#!/usr/bin/env bash set -xeuo pipefail project_name='DAPO' exp_name='DAPO-Qwen2.5-7B-Math-Test' adv_estimator=grpo use_kl_in_reward=False kl_coef=0.0 use_kl_loss=False kl_loss_coef=0.0 clip_ratio_low=0.2 clip_ratio_high=0.28 max_prompt_length=$((1024 * 2)) max_response_length=$((1024 * 2)) enable_overlong_buffer=True overlong_buffer_len=512 overlong_penalty_factor=1.0 loss_agg_mode="token-mean" enable_filter_groups=True filter_groups_metric=acc max_num_gen_batches=10 train_prompt_bsz=512 gen_prompt_bsz=$((train_prompt_bsz * 3)) train_prompt_mini_bsz=32 n_resp_per_prompt=16 # Ray RAY_ADDRESS=${RAY_ADDRESS:-"http://localhost:8265"} WORKING_DIR=${WORKING_DIR:-"${PWD}"} RUNTIME_ENV=${RUNTIME_ENV:-"${WORKING_DIR}/verl/trainer/runtime_env.yaml"} NNODES=${NNODES:-4} # Paths RAY_DATA_HOME=${RAY_DATA_HOME:-"${HOME}/verl"} MODEL_PATH=${MODEL_PATH:-"${RAY_DATA_HOME}/models/Qwen2.5-Math-7B"} CKPTS_DIR=${CKPTS_DIR:-"${RAY_DATA_HOME}/ckpts/${project_name}/${exp_name}"} TRAIN_FILE=${TRAIN_FILE:-"${RAY_DATA_HOME}/data/dapo-math-17k.parquet"} TEST_FILE=${TEST_FILE:-"${RAY_DATA_HOME}/data/aime-2024.parquet"} # Algorithm temperature=1.0 top_p=1.0 top_k=-1 # 0 for HF rollout, -1 for vLLM rollout # Mathematically equivalent use_dynamic_bsz=True infer_micro_batch_size=null train_micro_batch_size=null offload=False ray job submit --no-wait --runtime-env="${RUNTIME_ENV}" \ --working-dir "${WORKING_DIR}" \ -- python3 -m recipe.dapo.src.main_dapo \ data.train_files="${TRAIN_FILE}" \ data.val_files="${TEST_FILE}" \ data.prompt_key=prompt \ data.truncation='left' \ data.max_prompt_length=${max_prompt_length} \ data.max_response_length=${max_response_length} \ data.gen_batch_size=${gen_prompt_bsz} \ data.train_batch_size=${train_prompt_bsz} \ data.truncation='left' \ actor_rollout_ref.rollout.n=${n_resp_per_prompt} \ actor_rollout_ref.actor.use_kl_loss=${use_kl_loss} \ actor_rollout_ref.actor.kl_loss_coef=${kl_loss_coef} \ actor_rollout_ref.actor.clip_ratio_low=${clip_ratio_low} \ actor_rollout_ref.actor.clip_ratio_high=${clip_ratio_high} \ actor_rollout_ref.actor.clip_ratio_c=10.0 \ algorithm.adv_estimator=${adv_estimator} \ algorithm.use_kl_in_reward=${use_kl_in_reward} \ algorithm.kl_ctrl.kl_coef=${kl_coef} \ algorithm.filter_groups.enable=${enable_filter_groups} \ algorithm.filter_groups.metric=${filter_groups_metric} \ algorithm.filter_groups.max_num_gen_batches=${max_num_gen_batches} \ actor_rollout_ref.model.use_remove_padding=True \ actor_rollout_ref.actor.use_dynamic_bsz=${use_dynamic_bsz} \ actor_rollout_ref.ref.log_prob_use_dynamic_bsz=${use_dynamic_bsz} \ actor_rollout_ref.rollout.log_prob_use_dynamic_bsz=${use_dynamic_bsz} \ actor_rollout_ref.actor.ppo_max_token_len_per_gpu=$((max_prompt_length + max_response_length)) \ actor_rollout_ref.ref.log_prob_max_token_len_per_gpu=$((max_prompt_length + max_response_length)) \ actor_rollout_ref.rollout.log_prob_max_token_len_per_gpu=$((max_prompt_length + max_response_length)) \ actor_rollout_ref.model.path="${MODEL_PATH}" \ +actor_rollout_ref.model.override_config.attention_dropout=0. \ +actor_rollout_ref.model.override_config.embd_pdrop=0. \ +actor_rollout_ref.model.override_config.resid_pdrop=0. \ actor_rollout_ref.model.enable_gradient_checkpointing=True \ actor_rollout_ref.actor.optim.lr=1e-6 \ actor_rollout_ref.actor.optim.lr_warmup_steps=10 \ actor_rollout_ref.actor.optim.weight_decay=0.1 \ actor_rollout_ref.actor.ppo_mini_batch_size=${train_prompt_mini_bsz} \ actor_rollout_ref.actor.ppo_micro_batch_size=${train_micro_batch_size} \ actor_rollout_ref.actor.fsdp_config.param_offload=${offload} \ actor_rollout_ref.actor.fsdp_config.optimizer_offload=${offload} \ actor_rollout_ref.actor.entropy_coeff=0 \ actor_rollout_ref.actor.grad_clip=1.0 \ actor_rollout_ref.actor.loss_agg_mode=${loss_agg_mode} \ actor_rollout_ref.actor.loss_agg_mode=True \ actor_rollout_ref.actor.ulysses_sequence_parallel_size=1 \ actor_rollout_ref.rollout.gpu_memory_utilization=0.85 \ actor_rollout_ref.rollout.log_prob_micro_batch_size=${infer_micro_batch_size} \ actor_rollout_ref.rollout.tensor_model_parallel_size=1 \ actor_rollout_ref.rollout.enable_chunked_prefill=True \ actor_rollout_ref.rollout.max_num_batched_tokens=$((max_prompt_length + max_response_length)) \ actor_rollout_ref.rollout.temperature=${temperature} \ actor_rollout_ref.rollout.top_p=${top_p} \ actor_rollout_ref.rollout.top_k="${top_k}" \ actor_rollout_ref.rollout.val_kwargs.temperature=${temperature} \ actor_rollout_ref.rollout.val_kwargs.top_p=${top_p} \ actor_rollout_ref.rollout.val_kwargs.top_k=${top_k} \ actor_rollout_ref.rollout.val_kwargs.do_sample=True \ actor_rollout_ref.rollout.val_kwargs.n=1 \ actor_rollout_ref.ref.log_prob_micro_batch_size=${infer_micro_batch_size} \ actor_rollout_ref.ref.fsdp_config.param_offload=${offload} \ actor_rollout_ref.ref.ulysses_sequence_parallel_size=1 \ actor_rollout_ref.actor.fsdp_config.fsdp_size=-1 \ reward_model.reward_manager=dapo \ reward_model.overlong_buffer.enable=${enable_overlong_buffer} \ reward_model.overlong_buffer.len=${overlong_buffer_len} \ reward_model.overlong_buffer.penalty_factor=${overlong_penalty_factor} \ trainer.logger=['console','wandb'] \ trainer.project_name="${project_name}" \ trainer.experiment_name="${exp_name}" \ trainer.n_gpus_per_node=8 \ trainer.nnodes="${NNODES}" \ trainer.val_before_train=True \ trainer.test_freq=2 \ trainer.save_freq=2 \ trainer.total_epochs=1 \ trainer.default_local_dir="${CKPTS_DIR}" \ trainer.resume_mode=disable