Commit f87b35b2 authored by jerrrrry's avatar jerrrrry
Browse files

Initial commit

parents
Pipeline #2648 failed with stages
in 0 seconds
# Copyright 2024 Bytedance Ltd. and/or its affiliates
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import logging
import time
from typing import Dict, List, Any, Tuple, Optional
import ray
from ray.util import list_named_actors
from ray.util.placement_group import placement_group, PlacementGroup
from ray.util.scheduling_strategies import PlacementGroupSchedulingStrategy, NodeAffinitySchedulingStrategy
from ray.experimental.state.api import get_actor
from verl.single_controller.base import WorkerGroup, ResourcePool, ClassWithInitArgs, Worker
__all__ = ['Worker']
def get_random_string(length: int) -> str:
import random
import string
letters_digits = string.ascii_letters + string.digits
return ''.join(random.choice(letters_digits) for _ in range(length))
def func_generator(self, method_name, dispatch_fn, collect_fn, execute_fn, blocking):
def func(*args, **kwargs):
args, kwargs = dispatch_fn(self, *args, **kwargs)
output = execute_fn(method_name, *args, **kwargs)
if blocking:
output = ray.get(output)
output = collect_fn(self, output)
return output
return func
def sort_placement_group_by_node_ip(pgs: List[PlacementGroup]) -> List[PlacementGroup]:
"""
Sort the placement groups by node ip, all bundles in a single placement group should be on the same node.
FSDPCheckpointManager saves sharded model states and optimizer states in local storage, which requires RANK
to be consistent across nodes when resume from checkpoint.
With this function, if there's only one resource pool and there's no node change, RANK should be consistent
across nodes in multiple ray jobs, even if the whole ray cluster is restarted.
"""
node_ip = {node["NodeID"]: node["NodeManagerAddress"] for node in ray.nodes()}
pg_ip = {}
for pg in pgs:
specs = ray._private.state.state.placement_group_table(pg.id)
# all bunles should be on the same node
node_id = specs["bundles_to_node_id"][0]
pg_ip[pg.id] = node_ip[node_id]
return sorted(pgs, key=lambda pg: pg_ip[pg.id])
class RayResourcePool(ResourcePool):
def __init__(self,
process_on_nodes: Optional[List[int]] = None,
use_gpu: bool = True,
name_prefix: str = "",
max_colocate_count: int = 10,
detached=False) -> None:
super().__init__(process_on_nodes, max_colocate_count)
self.use_gpu = use_gpu
# print(f"in RayProcessDispatchConfiguration: name_prefix = {name_prefix}")
self.name_prefix = name_prefix
self.pgs = None
self.detached = detached
def get_placement_groups(self, strategy="STRICT_PACK", name=None):
if self.pgs is not None:
return self.pgs
pg_name_prefix = name if name else \
f"{self.name_prefix}verl_group_{'_'.join([str(count) for count in self._store])}:"
# print(f"pg_name_prefix = {pg_name_prefix}")
pg_scheme = [[{
"CPU": self.max_colocate_count,
"GPU": 1
} if self.use_gpu else {
"CPU": self.max_colocate_count
} for _ in range(process_count)] for process_count in self._store]
lifetime = 'detached' if self.detached else None
pgs = [
placement_group(bundles=bundles, strategy=strategy, name=pg_name_prefix + str(idx), lifetime=lifetime)
for idx, bundles in enumerate(pg_scheme)
]
ray.get([pg.ready() for pg in pgs])
self.pgs = pgs
return pgs
def extract_pg_from_exist(resource_pools: Dict[str, RayResourcePool], src_role_names: List[str],
resource_pool: RayResourcePool) -> List:
src_pgs = [
pg for role_name, resource_pool in resource_pools.items() for pg in resource_pool.get_placement_groups()
if role_name in src_role_names
]
sorted_src_pgs = sorted(src_pgs, key=lambda pg: pg.bundle_count, reverse=True)
sorted_process_on_nodes = sorted([(val, idx) for idx, val in enumerate(resource_pool.store)], reverse=True)
unsorted_pgs: List[Tuple[int, PlacementGroup]] = []
searching_idx = 0
for request_process, original_idx in sorted_process_on_nodes:
assert searching_idx < len(sorted_src_pgs), f"no enough nodes for request: searching {searching_idx} th node"
assert request_process <= sorted_src_pgs[searching_idx].bundle_count, \
f"requesting {request_process} processes, bundle count cannot satisfy"
unsorted_pgs.append((original_idx, sorted_src_pgs[searching_idx]))
searching_idx += 1
return [pg for _, pg in sorted(unsorted_pgs)]
def merge_resource_pool(rp1: RayResourcePool, rp2: RayResourcePool) -> RayResourcePool:
assert rp1.use_gpu == rp2.use_gpu, 'Both RayResourcePool must either use_gpu or not'
assert rp1.max_colocate_count == rp2.max_colocate_count, 'Both RayResourcePool must has the same max_colocate_count'
assert rp1.n_gpus_per_node == rp2.n_gpus_per_node, 'Both RayResourcePool must has the same n_gpus_per_node'
assert rp1.detached == rp2.detached, 'Detached ResourcePool cannot be merged with non-detached ResourcePool'
new_store = rp1.store + rp2.store
merged = RayResourcePool(new_store, rp1.use_gpu, f"{rp1.name_prefix}_{rp2.name_prefix}")
merged.pgs = rp1.get_placement_groups() + rp2.get_placement_groups()
return merged
class RayClassWithInitArgs(ClassWithInitArgs):
def __init__(self, cls, *args, **kwargs) -> None:
# self._options = kwargs.pop('options', dict())
super().__init__(cls, *args, **kwargs)
self._options = {}
self._additional_resource = {}
def set_additional_resource(self, additional_resource):
self._additional_resource = additional_resource
def update_options(self, options: Dict):
self._options.update(options)
def __call__(self,
placement_group,
placement_group_bundle_idx,
use_gpu: bool = True,
num_gpus=1,
sharing_with=None) -> Any:
if sharing_with is not None:
target_node_id = ray.get(sharing_with.get_node_id.remote())
cuda_visible_devices = ray.get(sharing_with.get_cuda_visible_devices.remote())
options = {"scheduling_strategy": NodeAffinitySchedulingStrategy(node_id=target_node_id, soft=False)}
return self.cls.options(**options).remote(*self.args,
cuda_visible_devices=cuda_visible_devices,
**self.kwargs)
options = {
"scheduling_strategy":
PlacementGroupSchedulingStrategy(placement_group=placement_group,
placement_group_bundle_index=placement_group_bundle_idx)
}
options.update(self._options)
if use_gpu:
options["num_gpus"] = num_gpus
if len(self._additional_resource) > 1:
for k, v in self._additional_resource.items():
options[k] = v
# print("cls:", self.cls)
# print("args: ", self.args)
# print("kwargs: ", self.kwargs)
return self.cls.options(**options).remote(*self.args, **self.kwargs)
class RayWorkerGroup(WorkerGroup):
def __init__(self,
resource_pool: RayResourcePool = None,
ray_cls_with_init: RayClassWithInitArgs = None,
bin_pack: bool = True,
name_prefix: str = None,
detached=False,
worker_names=None,
ray_wait_register_center_timeout: int = 300,
**kwargs) -> None:
super().__init__(resource_pool=resource_pool, **kwargs)
self.ray_cls_with_init = ray_cls_with_init
self.name_prefix = get_random_string(length=6) if name_prefix is None else name_prefix
self._ray_wait_register_center_timeout = ray_wait_register_center_timeout
if worker_names is not None:
assert self._is_init_with_detached_workers
self._worker_names = worker_names
if self._is_init_with_detached_workers:
self._init_with_detached_workers(worker_names=worker_names)
else:
self._init_with_resource_pool(resource_pool=resource_pool,
ray_cls_with_init=ray_cls_with_init,
bin_pack=bin_pack,
detached=detached)
if ray_cls_with_init is not None:
self._bind_worker_method(self.ray_cls_with_init.cls, func_generator)
def _is_worker_alive(self, worker: ray.actor.ActorHandle):
worker_state_dict = get_actor(worker._actor_id.hex())
return worker_state_dict.get("state", "undefined") == "ALIVE" if worker_state_dict is not None else False
def _init_with_detached_workers(self, worker_names):
workers = [ray.get_actor(name=name) for name in worker_names]
self._workers = workers
self._world_size = len(worker_names)
def _init_with_resource_pool(self, resource_pool, ray_cls_with_init, bin_pack, detached):
use_gpu = resource_pool.use_gpu
strategy = "PACK"
if bin_pack:
strategy = "STRICT_PACK"
pgs = resource_pool.get_placement_groups(strategy=strategy)
world_size = resource_pool.world_size
self._world_size = world_size
# cia.add_kwarg("_world_size", world_size)
num_gpus = 1 / resource_pool.max_colocate_count
rank = -1
local_world_size = resource_pool.store[0]
for pg_idx, pg in enumerate(sort_placement_group_by_node_ip(pgs)):
assert local_world_size <= pg.bundle_count, \
f"when generating for {self.name_prefix}, for the "
for local_rank in range(local_world_size):
rank += 1
# we pass in environment variable at option so that Worker can use environment variable to set
env_vars = {
'WORLD_SIZE': str(world_size),
'RANK': str(rank),
'WG_PREFIX': self.name_prefix,
'WG_BACKEND': 'ray',
'RAY_LOCAL_WORLD_SIZE': str(local_world_size),
'RAY_LOCAL_RANK': str(local_rank),
}
if rank != 0:
env_vars['MASTER_ADDR'] = self._master_addr
env_vars['MASTER_PORT'] = self._master_port
import re
cia_name = type(ray_cls_with_init.cls).__name__
match = re.search(r"ActorClass\(([^)]+)\)", cia_name) # ray.remote(Obj) -> "ActorClass(Obj)"
cia_name = match.group(1) if match else cia_name # "ActorClass(Obj)" -> "Obj"
name = f"{self.name_prefix}{cia_name}_{pg_idx}:{local_rank}" # e.g. Worker_2:5
ray_cls_with_init.update_options({'runtime_env': {'env_vars': env_vars}, 'name': name})
if detached:
ray_cls_with_init.update_options({'lifetime': 'detached'})
# create a worker
worker = ray_cls_with_init(placement_group=pg,
placement_group_bundle_idx=local_rank,
use_gpu=use_gpu,
num_gpus=num_gpus)
self._workers.append(worker)
self._worker_names.append(name)
if rank == 0:
register_center_actor = None
actor_name = f"{self.name_prefix}_register_center"
start_time = time.time()
while time.time() - start_time < self._ray_wait_register_center_timeout:
if actor_name in list_named_actors():
register_center_actor = ray.get_actor(actor_name)
break
elapsed = int(time.time() - start_time)
if elapsed % 30 == 0:
logging.warning(
f"Waiting for register center actor {actor_name} to be ready. "
f"Elapsed time: {elapsed} seconds out of {self._ray_wait_register_center_timeout} seconds."
