set -x train_files=$HOME/data/full_hh_rlhf/rl/train.parquet test_files=$HOME/data/full_hh_rlhf/rl/train.parquet # no use python3 -m verl.trainer.main_ppo --config-path=./config --config-name='ppo_megatron_trainer'\ algorithm.adv_estimator=gae \ data.train_files="$train_files" \ data.val_files="$test_files" \ data.train_batch_size=512 \ data.max_prompt_length=128 \ data.max_response_length=128 \ data.filter_overlong_prompts=True \ data.truncation='error' \ actor_rollout_ref.model.path=deepseek-ai/deepseek-llm-7b-chat \ actor_rollout_ref.actor.optim.lr=1e-6 \ actor_rollout_ref.actor.ppo_mini_batch_size=128 \ actor_rollout_ref.actor.ppo_micro_batch_size_per_gpu=4 \ actor_rollout_ref.actor.use_kl_loss=False \ actor_rollout_ref.rollout.log_prob_micro_batch_size_per_gpu=4 \ actor_rollout_ref.rollout.tensor_model_parallel_size=4 \ actor_rollout_ref.rollout.name=vllm \ actor_rollout_ref.rollout.gpu_memory_utilization=0.4 \ critic.optim.lr=1e-5 \ critic.model.path=deepseek-ai/deepseek-llm-7b-chat \ critic.model.enable_gradient_checkpointing=False \ critic.ppo_micro_batch_size_per_gpu=4 \ reward_model.enable=True \ reward_model.megatron.tensor_model_parallel_size=4 \ reward_model.model.path=deepseek-ai/deepseek-llm-7b-chat \ reward_model.micro_batch_size_per_gpu=4 \ reward_model.param_offload=False \ algorithm.use_kl_in_reward=False \ trainer.critic_warmup=0 \ trainer.logger=['console','wandb'] \ trainer.project_name='verl_megatron_full_hh_rlhf_examples' \ trainer.experiment_name='deepseek_llm_7b_model_rm' \ trainer.n_gpus_per_node=8 \ trainer.nnodes=1 \ trainer.save_freq=-1 \ trainer.test_freq=5 \ trainer.total_epochs=100 $@