set -x gsm8k_train_path=$HOME/data/gsm8k/train.parquet gsm8k_test_path=$HOME/data/gsm8k/test.parquet math_train_path=$HOME/data/math/train.parquet math_test_path=$HOME/data/math/test.parquet train_files="['$gsm8k_train_path', '$math_train_path']" test_files="['$gsm8k_test_path', '$math_test_path']" python3 -m verl.trainer.main_ppo --config-path=./config --config-name='ppo_megatron_trainer'\ algorithm.adv_estimator=gae \ data.train_files="$train_files" \ data.val_files="$test_files" \ data.train_batch_size=1024 \ data.max_prompt_length=1024 \ data.max_response_length=512 \ data.filter_overlong_prompts=True \ data.truncation='error' \ actor_rollout_ref.model.path=deepseek-ai/deepseek-coder-6.7b-instruct \ actor_rollout_ref.actor.optim.lr=1e-6 \ actor_rollout_ref.actor.ppo_mini_batch_size=256 \ actor_rollout_ref.actor.ppo_micro_batch_size_per_gpu=4 \ actor_rollout_ref.actor.use_kl_loss=False \ actor_rollout_ref.rollout.log_prob_micro_batch_size_per_gpu=4 \ actor_rollout_ref.rollout.tensor_model_parallel_size=4 \ actor_rollout_ref.rollout.name=vllm \ actor_rollout_ref.rollout.gpu_memory_utilization=0.4 \ critic.optim.lr=1e-5 \ critic.model.path=deepseek-ai/deepseek-coder-6.7b-instruct \ critic.model.enable_gradient_checkpointing=False \ critic.ppo_micro_batch_size_per_gpu=4 \ algorithm.use_kl_in_reward=False \ trainer.critic_warmup=0 \ trainer.logger=['console','wandb'] \ trainer.project_name='verl_megatron_math_gsm8k_examples' \ trainer.experiment_name='deepseek_llm_7b_function_rm' \ trainer.n_gpus_per_node=8 \ trainer.nnodes=1 \ trainer.save_freq=-1 \ trainer.test_freq=5 \ trainer.total_epochs=100 $@