# Copyright 2024 PRIME team and/or its affiliates # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # Copyright 2024 Bytedance Ltd. and/or its affiliates # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ Note that we don't combine the main with ray_trainer as ray_trainer is used by other main. """ from .prime_ray_trainer import RayPRIMETrainer import ray import hydra @hydra.main(config_path='config', config_name='prime_trainer', version_base=None) def main(config): run_prime(config) def run_prime(config, compute_score=None): if not ray.is_initialized(): # this is for local ray cluster ray.init( runtime_env={'env_vars': { 'TOKENIZERS_PARALLELISM': 'true', 'NCCL_DEBUG': 'WARN' }}, ) ray.get(main_task.remote(config, compute_score)) @ray.remote(num_cpus=1) # please make sure main_task is not scheduled on head def main_task(config, compute_score=None): from verl.utils.fs import copy_local_path_from_hdfs # print initial config from pprint import pprint from omegaconf import OmegaConf pprint(OmegaConf.to_container(config, resolve=True)) # resolve=True will eval symbol values OmegaConf.resolve(config) # download the checkpoint from hdfs local_path = copy_local_path_from_hdfs(config.actor_rollout_ref.model.path) # instantiate tokenizer from verl.utils import hf_tokenizer tokenizer = hf_tokenizer(local_path) # define worker classes if config.actor_rollout_ref.actor.strategy == 'fsdp': assert config.actor_rollout_ref.actor.strategy == config.critic.strategy from verl.workers.fsdp_workers import ActorRolloutRefWorker, CriticWorker from verl.single_controller.ray import RayWorkerGroup ray_worker_group_cls = RayWorkerGroup elif config.actor_rollout_ref.actor.strategy == 'megatron': assert config.actor_rollout_ref.actor.strategy == config.critic.strategy from verl.workers.megatron_workers import ActorRolloutRefWorker, CriticWorker from verl.single_controller.ray.megatron import NVMegatronRayWorkerGroup ray_worker_group_cls = NVMegatronRayWorkerGroup else: raise NotImplementedError from verl.trainer.ppo.ray_trainer import ResourcePoolManager, Role role_worker_mapping = { Role.ActorRollout: ray.remote(ActorRolloutRefWorker), } global_pool_id = 'global_pool' resource_pool_spec = { global_pool_id: [config.trainer.n_gpus_per_node] * config.trainer.nnodes, } mapping = { Role.ActorRollout: global_pool_id, } #use reference model if config.algorithm.use_kl_in_reward or config.actor_rollout_ref.actor.use_kl_loss: role_worker_mapping[Role.RefPolicy] = ray.remote(ActorRolloutRefWorker) mapping[Role.RefPolicy] = global_pool_id if config.reward_model.enable: from .prime_fsdp_workers import PRIMERewardModelWorker role_worker_mapping[Role.RewardModel] = ray.remote(PRIMERewardModelWorker) mapping[Role.RewardModel] = global_pool_id reward_manager_name = config.reward_model.get("reward_manager", "naive") if reward_manager_name == 'naive': from verl.workers.reward_manager import NaiveRewardManager reward_manager_cls = NaiveRewardManager elif reward_manager_name == 'prime': from verl.workers.reward_manager import PrimeRewardManager reward_manager_cls = PrimeRewardManager else: raise NotImplementedError reward_fn = reward_manager_cls(tokenizer=tokenizer, num_examine=0, compute_score=compute_score) # Note that we always use function-based RM for validation val_reward_fn = reward_manager_cls(tokenizer=tokenizer, num_examine=1, compute_score=compute_score) resource_pool_manager = ResourcePoolManager(resource_pool_spec=resource_pool_spec, mapping=mapping) trainer = RayPRIMETrainer(config=config, tokenizer=tokenizer, role_worker_mapping=role_worker_mapping, resource_pool_manager=resource_pool_manager, ray_worker_group_cls=ray_worker_group_cls, reward_fn=reward_fn, val_reward_fn=val_reward_fn) trainer.init_workers() trainer.fit() if __name__ == '__main__': main()