# Discliamer: the model used in the script is only for academic purpose. set -x # Data preparation scripts are available in ``examples/data_preprocess``. # Example usage: # # python3 examples/data_preprocess/math_dataset.py --local_dir ~/data/math # python3 examples/data_preprocess/gsm8k.py --local_dir ~/data/gsm8k gsm8k_train_path=$HOME/data/gsm8k/train.parquet gsm8k_test_path=$HOME/data/gsm8k/test.parquet math_train_path=$HOME/data/math/train.parquet math_test_path=$HOME/data/math/test.parquet train_files="['$gsm8k_train_path', '$math_train_path']" test_files="['$gsm8k_test_path', '$math_test_path']" export VLLM_ATTENTION_BACKEND=XFORMERS # vllm + qwen2-7b with flash_attn has some issues # prepare model ckpt huggingface-cli download Qwen/Qwen2-7B-Instruct --local-dir $HOME/models/Qwen2-7B-Instruct & huggingface-cli download sfairXC/FsfairX-LLaMA3-RM-v0.1 --local-dir $HOME/models/FsfairX-LLaMA3-RM-v0.1 & wait python3 -m verl.trainer.main_ppo \ algorithm.adv_estimator=gae \ data.train_files="$train_files" \ data.val_files="$test_files" \ data.train_batch_size=1024 \ data.max_prompt_length=1024 \ data.max_response_length=512 \ data.filter_overlong_prompts=True \ data.truncation='error' \ data.return_raw_chat=True \ actor_rollout_ref.model.path="$HOME/models/Qwen2-7B-Instruct" \ actor_rollout_ref.actor.optim.lr=1e-6 \ actor_rollout_ref.model.use_remove_padding=True \ actor_rollout_ref.actor.optim.lr_warmup_steps_ratio=0.1 \ actor_rollout_ref.actor.ppo_mini_batch_size=256 \ actor_rollout_ref.actor.ppo_micro_batch_size_per_gpu=16 \ actor_rollout_ref.actor.use_kl_loss=False \ actor_rollout_ref.model.enable_gradient_checkpointing=True \ actor_rollout_ref.actor.fsdp_config.param_offload=False \ actor_rollout_ref.actor.fsdp_config.optimizer_offload=False \ actor_rollout_ref.rollout.log_prob_micro_batch_size_per_gpu=16 \ actor_rollout_ref.rollout.tensor_model_parallel_size=1 \ actor_rollout_ref.rollout.name=vllm \ actor_rollout_ref.rollout.gpu_memory_utilization=0.6 \ critic.optim.lr=1e-5 \ critic.model.use_remove_padding=True \ critic.optim.lr_warmup_steps_ratio=0.05 \ critic.model.path="$HOME/models/Qwen2-7B-Instruct" \ critic.model.enable_gradient_checkpointing=True \ critic.ppo_micro_batch_size_per_gpu=32 \ critic.model.fsdp_config.param_offload=False \ critic.model.fsdp_config.optimizer_offload=False \ reward_model.enable=True \ reward_model.model.path="$HOME/models/FsfairX-LLaMA3-RM-v0.1" \ reward_model.model.use_remove_padding=True \ reward_model.model.fsdp_config.param_offload=True \ reward_model.micro_batch_size_per_gpu=32 \ algorithm.use_kl_in_reward=False \ trainer.critic_warmup=0 \ trainer.logger=['console','wandb'] \ trainer.project_name='verl_example' \ trainer.val_before_train=False \ trainer.experiment_name='Qwen2-7B-Instruct_hybrid_rm' \ trainer.n_gpus_per_node=8 \ trainer.nnodes=1 \ trainer.save_freq=-1 \ trainer.test_freq=5 \ trainer.total_epochs=15 $@