# Copyright 2024 Bytedance Ltd. and/or its affiliates # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # http://www.apache.org/licenses/LICENSE-2.0 # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ Create a simple multi-turn dataset for testing """ import os import pandas as pd import argparse def main(): parser = argparse.ArgumentParser() parser.add_argument('--local_dir', default='~/data/multiturn') parser.add_argument('--hdfs_dir', default=None) args = parser.parse_args() # Create example conversations conversations = [] # Conversation 1 conversations.append({ "messages": [{ "role": "system", "content": "You are a helpful assistant." }, { "role": "user", "content": "What is the capital of France?" }, { "role": "assistant", "content": "The capital of France is Paris." }, { "role": "user", "content": "And what about Germany?" }, { "role": "assistant", "content": "The capital of Germany is Berlin." }] }) # Conversation 2 conversations.append({ "messages": [{ "role": "system", "content": "You are a helpful assistant." }, { "role": "user", "content": "Can you explain quantum computing?" }, { "role": "assistant", "content": "Quantum computing is a type of computing that uses quantum-mechanical phenomena, such as superposition and entanglement, to perform operations on data." }, { "role": "user", "content": "How is it different from classical computing?" }, { "role": "assistant", "content": "Classical computing uses bits that are either 0 or 1, while quantum computing uses quantum bits or qubits that can exist in multiple states simultaneously due to superposition." }] }) # Conversation 3 conversations.append({ "messages": [{ "role": "system", "content": "You are a helpful assistant." }, { "role": "user", "content": "Write a simple Python function to calculate factorial." }, { "role": "assistant", "content": "```python\ndef factorial(n):\n if n == 0 or n == 1:\n return 1\n else:\n return n * factorial(n-1)\n```\n\nThis is a recursive function to calculate the factorial of a number." }, { "role": "user", "content": "Can you make it iterative instead?" }, { "role": "assistant", "content": "```python\ndef factorial(n):\n result = 1\n for i in range(1, n+1):\n result *= i\n return result\n```\n\nThis is an iterative version of the factorial function." }] }) # Create train and test datasets train_data = conversations[:2] # First 2 conversations for training test_data = conversations[2:] # Last conversation for testing # Create output directory local_dir = os.path.expanduser(args.local_dir) os.makedirs(local_dir, exist_ok=True) # Save to parquet files train_df = pd.DataFrame(train_data) test_df = pd.DataFrame(test_data) train_df.to_parquet(os.path.join(local_dir, 'train.parquet')) test_df.to_parquet(os.path.join(local_dir, 'test.parquet')) # Handle HDFS if specified if args.hdfs_dir is not None: try: from verl.utils.hdfs_io import copy, makedirs makedirs(args.hdfs_dir) copy(src=local_dir, dst=args.hdfs_dir) except ImportError: print("Warning: HDFS support not available. Skipping HDFS copy.") # Print statistics print(f"Train dataset size: {len(train_df)}") print(f"Test dataset size: {len(test_df)}") print(f"Data saved to {local_dir}") if __name__ == '__main__': main()