.model_max_length, "chat_template": self.chat_template } @classmethod def from_config(cls, config: Dict) -> "DigitCompletionTokenizer": cfg = {} cfg["characters"] = [chr(i) for i in config["char_ords"]] cfg["model_max_length"] = config["model_max_length"] cfg["chat_template"] = config["chat_template"] return cls(**cfg) def save_pretrained(self, save_directory: Union[str, os.PathLike], **kwargs): cfg_file = Path(save_directory) / "tokenizer_config.json" cfg = self.get_config() with open(cfg_file, "w") as f: json.dump(cfg, f, indent=4) @classmethod def from_pretrained(cls, save_directory: Union[str, os.PathLike], **kwargs): cfg_file = Path(save_directory) / "tokenizer_config.json" with open(cfg_file) as f: cfg = json.load(f) return cls.from_config(cfg)