)
time.sleep(1)
if register_center_actor is None:
raise TimeoutError(
f"Failed to get register_center_actor {actor_name} in {list_named_actors(all_namespaces=True)} "
f"for {self._ray_wait_register_center_timeout} seconds. "
"Ensure that any lingering Ray resources from previous runs are cleaned up (e.g., by restarting the Ray cluster), "
"or adjust the waiting time by modifying the config `trainer.ray_wait_register_center_timeout`."
)
rank_zero_info = ray.get(register_center_actor.get_rank_zero_info.remote())
self._master_addr, self._master_port = rank_zero_info['MASTER_ADDR'], rank_zero_info['MASTER_PORT']
# print(f"rank_zero_info: {rank_zero_info}")
# print(f"master_addr: {self._master_addr}, master_port: {self._master_port}")
@property
def worker_names(self):
return self._worker_names
@classmethod
def from_detached(cls, worker_names=None, ray_cls_with_init=None):
worker_group = cls(resource_pool=None,
ray_cls_with_init=ray_cls_with_init,
name_prefix=None,
worker_names=worker_names)
return worker_group
def spawn(self, prefix_set):
"""
spawn to a dictionary of worker groups, each with a subset of method with prefix.
"""
def _rebind_actor_methods(worker_group, actor_name):
"""
bind the method with actor_prefix to its original name
"""
prefix: str = actor_name + '_'
for method_name in dir(worker_group):
if method_name.startswith(prefix):
# only valid when Python >= 3.9
original_method_name = method_name.removeprefix(prefix)
method = getattr(worker_group, method_name)
setattr(worker_group, original_method_name, method)
new_worker_group_dict = {}
for prefix in prefix_set:
new_worker_group = self.from_detached(worker_names=self._worker_names,
ray_cls_with_init=self.ray_cls_with_init)
_rebind_actor_methods(new_worker_group, prefix)
new_worker_group_dict[prefix] = new_worker_group
return new_worker_group_dict
def execute_rank_zero_sync(self, method_name: str, *args, **kwargs):
return ray.get(self.execute_rank_zero_async(method_name, *args, **kwargs))
def execute_rank_zero_async(self, method_name: str, *args, **kwargs):
remote_call = getattr(self._workers[0], method_name)
return remote_call.remote(*args, **kwargs)
def execute_rank_zero(self, method_name: str, *args, **kwargs):
return self.execute_rank_zero_async(method_name, *args, **kwargs)
def execute_all(self, method_name: str, *args, **kwargs):
return self.execute_all_async(method_name, *args, **kwargs)
def execute_all_sync(self, method_name: str, *args, **kwargs):
return ray.get(self.execute_all_async(method_name, *args, **kwargs))
def execute_all_async(self, method_name: str, *args, **kwargs):
# Here, we assume that if all arguments in args and kwargs are lists, and their lengths match len(self._workers),
# we'll distribute each element in these lists to the corresponding worker
# print(f"execute_all_async: method {method_name}({args}, {kwargs})")
length = len(self._workers)
if all(isinstance(arg, list) for arg in args) and all(isinstance(kwarg, list) for kwarg in kwargs.values()):
if all(len(arg) == length for arg in args) and all(len(kwarg) == length for kwarg in kwargs.values()):
# print(f"splitting args and kwargs into {length} shards")
result = []
for i in range(length):
sliced_args = tuple(arg[i] for arg in args)
sliced_kwargs = {k: v[i] for k, v in kwargs.items()}
remote_call = getattr(self._workers[i], method_name)
result.append(remote_call.remote(*sliced_args, **sliced_kwargs))
return result
return [getattr(worker, method_name).remote(*args, **kwargs) for worker in self._workers]
@property
def master_address(self):
return self._master_addr
@property
def master_port(self):
return self._master_port
@property
def workers(self):
return self._workers
@property
def world_size(self):
return self._world_size
"""
Utilities that enables creating workers inside the same ray.Actor,
with code written in separate ray.Actors.
"""
from unittest.mock import patch
from verl.single_controller.base.decorator import MAGIC_ATTR
import os
def _bind_workers_method_to_parent(cls, key, user_defined_cls):
"""
Binds the methods of each worker to the WorkerDict.
Note that we only bind public methods that are decorated by register
"""
for method_name in dir(user_defined_cls):
try:
method = getattr(user_defined_cls, method_name)
assert callable(method), f"{method_name} in {user_defined_cls} is not callable"
except Exception as e:
# if it is a property, it will fail because Class doesn't have instance property
continue
if hasattr(method, MAGIC_ATTR):
def generate_function(name):
def func(self, *args, **kwargs):
# dispatch to the actual worker
return getattr(self.worker_dict[key], name)(*args, **kwargs)
return func
func = generate_function(method_name)
# pass MAGIC_ATTR for outer worker group
setattr(func, MAGIC_ATTR, getattr(method, MAGIC_ATTR))
try:
method_name_with_prefix = key + '_' + method_name
setattr(cls, method_name_with_prefix, func)
# print(f'Binding {method_name_with_prefix}')
except Exception as e:
raise ValueError(f'Fail to set method_name {method_name}')
def _unwrap_ray_remote(cls):
if hasattr(cls, '__ray_actor_class__'):
cls = cls.__ray_actor_class__
return cls
def create_colocated_worker_cls(class_dict: dict[str, RayClassWithInitArgs]):
"""
This function should return a class instance that delegates the calls to every
cls in cls_dict
"""
cls_dict = {}
init_args_dict = {}
worker_cls = None
for key, cls in class_dict.items():
if worker_cls == None:
worker_cls = cls.cls.__ray_actor_class__.__base__
else:
assert worker_cls == cls.cls.__ray_actor_class__.__base__, \
'the worker class should be the same when share the same process'
cls_dict[key] = cls.cls
init_args_dict[key] = {'args': cls.args, 'kwargs': cls.kwargs}
assert cls_dict.keys() == init_args_dict.keys()
# TODO: create a class with customizable name
class WorkerDict(worker_cls):
def __init__(self):
super().__init__()
self.worker_dict = {}
for key, user_defined_cls in cls_dict.items():
user_defined_cls = _unwrap_ray_remote(user_defined_cls)
# directly instantiate the class without remote
# in worker class, e.g. <verl.single_controller.base.worker.Worker> when DISABLE_WORKER_INIT == 1 it will return immediately
with patch.dict(os.environ, {'DISABLE_WORKER_INIT': '1'}):
self.worker_dict[key] = user_defined_cls(*init_args_dict[key].get('args', ()),
**init_args_dict[key].get('kwargs', {}))
# now monkey-patch the methods from inner class to WorkerDict
for key, user_defined_cls in cls_dict.items():
user_defined_cls = _unwrap_ray_remote(user_defined_cls)
_bind_workers_method_to_parent(WorkerDict, key, user_defined_cls)
remote_cls = ray.remote(WorkerDict)
remote_cls = RayClassWithInitArgs(cls=remote_cls)
return remote_cls
# Copyright 2024 Bytedance Ltd. and/or its affiliates
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from typing import Dict, Optional
import ray
from .base import RayWorkerGroup, RayResourcePool, RayClassWithInitArgs
from verl.single_controller.base.megatron.worker import DistRankInfo, DistGlobalInfo
from verl.single_controller.base.megatron.worker_group import MegatronWorkerGroup
# NOTE(sgm): for open-source megatron-core
class NVMegatronRayWorkerGroup(RayWorkerGroup, MegatronWorkerGroup):
"""
MegatronWorkerGroup will query each worker of its megatron rank info and store it inside the WorkerGroup
so that the dispatcher can use it to dispatch data.
"""
def __init__(self, resource_pool: RayResourcePool, ray_cls_with_init: RayClassWithInitArgs, **kwargs):
super().__init__(resource_pool=resource_pool, ray_cls_with_init=ray_cls_with_init, **kwargs)
self._megatron_rank_info: DistRankInfo = self.execute_all_sync(method_name='get_megatron_rank_info')
self._megatron_global_info: DistGlobalInfo = ray.get(
self.execute_rank_zero_async(method_name='get_megatron_global_info'))
class MegatronRayWorkerGroup(RayWorkerGroup, MegatronWorkerGroup):
"""
MegatronWorkerGroup will query each worker of its megatron rank info and store it inside the WorkerGroup
so that the dispatcher can use it to dispatch data.
"""
def __init__(self,
resource_pool: RayResourcePool,
ray_cls_with_init: RayClassWithInitArgs,
default_megatron_kwargs: Dict = None,
**kwargs):
super().__init__(resource_pool=resource_pool,
ray_cls_with_init=ray_cls_with_init,
default_megatron_kwargs=default_megatron_kwargs,
**kwargs)
self.init_megatron(default_megatron_kwargs=default_megatron_kwargs)
self._megatron_rank_info: DistRankInfo = self.execute_all_sync(method_name='get_megatron_rank_info')
self._megatron_global_info: DistGlobalInfo = ray.get(
self.execute_rank_zero_async(method_name='get_megatron_global_info'))
def init_megatron(self, default_megatron_kwargs: Optional[Dict] = None):
# after super, we will call init of each worker
if not self._is_init_with_detached_workers:
# only init_megatron if the WorkerGroup is created from scratch
self.execute_all_sync(method_name='init_megatron', default_megatron_kwargs=default_megatron_kwargs)
# Copyright 2024 Bytedance Ltd. and/or its affiliates
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# Copyright 2023-2024 SGLang Team
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
# Copyright 2024 Bytedance Ltd. and/or its affiliates
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
\ No newline at end of file
# Copyright 2024 Bytedance Ltd. and/or its affiliates
# Copyright 2023 The SGlang team.
# Adapted from
# https://github.com/NVIDIA/Megatron-LM/blob/main/megatron/core/parallel_state.py
# Copyright (c) 2022, NVIDIA CORPORATION. All rights reserved.
"""Model and data parallel groups."""
import os
from typing import Optional
import torch
import torch.distributed
import sglang.srt.distributed.parallel_state as ps
from sglang.srt.distributed.parallel_state import (
get_pp_group,
get_world_group,
init_distributed_environment,
init_model_parallel_group,
)
"""
This version is strongly tied with Megatron to implement HybridEngine and weight sharing between vllm and Megatron.
