set -x python3 -m verl.trainer.main_ppo \ algorithm.adv_estimator=gae \ data.train_files=$HOME/data/gsm8k/train.parquet \ data.val_files=$HOME/data/gsm8k/test.parquet \ data.train_batch_size=512 \ data.max_prompt_length=1024 \ data.max_response_length=512 \ data.filter_overlong_prompts=True \ data.truncation='error' \ actor_rollout_ref.model.path=google/gemma-2-2b-it \ actor_rollout_ref.actor.optim.lr=1e-6 \ actor_rollout_ref.model.use_remove_padding=False \ actor_rollout_ref.actor.ppo_mini_batch_size=128 \ actor_rollout_ref.actor.ppo_micro_batch_size_per_gpu=4 \ actor_rollout_ref.actor.fsdp_config.param_offload=False \ actor_rollout_ref.actor.fsdp_config.optimizer_offload=False \ actor_rollout_ref.actor.use_kl_loss=False \ actor_rollout_ref.rollout.log_prob_micro_batch_size_per_gpu=4 \ actor_rollout_ref.rollout.tensor_model_parallel_size=2 \ actor_rollout_ref.rollout.name=vllm \ actor_rollout_ref.rollout.gpu_memory_utilization=0.4 \ critic.optim.lr=1e-5 \ critic.model.use_remove_padding=False \ critic.model.path=google/gemma-2-2b-it \ critic.model.enable_gradient_checkpointing=False \ critic.ppo_micro_batch_size_per_gpu=4 \ critic.model.fsdp_config.param_offload=False \ critic.model.fsdp_config.optimizer_offload=False \ algorithm.use_kl_in_reward=False \ trainer.critic_warmup=0 \ trainer.logger=['console','wandb'] \ trainer.project_name='verl_example' \ trainer.experiment_name='gemma2b_function_rm' \ trainer.n_gpus_per_node=2 \ trainer.nnodes=1 \ trainer.save_freq=-1 \ trainer.test_freq=10 \ trainer.total_epochs=15 $@