set -x export HF_DATASETS_OFFLINE=1 export TRANSFORMERS_OFFLINE=1 export VLLM_ATTENTION_BACKEND=XFORMERS python3 -m verl.trainer.main_ppo \ algorithm.adv_estimator=remax \ data.train_files=$HOME/data/gsm8k/train.parquet \ data.val_files=$HOME/data/gsm8k/test.parquet \ data.train_batch_size=1024 \ data.max_prompt_length=512 \ data.max_response_length=1024 \ data.filter_overlong_prompts=True \ data.truncation='error' \ actor_rollout_ref.model.path=Qwen/Qwen2.5-7B-Instruct \ actor_rollout_ref.actor.optim.lr=1e-6 \ actor_rollout_ref.model.use_remove_padding=True \ actor_rollout_ref.actor.ppo_mini_batch_size=256 \ actor_rollout_ref.actor.use_dynamic_bsz=True \ actor_rollout_ref.actor.ppo_max_token_len_per_gpu=24000 \ actor_rollout_ref.actor.use_kl_loss=False \ actor_rollout_ref.model.enable_gradient_checkpointing=True \ actor_rollout_ref.actor.fsdp_config.param_offload=False \ actor_rollout_ref.actor.fsdp_config.optimizer_offload=False \ actor_rollout_ref.rollout.tensor_model_parallel_size=2 \ actor_rollout_ref.rollout.name=vllm \ actor_rollout_ref.rollout.gpu_memory_utilization=0.8 \ actor_rollout_ref.rollout.n=4 \ actor_rollout_ref.ref.fsdp_config.param_offload=True \ algorithm.use_kl_in_reward=True \ algorithm.kl_penalty=kl \ algorithm.kl_ctrl.kl_coef=0.001 \ trainer.critic_warmup=0 \ trainer.logger=['console','wandb'] \ trainer.project_name='verl_remax_example_gsm8k' \ trainer.experiment_name='qwen2.5_7b_function_rm_kl1e-3' \ trainer.val_before_train=False \ trainer.n_gpus_per_node=8 \ trainer.nnodes=1 \ trainer.save_freq=-1 \ trainer.test_freq=5 \ trainer.total_epochs=10 $@