- We assume the Megatron tp+dp+pp world is already established before calling this function.
"""
# Device mesh for using DTensor
_DEVICE_MESH = None
# Tensor model parallel group that the current rank belongs to.
_TP = None
# Pipeline model parallel group that the current rank belongs to.
_PP = None
# This method is for initializing the ParallelGroup when using HybridEngine
# NOTE(linjunrong): this function is for megatron
def initialize_parallel_state(
distributed_init_method: str = "env://",
backend: str = "nccl",
tensor_model_parallel_size: int = 1,
num_tp_per_train_tp: int = 1,
pipeline_model_parallel_size: int = 1,
):
# torch.distributed.all_reduce does not free the input tensor until
# the synchronization point. This causes the memory usage to grow
# as the number of all_reduce calls increases. This env var disables
# this behavior.
# Related issue:
# https://discuss.pytorch.org/t/cuda-allocation-lifetime-for-inputs-to-distributed-all-reduce/191573
os.environ["TORCH_NCCL_AVOID_RECORD_STREAMS"] = "1"
# NOTE(sgm): Modify for verl, Env vars will be set by TORCHRUN.
rank = int(os.getenv("RANK", "-1"))
local_rank = int(os.getenv("LOCAL_RANK", "0"))
# Use the world_size set by TORCHRUN
world_size = int(os.getenv("WORLD_SIZE", "-1"))
assert world_size != -1, "The world_size is set to -1, not initialized by TORCHRUN"
init_distributed_environment(world_size, rank, distributed_init_method, local_rank, backend)
if torch.distributed.get_world_size() > 1:
# NOTE: build a sepearate inference group with infer tp & micro dp
initialize_model_parallel_for_sglang(
tensor_model_parallel_size=tensor_model_parallel_size,
num_tensor_model_parallel_groups_per_train_tp=num_tp_per_train_tp,
)
else:
initialize_model_parallel(tensor_model_parallel_size, pipeline_model_parallel_size, backend)
# NOTE(linjunrong): After init SGLang rollout using class EngineFragment, user should always remember to call
# this function to sync the _TP, _PP define at the beginning of this file. Otherwise, only the conterparts
# inside sglang.srt.distributed are init as ProcessGroup, the symbols defined in this file remain as None.
# It could be weird to maintain two _TP and _PP, I follow the same way to maintain an extra ones for
# veRL itself as how it was done in verl.third_party.vllm.parallel_state. Note that the process is a little
# bit different
def ensure_model_parallel_initialized(
tensor_model_parallel_size: int,
pipeline_model_parallel_size: int = 1,
backend: Optional[str] = None,
) -> None:
"""Helper to initialize model parallel groups if they are not initialized,
or ensure tensor-parallel and pipeline-parallel sizes are equal to expected
values if the model parallel groups are initialized.
"""
# get the backend of _DEVICE_WORLD_GROUP
backend = backend or torch.distributed.get_backend(get_world_group().device_group)
if not model_parallel_is_initialized():
initialize_model_parallel(tensor_model_parallel_size, pipeline_model_parallel_size, backend)
return
assert get_tensor_model_parallel_world_size() == tensor_model_parallel_size, (
"tensor parallel group already initialized, but of unexpected size: "
f"{get_tensor_model_parallel_world_size()=} vs. "
f"{tensor_model_parallel_size=}")
pp_world_size = get_pp_group().world_size
assert pp_world_size == pipeline_model_parallel_size, (
"pipeline parallel group already initialized, but of unexpected size: "
f"{pp_world_size=} vs. "
f"{pipeline_model_parallel_size=}")
# TODO(sgm): deviate from the v0.5.4, not pp now
# NOTE(linjunrong): the SGLang version using _TP instead of ps._TP
def model_parallel_is_initialized():
"""Check if tensor and pipeline parallel groups are initialized."""
return _TP is not None
# and _PIPELINE_MODEL_PARALLEL_GROUP is not None)
def initialize_model_parallel_for_sglang(
tensor_model_parallel_size: int,
num_tensor_model_parallel_groups_per_train_tp: int = 1,
pipeline_model_parallel_size: int = 1,
) -> None:
pass
# Get world size and rank. Ensure some consistencies.
assert torch.distributed.is_initialized()
assert isinstance(tensor_model_parallel_size, int)
# assert num_tensor_model_parallel_groups_per_train_tp == 1 and not different_tp_group
# assert num_tensor_model_parallel_groups_per_train_tp > 1 and different_tp_group
# Build the tensor model-parallel groups.
assert ps._TP is None, "tensor model parallel group is already initialized"
global _TP
world_size: int = torch.distributed.get_world_size()
rank = torch.distributed.get_rank()
backend = torch.distributed.get_backend()
num_tensor_model_parallel_groups = world_size // tensor_model_parallel_size
if num_tensor_model_parallel_groups_per_train_tp == 1:
# if tensor_model_parallel_size == train_tensor_parallel_size:
# using the same tp group as Megatron/vllm
assert _TP is None, "tensor model parallel group is already initialized"
group_ranks = []
for i in range(num_tensor_model_parallel_groups):
ranks = range(i * tensor_model_parallel_size, (i + 1) * tensor_model_parallel_size)
group_ranks.append(ranks)
_TP = init_model_parallel_group(
group_ranks=group_ranks,
local_rank=get_world_group().local_rank,
backend=backend,
use_custom_allreduce=False, # TODO: check why True is not work in Ray trainer
use_message_queue_broadcaster=True,
)
ps._TP = _TP
# _MICRO_DATA_PARALLEL_GROUP is move to hybrid engine
else:
# initialize a micro_dp group and a tp group
# assume training tp=4, infer tp=2, then, weight is partitioned as
# [1], [2], [3], [4] for training and [1,2], [1,2], [3,4], [3,4] for inference
# Build the inference tp groups
# train_tp = train_tensor_parallel_size
train_tp = num_tensor_model_parallel_groups_per_train_tp * tensor_model_parallel_size
# num_tensor_model_parallel_groups_per_train_tp = train_tp // tensor_model_parallel_size
assert _TP is None, "tensor model parallel group is already initialized"
group_ranks = []
for i in range(num_tensor_model_parallel_groups // num_tensor_model_parallel_groups_per_train_tp):
start = train_tp * i
end = train_tp * (i + 1)
for j in range(num_tensor_model_parallel_groups_per_train_tp):
ranks = list(range(start, end, num_tensor_model_parallel_groups_per_train_tp))
for i in range(len(ranks)):
ranks[i] += j
group_ranks.append(ranks)
_TP = init_model_parallel_group(
group_ranks=group_ranks,
local_rank=get_world_group().local_rank,
backend=backend,
use_custom_allreduce=False, # TODO: check why True is not work in Ray trainer
use_message_queue_broadcaster=True,
)
ps._TP = _TP
# Build the pipeline model-parallel groups.
# global _PIPELINE_MODEL_PARALLEL_GROUP
# global _PIPELINE_GLOBAL_RANKS
# assert ps._PIPELINE_MODEL_PARALLEL_GROUP is None, ("pipeline model parallel group is already initialized")
# ps._PIPELINE_MODEL_PARALLEL_GROUP = mpu.get_pipeline_model_parallel_group()
# ps._PIPELINE_GLOBAL_RANKS = mpu.get_pipeline_model_parallel_ranks()
# TODO: init using device mesh (not support hybrid engine now)
# Build the pipeline model-parallel groups.
num_pipeline_model_parallel_groups: int = world_size // pipeline_model_parallel_size
global _PP
assert _PP is None, "pipeline model parallel group is already initialized"
group_ranks = []
for i in range(num_pipeline_model_parallel_groups):
ranks = list(range(i, world_size, num_pipeline_model_parallel_groups))
group_ranks.append(ranks)
# pipeline parallel does not need custom allreduce
_PP = init_model_parallel_group(group_ranks, get_world_group().local_rank, backend, use_custom_allreduce=False)
ps._PP = _PP # for verl
def initialize_model_parallel(
tensor_model_parallel_size: int = 1,
pipeline_model_parallel_size: int = 1,
backend: Optional[str] = None,
) -> None:
"""
NOTE: This method is a hack from the open-sourced version without
asertion of world_size = tp * pp
Initialize model parallel groups.
Arguments:
tensor_model_parallel_size: number of GPUs used for tensor model
parallelism.
pipeline_model_parallel_size: number of GPUs used for pipeline model
parallelism.
Let's say we have a total of 8 GPUs denoted by g0 ... g7 and we
use 2 GPUs to parallelize the model tensor, and 4 GPUs to parallelize
the model pipeline. The present function will
create 4 tensor model-parallel groups and 2 pipeline model-parallel groups:
4 tensor model-parallel groups:
[g0, g1], [g2, g3], [g4, g5], [g6, g7]
2 pipeline model-parallel groups:
[g0, g2, g4, g6], [g1, g3, g5, g7]
Note that for efficiency, the caller should make sure adjacent ranks
are on the same DGX box. For example if we are using 2 DGX-1 boxes
with a total of 16 GPUs, rank 0 to 7 belong to the first box and
ranks 8 to 15 belong to the second box.
"""
# Get world size and rank. Ensure some consistencies.
assert torch.distributed.is_initialized()
world_size: int = torch.distributed.get_world_size()
backend = backend or torch.distributed.get_backend(ps.get_world_group().device_group)
# NOTE(sgm) we don't assert world_size == tp * pp
# DP is not managed by vllm but by the VeRL WorkerGroup
# if (world_size !=
# tensor_model_parallel_size * pipeline_model_parallel_size):
# raise RuntimeError(
# f"world_size ({world_size}) is not equal to "
# f"tensor_model_parallel_size ({tensor_model_parallel_size}) x "
# f"pipeline_model_parallel_size ({pipeline_model_parallel_size})")
num_tensor_model_parallel_groups: int = world_size // tensor_model_parallel_size
global _TP
assert _TP is None, "tensor model parallel group is already initialized"
group_ranks = []
for i in range(num_tensor_model_parallel_groups):
ranks = list(range(i * tensor_model_parallel_size, (i + 1) * tensor_model_parallel_size))
group_ranks.append(ranks)
# message queue broadcaster is only used in tensor model parallel group
if ps._TP is not None:
_TP = ps._TP
else:
_TP = init_model_parallel_group(
group_ranks,
get_world_group().local_rank,
backend,
use_custom_allreduce=False, # TODO: check why True is not work in Ray trainer
use_message_queue_broadcaster=True,
)
ps._TP = _TP
# TODO: init using device mesh (not support hybrid engine now)
# Build the pipeline model-parallel groups.
num_pipeline_model_parallel_groups: int = world_size // pipeline_model_parallel_size
global _PP
assert _PP is None, "pipeline model parallel group is already initialized"
group_ranks = []
for i in range(num_pipeline_model_parallel_groups):
ranks = list(range(i, world_size, num_pipeline_model_parallel_groups))
group_ranks.append(ranks)
# pipeline parallel does not need custom allreduce
if ps._TP is not None:
_PP = ps._TP
else:
_PP = init_model_parallel_group(group_ranks, get_world_group().local_rank, backend, use_custom_allreduce=False)
ps._PP = _PP
"""
Device mesh utilities
"""
def get_device_mesh():
assert _DEVICE_MESH is not None, "device mesh is not initialized"
return _DEVICE_MESH
"""
Tensor model parallel utilities
"""
# NOTE(linjunrong): In the vllm version parallel_state.py. veRL created its own _TP and _PP as veRL want to use
# the process group for some extra purpose. Under the hood, there is no difference between them and the original
# one in vllm.distributed.parallel_state. However, the implementation need to hack the init process of inference
# engine, as we do not maintain another SGLang here, I just use the original _TP and _PP directly.
def get_tensor_model_parallel_group():
"""Get the tensor model parallel group the caller rank belongs to."""
assert _TP is not None, "tensor model parallel group is not initialized"
return _TP.device_group
def get_tensor_model_parallel_world_size():
"""Return world size for the tensor model parallel group."""
return torch.distributed.get_world_size(group=get_tensor_model_parallel_group())
def get_tensor_model_parallel_rank():
"""Return my rank for the tensor model parallel group."""
return torch.distributed.get_rank(group=get_tensor_model_parallel_group())
def get_tensor_model_parallel_src_rank():
"""Calculate the global rank corresponding to the first local rank
in the tensor model parallel group."""
global_rank = torch.distributed.get_rank()
local_world_size = get_tensor_model_parallel_world_size()
return (global_rank // local_world_size) * local_world_size
# Copyright 2024 Bytedance Ltd. and/or its affiliates
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from importlib.metadata import version, PackageNotFoundError
from packaging import version as vs
from verl.utils.import_utils import is_sglang_available
def get_version(pkg):
try:
return version(pkg)
except PackageNotFoundError:
return None
package_name = 'vllm'
package_version = get_version(package_name)
vllm_version = None
if package_version == '0.3.1':
vllm_version = '0.3.1'
from .vllm_v_0_3_1.llm import LLM
from .vllm_v_0_3_1.llm import LLMEngine
from .vllm_v_0_3_1 import parallel_state
elif package_version == '0.4.2':
vllm_version = '0.4.2'
from .vllm_v_0_4_2.llm import LLM
from .vllm_v_0_4_2.llm import LLMEngine
from .vllm_v_0_4_2 import parallel_state
elif package_version == '0.5.4':
vllm_version = '0.5.4'
from .vllm_v_0_5_4.llm import LLM
from .vllm_v_0_5_4.llm import LLMEngine
from .vllm_v_0_5_4 import parallel_state
elif package_version == '0.6.3':
vllm_version = '0.6.3'
from .vllm_v_0_6_3.llm import LLM
from .vllm_v_0_6_3.llm import LLMEngine
from .vllm_v_0_6_3 import parallel_state
elif package_version == '0.6.3+rocm624' or package_version == '0.6.2+das.opt3.dtk2504':
vllm_version = '0.6.3'
from .vllm_v_0_6_3.llm import LLM
from .vllm_v_0_6_3.llm import LLMEngine
from .vllm_v_0_6_3 import parallel_state
elif vs.parse(package_version) >= vs.parse('0.7.0'):
# From 0.6.6.post2 on, vllm supports SPMD inference
# See https://github.com/vllm-project/vllm/pull/12071
from vllm import LLM
from vllm.distributed import parallel_state
else:
if not is_sglang_available():
raise ValueError(
f'vllm version {package_version} not supported and SGLang also not Found. Currently supported vllm versions are 0.3.1, 0.4.2, 0.5.4, 0.6.3 and 0.7.0+'
)
# Copyright 2024 Bytedance Ltd. and/or its affiliates
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# Copyright 2024 Bytedance Ltd. and/or its affiliates
# Copyright 2023 The vLLM team.
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# Adapted from https://github.com/vllm-project/vllm/blob/main/vllm/engine/arg_utils.py
import argparse
import dataclasses
from dataclasses import dataclass
from typing import Dict, Optional, Tuple
import torch.nn as nn
from vllm.config import (CacheConfig, DeviceConfig, ModelConfig, ParallelConfig, SchedulerConfig, LoRAConfig)
from transformers import PretrainedConfig
from .config import ModelConfig
@dataclass
class EngineArgs:
"""Arguments for vLLM engine."""
model_hf_config: PretrainedConfig = None
dtype: str = 'auto'
kv_cache_dtype: str = 'auto'
seed: int = 0
max_model_len: Optional[int] = None
worker_use_ray: bool = False
pipeline_parallel_size: int = 1
tensor_parallel_size: int = 1
max_parallel_loading_workers: Optional[int] = None
block_size: int = 16
swap_space: int = 4 # GiB
gpu_memory_utilization: float = 0.90
max_num_batched_tokens: Optional[int] = None
max_num_seqs: int = 256
max_paddings: int = 256
disable_log_stats: bool = False
revision: Optional[str] = None
tokenizer_revision: Optional[str] = None
quantization: Optional[str] = None
load_format: str = 'model'
enforce_eager: bool = False
max_context_len_to_capture: int = 8192
disable_custom_all_reduce: bool = False
enable_lora: bool = False
max_loras: int = 1
max_lora_rank: int = 16
lora_extra_vocab_size: int = 256
lora_dtype = 'auto'
max_cpu_loras: Optional[int] = None
device: str = 'cuda'
@staticmethod
def add_cli_args(parser: argparse.ArgumentParser) -> argparse.ArgumentParser:
"""Shared CLI arguments for vLLM engine."""
# Model arguments
# TODO(shengguangming): delete the unused args
parser.add_argument('--model',
type=str,
default='facebook/opt-125m',
help='name or path of the huggingface model to use')
parser.add_argument('--tokenizer',
type=str,
default=EngineArgs.tokenizer,
help='name or path of the huggingface tokenizer to use')
parser.add_argument('--revision',
type=str,
default=None,
help='the specific model version to use. It can be a branch '
'name, a tag name, or a commit id. If unspecified, will use '
'the default version.')
parser.add_argument('--tokenizer-revision',
type=str,
default=None,
help='the specific tokenizer version to use. It can be a branch '
'name, a tag name, or a commit id. If unspecified, will use '
'the default version.')
parser.add_argument('--tokenizer-mode',
type=str,
default=EngineArgs.tokenizer_mode,
choices=['auto', 'slow'],
help='tokenizer mode. "auto" will use the fast '
'tokenizer if available, and "slow" will '
'always use the slow tokenizer.')
parser.add_argument('--trust-remote-code', action='store_true', help='trust remote code from huggingface')
parser.add_argument('--download-dir',
type=str,
default=EngineArgs.download_dir,
help='directory to download and load the weights, '
'default to the default cache dir of '
'huggingface')
parser.add_argument('--load-format',
type=str,
default=EngineArgs.load_format,
choices=['auto', 'pt', 'safetensors', 'npcache', 'dummy'],
help='The format of the model weights to load. '
'"auto" will try to load the weights in the safetensors format '
'and fall back to the pytorch bin format if safetensors format '
'is not available. '
'"pt" will load the weights in the pytorch bin format. '
'"safetensors" will load the weights in the safetensors format. '
'"npcache" will load the weights in pytorch format and store '
'a numpy cache to speed up the loading. '
'"dummy" will initialize the weights with random values, '
'which is mainly for profiling.')
parser.add_argument('--dtype',
type=str,
default=EngineArgs.dtype,
choices=['auto', 'half', 'float16', 'bfloat16', 'float', 'float32'],
help='data type for model weights and activations. '
'The "auto" option will use FP16 precision '
'for FP32 and FP16 models, and BF16 precision '
'for BF16 models.')
parser.add_argument('--max-model-len',
type=int,
default=None,
help='model context length. If unspecified, '
'will be automatically derived from the model.')
# Parallel arguments
parser.add_argument('--worker-use-ray',
action='store_true',
help='use Ray for distributed serving, will be '
'automatically set when using more than 1 GPU')
parser.add_argument('--pipeline-parallel-size',
'-pp',
type=int,
default=EngineArgs.pipeline_parallel_size,
help='number of pipeline stages')
parser.add_argument('--tensor-parallel-size',
'-tp',
type=int,
default=EngineArgs.tensor_parallel_size,
help='number of tensor parallel replicas')
# KV cache arguments
parser.add_argument('--block-size',
type=int,
default=EngineArgs.block_size,
choices=[8, 16, 32],
help='token block size')
# TODO(woosuk): Support fine-grained seeds (e.g., seed per request).
parser.add_argument('--seed', type=int, default=EngineArgs.seed, help='random seed')
parser.add_argument('--swap-space',
type=int,
default=EngineArgs.swap_space,
help='CPU swap space size (GiB) per GPU')
parser.add_argument('--gpu-memory-utilization',
type=float,
default=EngineArgs.gpu_memory_utilization,
help='the percentage of GPU memory to be used for'
'the model executor')
parser.add_argument('--max-num-batched-tokens',
type=int,
default=EngineArgs.max_num_batched_tokens,
help='maximum number of batched tokens per '
'iteration')
parser.add_argument('--max-num-seqs',
type=int,
default=EngineArgs.max_num_seqs,
help='maximum number of sequences per iteration')
parser.add_argument('--disable-log-stats', action='store_true', help='disable logging statistics')
# Quantization settings.
parser.add_argument('--quantization',
'-q',
type=str,
choices=['awq', None],
default=None,
help='Method used to quantize the weights')
return parser
@classmethod
def from_cli_args(cls, args: argparse.Namespace) -> 'EngineArgs':
# Get the list of attributes of this dataclass.
attrs = [attr.name for attr in dataclasses.fields(cls)]
# Set the attributes from the parsed arguments.
engine_args = cls(**{attr: getattr(args, attr) for attr in attrs})
return engine_args
def create_engine_configs(
self,
) -> Tuple[ModelConfig, CacheConfig, ParallelConfig, SchedulerConfig]:
device_config = DeviceConfig(self.device)
model_config = ModelConfig(self.model_hf_config, self.dtype, self.seed, self.load_format, self.revision,
self.tokenizer_revision, self.max_model_len, self.quantization, self.enforce_eager,
self.max_context_len_to_capture)
cache_config = CacheConfig(self.block_size, self.gpu_memory_utilization, self.swap_space, self.kv_cache_dtype,
model_config.get_sliding_window())
parallel_config = ParallelConfig(self.pipeline_parallel_size, self.tensor_parallel_size, self.worker_use_ray,
self.max_parallel_loading_workers, self.disable_custom_all_reduce)
scheduler_config = SchedulerConfig(self.max_num_batched_tokens, self.max_num_seqs, model_config.max_model_len,
self.max_paddings)
lora_config = LoRAConfig(max_lora_rank=self.max_lora_rank,
max_loras=self.max_loras,
lora_extra_vocab_size=self.lora_extra_vocab_size,
lora_dtype=self.lora_dtype,
max_cpu_loras=self.max_cpu_loras if self.max_cpu_loras and self.max_cpu_loras > 0 else
None) if self.enable_lora else None
return (model_config, cache_config, parallel_config, scheduler_config, device_config, lora_config)
@dataclass
class AsyncEngineArgs(EngineArgs):
"""Arguments for asynchronous vLLM engine."""
engine_use_ray: bool = False
disable_log_requests: bool = False
max_log_len: Optional[int] = None
@staticmethod
def add_cli_args(parser: argparse.ArgumentParser) -> argparse.ArgumentParser:
parser = EngineArgs.add_cli_args(parser)
parser.add_argument('--engine-use-ray',
action='store_true',
help='use Ray to start the LLM engine in a '
'separate process as the server process.')
parser.add_argument('--disable-log-requests', action='store_true', help='disable logging requests')
parser.add_argument('--max-log-len',
type=int,
default=None,
help='max number of prompt characters or prompt '
'ID numbers being printed in log. '
'Default: unlimited.')
return parser
# Copyright 2024 Bytedance Ltd. and/or its affiliates
# Copyright 2023 The vLLM team.
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# Adapted from https://github.com/vllm-project/vllm/blob/main/vllm/config.py
from typing import Optional, Union, ClassVar
from dataclasses import dataclass
import torch
from transformers import PretrainedConfig
from packaging.version import Version
from vllm.logger import init_logger
from vllm.transformers_utils.config import get_config
from vllm.utils import get_cpu_memory, is_hip, get_nvcc_cuda_version
logger = init_logger(__name__)
_GB = 1 << 30
class ModelConfig:
"""Configuration for the model.
Args:
model: Name or path of the huggingface model to use.
tokenizer: Name or path of the huggingface tokenizer to use.
tokenizer_mode: Tokenizer mode. "auto" will use the fast tokenizer if
available, and "slow" will always use the slow tokenizer.
trust_remote_code: Trust remote code (e.g., from HuggingFace) when
downloading the model and tokenizer.
download_dir: Directory to download and load the weights, default to the
default cache directory of huggingface.
load_format: The format of the model weights to load:
"auto" will try to load the weights in the safetensors format and
fall back to the pytorch bin format if safetensors format is
not available.
"pt" will load the weights in the pytorch bin format.
"safetensors" will load the weights in the safetensors format.
"npcache" will load the weights in pytorch format and store
a numpy cache to speed up the loading.
"dummy" will initialize the weights with random values, which is
mainly for profiling.
dtype: Data type for model weights and activations. The "auto" option
will use FP16 precision for FP32 and FP16 models, and BF16 precision
for BF16 models.
seed: Random seed for reproducibility.
revision: The specific model version to use. It can be a branch name,
a tag name, or a commit id. If unspecified, will use the default
version.
tokenizer_revision: The specific tokenizer version to use. It can be a
branch name, a tag name, or a commit id. If unspecified, will use
the default version.
max_model_len: Maximum length of a sequence (including prompt and
output). If None, will be derived from the model.
quantization: Quantization method that was used to quantize the model
weights. If None, we assume the model weights are not quantized.
enforce_eager: Whether to enforce eager execution. If True, we will
disable CUDA graph and always execute the model in eager mode.
If False, we will use CUDA graph and eager execution in hybrid.
max_context_len_to_capture: Maximum context len covered by CUDA graphs.
When a sequence has context length larger than this, we fall back
to eager mode.
"""
def __init__(
self,
hf_config: PretrainedConfig,
dtype: str,
seed: int,
load_format: str = 'model',
revision: Optional[str] = None,
tokenizer_revision: Optional[str] = None,
max_model_len: Optional[int] = None,
quantization: Optional[str] = None,
trust_remote_code: Optional[bool] = True,
enforce_eager: bool = False,
max_context_len_to_capture: Optional[int] = None,
) -> None:
self.model = hf_config._name_or_path
self.tokenizer = hf_config._name_or_path
self.load_format = load_format
self.seed = seed
self.revision = revision
self.tokenizer_revision = tokenizer_revision
self.quantization = quantization
self.trust_remote_code = trust_remote_code
self.enforce_eager = enforce_eager
self.max_context_len_to_capture = max_context_len_to_capture
# self.hf_config = get_config(model, trust_remote_code, revision)
self.hf_config = hf_config
self.dtype = _get_and_verify_dtype(self.hf_config, dtype)
self.max_model_len = _get_and_verify_max_len(self.hf_config, max_model_len)
# self._verify_load_format()
# self._verify_tokenizer_mode()
self._verify_quantization()
self._verify_cuda_graph()
def _verify_load_format(self) -> None:
load_format = self.load_format.lower()
if load_format not in ["auto", "pt", "safetensors", "npcache", "dummy", "model"]:
raise ValueError(f"Unknown load format: {self.load_format}. Must be one of "
"'auto', 'pt', 'safetensors', 'npcache', 'dummy' or 'model'.")
self.load_format = load_format
# def _verify_tokenizer_mode(self) -> None:
# tokenizer_mode = self.tokenizer_mode.lower()
# if tokenizer_mode not in ["auto", "slow"]:
# raise ValueError(
# f"Unknown tokenizer mode: {self.tokenizer_mode}. Must be "
# "either 'auto' or 'slow'.")
# self.tokenizer_mode = tokenizer_mode
def _verify_quantization(self) -> None:
supported_quantization = ["awq", "gptq", "squeezellm"]
rocm_not_supported_quantization = ["awq", "gptq"]
if self.quantization is not None:
self.quantization = self.quantization.lower()
# Parse quantization method from the HF model config, if available.
hf_quant_config = getattr(self.hf_config, "quantization_config", None)
if hf_quant_config is not None:
hf_quant_method = str(hf_quant_config["quant_method"]).lower()
if self.quantization is None:
self.quantization = hf_quant_method
elif self.quantization != hf_quant_method:
raise ValueError("Quantization method specified in the model config "
f"({hf_quant_method}) does not match the quantization "
f"method specified in the `quantization` argument "
f"({self.quantization}).")
if self.quantization is not None:
if self.quantization not in supported_quantization:
raise ValueError(f"Unknown quantization method: {self.quantization}. Must "
f"be one of {supported_quantization}.")
if is_hip() and self.quantization in rocm_not_supported_quantization:
raise ValueError(f"{self.quantization} quantization is currently not supported "
f"in ROCm.")
logger.warning(f"{self.quantization} quantization is not fully "
"optimized yet. The speed can be slower than "
"non-quantized models.")
def _verify_cuda_graph(self) -> None:
if self.max_context_len_to_capture is None:
self.max_context_len_to_capture = self.max_model_len
self.max_context_len_to_capture = min(self.max_context_len_to_capture, self.max_model_len)
if (self.quantization in ["gptq", "squeezellm"] and not self.enforce_eager):
# Related issue: https://github.com/vllm-project/vllm/issues/2147
logger.warning(f"{self.quantization} does not support CUDA graph "
"yet. Disabling CUDA graph.")
self.enforce_eager = True
def verify_with_parallel_config(
self,
parallel_config: "ParallelConfig",
) -> None:
total_num_attention_heads = self.hf_config.num_attention_heads
tensor_parallel_size = parallel_config.tensor_parallel_size
if total_num_attention_heads % tensor_parallel_size != 0:
raise ValueError(f"Total number of attention heads ({total_num_attention_heads})"
" must be divisible by tensor parallel size "
f"({tensor_parallel_size}).")
total_num_hidden_layers = self.hf_config.num_hidden_layers
pipeline_parallel_size = parallel_config.pipeline_parallel_size
if total_num_hidden_layers % pipeline_parallel_size != 0:
raise ValueError(f"Total number of hidden layers ({total_num_hidden_layers}) "
"must be divisible by pipeline parallel size "
f"({pipeline_parallel_size}).")
def get_sliding_window(self) -> Optional[int]:
return getattr(self.hf_config, "sliding_window", None)
def get_vocab_size(self) -> int:
return self.hf_config.vocab_size
def get_hidden_size(self) -> int:
return self.hf_config.hidden_size
def get_head_size(self) -> int:
# FIXME(woosuk): This may not be true for all models.
return self.hf_config.hidden_size // self.hf_config.num_attention_heads
def get_total_num_kv_heads(self) -> int:
"""Returns the total number of KV heads."""
# For GPTBigCode & Falcon:
# NOTE: for falcon, when new_decoder_architecture is True, the
# multi_query flag is ignored and we use n_head_kv for the number of
# KV heads.
falcon_model_types = ["falcon", "RefinedWeb", "RefinedWebModel"]
new_decoder_arch_falcon = (self.hf_config.model_type in falcon_model_types and
getattr(self.hf_config, "new_decoder_architecture", False))
if not new_decoder_arch_falcon and getattr(self.hf_config, "multi_query", False):
# Multi-query attention, only one KV head.
# Currently, tensor parallelism is not supported in this case.
return 1
attributes = [
# For Falcon:
"n_head_kv",
"num_kv_heads",
# For LLaMA-2:
"num_key_value_heads",
# For ChatGLM:
"multi_query_group_num",
]
for attr in attributes:
num_kv_heads = getattr(self.hf_config, attr, None)
if num_kv_heads is not None:
return num_kv_heads
# For non-grouped-query attention models, the number of KV heads is
# equal to the number of attention heads.
return self.hf_config.num_attention_heads
def get_num_kv_heads(self, parallel_config: "ParallelConfig") -> int:
"""Returns the number of KV heads per GPU."""
total_num_kv_heads = self.get_total_num_kv_heads()
# If tensor parallelism is used, we divide the number of KV heads by
# the tensor parallel size. We will replicate the KV heads in the
# case where the number of KV heads is smaller than the tensor
# parallel size so each GPU has at least one KV head.
return max(1, total_num_kv_heads // parallel_config.tensor_parallel_size)
def get_num_layers(self, parallel_config: "ParallelConfig") -> int:
total_num_hidden_layers = self.hf_config.num_hidden_layers
return total_num_hidden_layers // parallel_config.pipeline_parallel_size
class CacheConfig:
"""Configuration for the KV cache.
Args:
block_size: Size of a cache block in number of tokens.
gpu_memory_utilization: Fraction of GPU memory to use for the
vLLM execution.
swap_space: Size of the CPU swap space per GPU (in GiB).
cache_dtype: Data type for kv cache storage.
"""
def __init__(
self,
block_size: int,
gpu_memory_utilization: float,
swap_space: int,
cache_dtype: str,
sliding_window: Optional[int] = None,
) -> None:
self.block_size = block_size
self.gpu_memory_utilization = gpu_memory_utilization
self.swap_space_bytes = swap_space * _GB
self.cache_dtype = cache_dtype
self.sliding_window = sliding_window
self._verify_args()
self._verify_cache_dtype()
# Will be set after profiling.
self.num_gpu_blocks = None
self.num_cpu_blocks = None
def _verify_args(self) -> None:
if self.gpu_memory_utilization > 1.0:
raise ValueError("GPU memory utilization must be less than 1.0. Got "
f"{self.gpu_memory_utilization}.")
def _verify_cache_dtype(self) -> None:
if self.cache_dtype == "auto":
pass
elif self.cache_dtype == "fp8_e5m2":
nvcc_cuda_version = get_nvcc_cuda_version()
if nvcc_cuda_version < Version("11.8"):
raise ValueError("FP8 is not supported when cuda version is lower than 11.8.")
device_name = torch.cuda.get_device_name()
if "AMD" in device_name:
raise NotImplementedError("FP8_E5M2 KV Cache on AMD GPU has not been supported yet.")
logger.info("Using fp8_e5m2 data type to store kv cache. It reduces "
"the GPU memory footprint and boosts the performance. "
"But it may cause slight accuracy drop. "
"Currently we only support fp8 without scaling factors and "
"make e5m2 as a default format.")
else:
raise ValueError(f"Unknown kv cache dtype: {self.cache_dtype}")
def verify_with_parallel_config(
self,
parallel_config: "ParallelConfig",
) -> None:
total_cpu_memory = get_cpu_memory()
# FIXME(woosuk): Here, it is assumed that the GPUs in a tensor parallel
# group are in the same node. However, the GPUs may span multiple nodes.
num_gpus_per_node = parallel_config.tensor_parallel_size
cpu_memory_usage = self.swap_space_bytes * num_gpus_per_node
msg = (f"{cpu_memory_usage / _GB:.2f} GiB out of "
f"the {total_cpu_memory / _GB:.2f} GiB total CPU memory is "
"allocated for the swap space.")
if cpu_memory_usage > 0.7 * total_cpu_memory:
raise ValueError("Too large swap space. " + msg)
elif cpu_memory_usage > 0.4 * total_cpu_memory:
logger.warning("Possibly too large swap space. " + msg)
class ParallelConfig:
"""Configuration for the distributed execution.
Args:
pipeline_parallel_size: Number of pipeline parallel groups.
tensor_parallel_size: Number of tensor parallel groups.
worker_use_ray: Whether to use Ray for model workers. Will be set to
True if either pipeline_parallel_size or tensor_parallel_size is
greater than 1.
max_parallel_loading_workers: Maximum number of multiple batches
when load model sequentially. To avoid RAM OOM when using tensor
parallel and large models.
disable_custom_all_reduce: Disable the custom all-reduce kernel and
fall back to NCCL.
"""
def __init__(
self,
pipeline_parallel_size: int,
tensor_parallel_size: int,
worker_use_ray: bool,
max_parallel_loading_workers: Optional[int] = None,
disable_custom_all_reduce: bool = False,
) -> None:
self.pipeline_parallel_size = pipeline_parallel_size
self.tensor_parallel_size = tensor_parallel_size
self.worker_use_ray = worker_use_ray
self.max_parallel_loading_workers = max_parallel_loading_workers
self.disable_custom_all_reduce = disable_custom_all_reduce
self.world_size = pipeline_parallel_size * tensor_parallel_size
if self.world_size > 1:
self.worker_use_ray = True
self._verify_args()
def _verify_args(self) -> None:
if self.pipeline_parallel_size > 1:
raise NotImplementedError("Pipeline parallelism is not supported yet.")
if not self.disable_custom_all_reduce and self.world_size > 1:
if is_hip():
self.disable_custom_all_reduce = True
logger.info("Disabled the custom all-reduce kernel because it is not "
"supported on AMD GPUs.")
elif self.pipeline_parallel_size > 1:
self.disable_custom_all_reduce = True
logger.info("Disabled the custom all-reduce kernel because it is not "
"supported with pipeline parallelism.")
# FIXME(woosuk): Fix the stability issues and re-enable the custom
# all-reduce kernel.
if not self.disable_custom_all_reduce and self.world_size > 1:
self.disable_custom_all_reduce = True
logger.info("Custom all-reduce kernels are temporarily disabled due to "
"stability issues. We will re-enable them once the issues are "
"resolved.")
class SchedulerConfig:
"""Scheduler configuration.
Args:
max_num_batched_tokens: Maximum number of tokens to be processed in
a single iteration.
max_num_seqs: Maximum number of sequences to be processed in a single
iteration.
max_model_len: Maximum length of a sequence (including prompt
and generated text).
max_paddings: Maximum number of paddings to be added to a batch.
"""
def __init__(
self,
max_num_batched_tokens: Optional[int],
max_num_seqs: int,
max_model_len: int,
max_paddings: int,
) -> None:
if max_num_batched_tokens is not None:
self.max_num_batched_tokens = max_num_batched_tokens
else:
# If max_model_len is too short, use 2048 as the default value for
# higher throughput.
self.max_num_batched_tokens = max(max_model_len, 2048)
self.max_num_seqs = max_num_seqs
self.max_model_len = max_model_len
self.max_paddings = max_paddings
self._verify_args()
def _verify_args(self) -> None:
if self.max_num_batched_tokens < self.max_model_len:
raise ValueError(f"max_num_batched_tokens ({self.max_num_batched_tokens}) is "
f"smaller than max_model_len ({self.max_model_len}). "
"This effectively limits the maximum sequence length to "
"max_num_batched_tokens and makes vLLM reject longer "
"sequences. Please increase max_num_batched_tokens or "
"decrease max_model_len.")
if self.max_num_batched_tokens < self.max_num_seqs:
raise ValueError(f"max_num_batched_tokens ({self.max_num_batched_tokens}) must "
"be greater than or equal to max_num_seqs "
f"({self.max_num_seqs}).")
class DeviceConfig:
def __init__(self, device: str = "cuda") -> None:
self.device = torch.device(device)
@dataclass
class LoRAConfig:
max_lora_rank: int
max_loras: int
max_cpu_loras: Optional[int] = None
lora_dtype: Optional[torch.dtype] = None
lora_extra_vocab_size: int = 256
# This is a constant.
lora_vocab_padding_size: ClassVar[int] = 256
def __post_init__(self):
# Keep this in sync with csrc/punica/bgmv/bgmv_config.h
possible_max_ranks = (8, 16, 32, 64)
possible_lora_extra_vocab_size = (0, 256, 512)
if self.max_lora_rank not in possible_max_ranks:
raise ValueError(f"max_lora_rank ({self.max_lora_rank}) must be one of "
f"{possible_max_ranks}.")
if self.lora_extra_vocab_size not in possible_lora_extra_vocab_size:
raise ValueError(f"lora_extra_vocab_size ({self.lora_extra_vocab_size}) "
f"must be one of {possible_lora_extra_vocab_size}.")
if self.max_loras < 1:
raise ValueError(f"max_loras ({self.max_loras}) must be >= 1.")
if self.max_cpu_loras is None:
self.max_cpu_loras = self.max_loras
elif self.max_cpu_loras < self.max_loras:
raise ValueError(f"max_cpu_loras ({self.max_cpu_loras}) must be >= "
f"max_loras ({self.max_loras})")
def verify_with_model_config(self, model_config: ModelConfig):
if self.lora_dtype in (None, "auto"):
self.lora_dtype = model_config.dtype
elif isinstance(self.lora_dtype, str):
self.lora_dtype = getattr(torch, self.lora_dtype)
if model_config.quantization is not None:
raise ValueError("LoRA is not supported with quantized models yet.")
def verify_with_scheduler_config(self, scheduler_config: SchedulerConfig):
if scheduler_config.max_num_batched_tokens > 65528:
raise ValueError("Due to limitations of the custom LoRA CUDA kernel, "
"max_num_batched_tokens must be <= 65528 when "
"LoRA is enabled.")
_STR_DTYPE_TO_TORCH_DTYPE = {
"half": torch.float16,
"float16": torch.float16,
"float": torch.float32,
"float32": torch.float32,
"bfloat16": torch.bfloat16,
}
_ROCM_NOT_SUPPORTED_DTYPE = ["float", "float32"]
def _get_and_verify_dtype(
config: PretrainedConfig,
dtype: Union[str, torch.dtype],
) -> torch.dtype:
# NOTE: getattr(config, "torch_dtype", torch.float32) is not correct
# because config.torch_dtype can be None.
config_dtype = getattr(config, "torch_dtype", None)
if config_dtype is None:
config_dtype = torch.float32
if isinstance(dtype, str):
dtype = dtype.lower()
if dtype == "auto":
if config_dtype == torch.float32:
# Following the common practice, we use float16 for float32
# models.
torch_dtype = torch.float16
else:
torch_dtype = config_dtype
else:
if dtype not in _STR_DTYPE_TO_TORCH_DTYPE:
raise ValueError(f"Unknown dtype: {dtype}")
torch_dtype = _STR_DTYPE_TO_TORCH_DTYPE[dtype]
elif isinstance(dtype, torch.dtype):
torch_dtype = dtype
else:
raise ValueError(f"Unknown dtype: {dtype}")
if is_hip() and torch_dtype == torch.float32:
rocm_supported_dtypes = [
k for k, v in _STR_DTYPE_TO_TORCH_DTYPE.items() if (k not in _ROCM_NOT_SUPPORTED_DTYPE)
]
raise ValueError(f"dtype \'{dtype}\' is not supported in ROCm. "
f"Supported dtypes are {rocm_supported_dtypes}")
# Verify the dtype.
if torch_dtype != config_dtype:
if torch_dtype == torch.float32:
# Upcasting to float32 is allowed.
pass
elif config_dtype == torch.float32:
# Downcasting from float32 to float16 or bfloat16 is allowed.
pass
else:
# Casting between float16 and bfloat16 is allowed with a warning.
logger.warning(f"Casting {config_dtype} to {torch_dtype}.")
return torch_dtype
def _get_and_verify_max_len(
hf_config: PretrainedConfig,
max_model_len: Optional[int],
) -> int:
"""Get and verify the model's maximum length."""
derived_max_model_len = float("inf")
possible_keys = [
# OPT
"max_position_embeddings",
# GPT-2
"n_positions",
# MPT
"max_seq_len",
# ChatGLM2
"seq_length",
# Others
"max_sequence_length",
"max_seq_length",
"seq_len",
]
for key in possible_keys:
max_len_key = getattr(hf_config, key, None)
if max_len_key is not None:
derived_max_model_len = min(derived_max_model_len, max_len_key)
if derived_max_model_len == float("inf"):
if max_model_len is not None:
# If max_model_len is specified, we use it.
return max_model_len
default_max_len = 2048
logger.warning("The model's config.json does not contain any of the following "
"keys to determine the original maximum length of the model: "
f"{possible_keys}. Assuming the model's maximum length is "
f"{default_max_len}.")
derived_max_model_len = default_max_len
rope_scaling = getattr(hf_config, "rope_scaling", None)
if rope_scaling is not None:
assert "factor" in rope_scaling
scaling_factor = rope_scaling["factor"]
if rope_scaling["type"] == "yarn":
derived_max_model_len = rope_scaling["original_max_position_embeddings"]
derived_max_model_len *= scaling_factor
if max_model_len is None:
max_model_len = derived_max_model_len
elif max_model_len > derived_max_model_len:
raise ValueError(f"User-specified max_model_len ({max_model_len}) is greater than "
f"the derived max_model_len ({max_len_key}={derived_max_model_len}"
" in model's config.json). This may lead to incorrect model "
"outputs or CUDA errors. Make sure the value is correct and "
"within the model context size.")
return int(max_model_len)
# Copyright 2024 Bytedance Ltd. and/or its affiliates
# Copyright 2023 The vLLM team.
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# Adapted from https://github.com/vllm-project/vllm/blob/main/vllm/entrypoints/llm.py
from typing import Dict, List, Optional, Tuple, Union
from tqdm import tqdm
from transformers import PreTrainedTokenizer, PreTrainedTokenizerFast
from transformers import PretrainedConfig
import torch.nn as nn
from .arg_utils import EngineArgs
from .llm_engine_sp import LLMEngine
from vllm.lora.request import LoRARequest
from vllm.outputs import RequestOutput
from vllm.sampling_params import SamplingParams
from vllm.utils import Counter
import torch
from torch.nn.utils.rnn import pad_sequence
from verl.workers.rollout.tokenizer import HybridEngineBaseTokenizer
class LLM:
"""An LLM for generating texts from given prompts and sampling parameters.
This class includes a tokenizer, a language model (possibly distributed
across multiple GPUs), and GPU memory space allocated for intermediate
states (aka KV cache). Given a batch of prompts and sampling parameters,
this class generates texts from the model, using an intelligent batching
mechanism and efficient memory management.
NOTE: This class is intended to be used for offline inference. For online
serving, use the `AsyncLLMEngine` class instead.
NOTE: For the comprehensive list of arguments, see `EngineArgs`.
Args:
model: A HuggingFace Transformers model instance.
tokenizer: A HuggingFace Transformers tokenizer instance.
tokenizer_mode: The tokenizer mode. "auto" will use the fast tokenizer
if available, and "slow" will always use the slow tokenizer.
trust_remote_code: Trust remote code (e.g., from HuggingFace) when
downloading the model and tokenizer.
tensor_parallel_size: The number of GPUs to use for distributed
execution with tensor parallelism.
dtype: The data type for the model weights and activations. Currently,
we support `float32`, `float16`, and `bfloat16`. If `auto`, we use
the `torch_dtype` attribute specified in the model config file.
However, if the `torch_dtype` in the config is `float32`, we will
use `float16` instead.
quantization: The method used to quantize the model weights. Currently,
we support "awq". If None, we assume the model weights are not
quantized and use `dtype` to determine the data type of the weights.
revision: The specific model version to use. It can be a branch name,
a tag name, or a commit id.
tokenizer_revision: The specific tokenizer version to use. It can be a
branch name, a tag name, or a commit id.
seed: The seed to initialize the random number generator for sampling.
gpu_memory_utilization: The ratio (between 0 and 1) of GPU memory to
reserve for the model weights, activations, and KV cache. Higher
values will increase the KV cache size and thus improve the model's
throughput. However, if the value is too high, it may cause out-of-
memory (OOM) errors.
swap_space: The size (GiB) of CPU memory per GPU to use as swap space.
This can be used for temporarily storing the states of the requests
when their `best_of` sampling parameters are larger than 1. If all
requests will have `best_of=1`, you can safely set this to 0.
Otherwise, too small values may cause out-of-memory (OOM) errors.
enforce_eager: Whether to enforce eager execution. If True, we will
disable CUDA graph and always execute the model in eager mode.
If False, we will use CUDA graph and eager execution in hybrid.
max_context_len_to_capture: Maximum context len covered by CUDA graphs.
When a sequence has context length larger than this, we fall back
to eager mode.
disable_custom_all_reduce: See ParallelConfig
"""
def __init__(
self,
model: Union[nn.Module, Dict], # model itself or its parameter dict
tokenizer: Union[PreTrainedTokenizer, PreTrainedTokenizerFast, HybridEngineBaseTokenizer],
model_hf_config: PretrainedConfig,
tokenizer_mode: str = "auto",
trust_remote_code: bool = False,
tensor_parallel_size: int = 1,
dtype: str = "auto",
quantization: Optional[str] = None,
revision: Optional[str] = None,
tokenizer_revision: Optional[str] = None,
seed: int = 0,
gpu_memory_utilization: float = 0.9,
swap_space: int = 4,
enforce_eager: bool = False,
max_context_len_to_capture: int = 8192,
disable_custom_all_reduce: bool = False,
**kwargs,
) -> None:
if "disable_log_stats" not in kwargs:
kwargs["disable_log_stats"] = True
engine_args = EngineArgs(
model_hf_config=model_hf_config,
tensor_parallel_size=tensor_parallel_size,
dtype=dtype,
quantization=quantization,
revision=revision,
tokenizer_revision=tokenizer_revision,
seed=seed,
gpu_memory_utilization=gpu_memory_utilization,
swap_space=swap_space,
enforce_eager=enforce_eager,
max_context_len_to_capture=max_context_len_to_capture,
disable_custom_all_reduce=disable_custom_all_reduce,
**kwargs,
)
tokenizer_cls = (PreTrainedTokenizer, PreTrainedTokenizerFast, HybridEngineBaseTokenizer)
if not isinstance(tokenizer, tokenizer_cls):
raise ValueError(
f"Unexpected tokenizer type: {type(tokenizer)}. Must be"
"one of the following: PreTrainedTokenizer, PreTrainedTokenizerFast, verl.workers.rollout.HybridEngineBaseTokenizer"
)
self.llm_engine = LLMEngine.from_engine_args(model, tokenizer, engine_args)
self.request_counter = Counter()
def init_cache_engine(self):
self.llm_engine.init_cache_engine()
def free_cache_engine(self):
self.llm_engine.free_cache_engine()
def get_tokenizer(self) -> Union[PreTrainedTokenizer, PreTrainedTokenizerFast]:
return self.llm_engine.tokenizer
def set_tokenizer(
self,
tokenizer: Union[PreTrainedTokenizer, PreTrainedTokenizerFast],
) -> None:
self.llm_engine.tokenizer = tokenizer
def generate(
self,
prompts: Optional[Union[str, List[str]]] = None,
sampling_params: Optional[SamplingParams] = None,
prompt_token_ids: Optional[List[List[int]]] = None,
prefix_pos: Optional[Union[int, List[int]]] = None,
use_tqdm: bool = True,
lora_request: Optional[LoRARequest] = None,
) -> List[RequestOutput]:
"""Generates the completions for the input prompts.
NOTE: This class automatically batches the given prompts, considering
the memory constraint. For the best performance, put all of your prompts
into a single list and pass it to this method.
Args:
prompts: A list of prompts to generate completions for.
sampling_params: The sampling parameters for text generation. If
None, we use the default sampling parameters.
prompt_token_ids: A list of token IDs for the prompts. If None, we
use the tokenizer to convert the prompts to token IDs.
use_tqdm: Whether to use tqdm to display the progress bar.
Returns:
A list of `RequestOutput` objects containing the generated
completions in the same order as the input prompts.
"""
if prompts is None and prompt_token_ids is None:
raise ValueError("Either prompts or prompt_token_ids must be "
"provided.")
if isinstance(prompts, str):
# Convert a single prompt to a list.
prompts = [prompts]
if prompts is not None and prompt_token_ids is not None:
if len(prompts) != len(prompt_token_ids):
raise ValueError("The lengths of prompts and prompt_token_ids "
"must be the same.")
if sampling_params is None:
# Use default sampling params.
sampling_params = SamplingParams()
# Add requests to the engine.
num_requests = len(prompts) if prompts is not None else len(prompt_token_ids)
for i in range(num_requests):
prompt = prompts[i] if prompts is not None else None
prefix_pos_i = prefix_pos[i] if prefix_pos is not None else None
token_ids = None if prompt_token_ids is None else prompt_token_ids[i]
if not isinstance(token_ids, list):
# NOTE(shengguangming): convert the rollout input into List[str]
token_ids = self._pre_process_inputs(token_ids)
self._add_request(prompt, sampling_params, token_ids, lora_request=lora_request, prefix_pos=prefix_pos_i)
return self._run_engine(use_tqdm)
def _add_request(
self,
prompt: Optional[str],
sampling_params: SamplingParams,
prompt_token_ids: Optional[List[int]],
lora_request: Optional[LoRARequest] = None,
prefix_pos: Optional[int] = None,
) -> None:
request_id = str(next(self.request_counter))
self.llm_engine.add_request(request_id,
prompt,
sampling_params,
prompt_token_ids,
lora_request=lora_request,
prefix_pos=prefix_pos)
def _run_engine(self, use_tqdm: bool) -> List[RequestOutput]:
# Initialize tqdm.
if use_tqdm:
num_requests = self.llm_engine.get_num_unfinished_requests()
pbar = tqdm(total=num_requests, desc="Processed prompts")
# Run the engine.
outputs: List[RequestOutput] = []
while self.llm_engine.has_unfinished_requests():
step_outputs = self.llm_engine.step()
for output in step_outputs:
if output.finished:
outputs.append(output)
if use_tqdm:
pbar.update(1)
if use_tqdm:
pbar.close()
# Sort the outputs by request ID.
# This is necessary because some requests may be finished earlier than
# its previous requests.
outputs = sorted(outputs, key=lambda x: int(x.request_id))
# TODO(shengguangming): maybe we can hack the autoregressive logics without only apply post process for better performance
return self._post_process_outputs(outputs)
# NOTE(shengguangming): add for verl
# TODO(sgm): we can optimize it by making the dataloader yield List[int] without padding.
def _pre_process_inputs(self, prompt_token_ids: torch.Tensor) -> List[int]:
# remove the left padding in the prompt token_id
pad_token_id = self.llm_engine.tokenizer.pad_token_id if self.llm_engine.tokenizer.pad_token_id is not None else self.llm_engine.tokenizer.eos_token_id
non_pad_index = torch.nonzero(prompt_token_ids != pad_token_id, as_tuple=False)[0][0]
token_ids = prompt_token_ids[non_pad_index:].tolist()
return token_ids
# NOTE(shengguangming): add for verl
def _post_process_outputs(self, outputs: List[RequestOutput]) -> Tuple[torch.Tensor, torch.Tensor]:
output_token_ids = []
logprobs = []
for output in outputs: # List[RequestOutput]
output = output.outputs
for output in output: # List[CompletionOutput], usually len == 1
output_token_ids.append(torch.tensor(output.token_ids))
# TODO(shengguangming): can be optimzied by rewrite the Sampler._get_logprobs() logits
logprobs_dicts = output.logprobs
if logprobs_dicts is not None:
logprob = []
for logprobs_dict, id in zip(logprobs_dicts, output.token_ids):
logprob.append(logprobs_dict[id])
logprobs.append(torch.tensor(logprob))
pad_token_id = self.llm_engine.tokenizer.pad_token_id if self.llm_engine.tokenizer.pad_token_id is not None else self.llm_engine.tokenizer.eos_token_id
output_token_ids = pad_sequence(output_token_ids, batch_first=True, padding_value=pad_token_id)
if len(logprobs) > 0:
logprobs = pad_sequence(logprobs, batch_first=True, padding_value=pad_token_id)
return output_token_ids, logprobs
def sync_model_weights(self, actor_weights: Dict[str, torch.Tensor]) -> None:
self.llm_engine.sync_model_weights(actor_weights=actor_weights)
def offload_model_weights(self) -> None:
self.llm_engine.offload_model_weights()
# Copyright 2024 Bytedance Ltd. and/or its affiliates
# Copyright 2023 The vLLM team.
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# Adapted from https://github.com/vllm-project/vllm/blob/main/vllm/engine/llm_engine.py
import os
import socket
import time
import torch
from typing import TYPE_CHECKING, Any, Dict, Iterable, List, Optional, Tuple, Union
from vllm.lora.request import LoRARequest
from vllm.config import (CacheConfig, DeviceConfig, ModelConfig, ParallelConfig, SchedulerConfig, LoRAConfig)
from vllm.core.scheduler import Scheduler, SchedulerOutputs
from vllm.logger import init_logger
from vllm.outputs import RequestOutput
from vllm.sampling_params import SamplingParams
from vllm.sequence import (SamplerOutput, Sequence, SequenceGroup, SequenceGroupMetadata, SequenceGroupOutput,
SequenceOutput, SequenceStatus)
from vllm.transformers_utils.tokenizer import detokenize_incrementally
from vllm.engine.metrics import StatLogger, Stats
from vllm.utils import Counter
import torch.nn as nn
from .arg_utils import EngineArgs
from .tokenizer import TokenizerGroup
logger = init_logger(__name__)
_LOCAL_LOGGING_INTERVAL_SEC = 5
class LLMEngine:
"""An LLM engine that receives requests and generates texts.
This is the main class for the vLLM engine. It receives requests
from clients and generates texts from the LLM. It includes a tokenizer, a
language model (possibly distributed across multiple GPUs), and GPU memory
space allocated for intermediate states (aka KV cache). This class utilizes
iteration-level scheduling and efficient memory management to maximize the
serving throughput.
The `LLM` class wraps this class for offline batched inference and the
`AsyncLLMEngine` class wraps this class for online serving.
NOTE: The config arguments are derived from the `EngineArgs` class. For the
comprehensive list of arguments, see `EngineArgs`.
Args:
model_config: The configuration related to the LLM model.
cache_config: The configuration related to the KV cache memory
management.
parallel_config: The configuration related to distributed execution.
scheduler_config: The configuration related to the request scheduler.
distributed_init_method: The initialization method for distributed
execution. See `torch.distributed.init_process_group` for details.
placement_group: Ray placement group for distributed execution.
Required for distributed execution.
log_stats: Whether to log statistics.
"""
def __init__(
self,
model: Union[nn.Module, Dict], # model itself or its parameter dict
tokenizer: nn.Module,
model_config: ModelConfig,
cache_config: CacheConfig,
parallel_config: ParallelConfig,
scheduler_config: SchedulerConfig,
device_config: DeviceConfig,
lora_config: Optional[LoRAConfig],
distributed_init_method: str,
placement_group: Optional[None],
log_stats: bool,
) -> None:
logger.info("Initializing an LLM engine with config: "
f"model={model_config.model!r}, "
f"tokenizer={model_config.tokenizer!r}, "
# f"tokenizer_mode={model_config.tokenizer_mode}, "
f"revision={model_config.revision}, "
f"tokenizer_revision={model_config.tokenizer_revision}, "
# f"trust_remote_code={model_config.trust_remote_code}, "
f"dtype={model_config.dtype}, "
f"max_seq_len={model_config.max_model_len}, "
# f"download_dir={model_config.download_dir!r}, "
# f"load_format={model_config.load_format}, "
f"disable_custom_all_reduce={parallel_config.disable_custom_all_reduce}, "
f"tensor_parallel_size={parallel_config.tensor_parallel_size}, "
f"quantization={model_config.quantization}, "
f"seed={model_config.seed})")
# TODO(woosuk): Print more configs in debug mode.
self.model_config = model_config # TODO: currently is hfconfig
self.cache_config = cache_config
self.lora_config = lora_config
assert self.cache_config.sliding_window == getattr(self.model_config.hf_config, "sliding_window", None)
self.parallel_config = parallel_config
self.scheduler_config = scheduler_config
self.device_config = device_config
self.log_stats = log_stats
self._verify_args()
# self.model = model # should not store the model, it should be deleted
# TODO(shengguangming): maybe we can choose init here or from arguments
self._init_tokenizer(tokenizer)
self.seq_counter = Counter()
# Create the parallel GPU workers.
self._init_workers_sp(model, distributed_init_method)
# Profile the memory usage and initialize the cache.
self._init_cache_sp()
# Create the scheduler.
# NOTE(shengguangming): each process will have independent scheduler
self.scheduler = Scheduler(scheduler_config, cache_config, lora_config)
# Metric Logging.
if self.log_stats:
self.stat_logger = StatLogger(local_interval=_LOCAL_LOGGING_INTERVAL_SEC)
# Logging.
self.last_logging_time = 0.0
# List of (timestamp, num_tokens)
self.num_prompt_tokens: List[Tuple[float, int]] = []
# List of (timestamp, num_tokens)
self.num_generation_tokens: List[Tuple[float, int]] = []
def _init_tokenizer(self, tokenizer, **tokenizer_init_kwargs):
init_kwargs = dict(enable_lora=bool(self.lora_config),
max_num_seqs=self.scheduler_config.max_num_seqs,
max_input_length=None)
init_kwargs.update(tokenizer_init_kwargs)
self.tokenizer: TokenizerGroup = TokenizerGroup(tokenizer, **init_kwargs)
# TODO: check get_lora_tokenizer func
def get_tokenizer_for_seq(self, sequence: Sequence):
return self.tokenizer.get_lora_tokenizer(sequence.lora_request)
def _init_workers_sp(self, model, distributed_init_method: str):
# Lazy import the Worker to avoid importing torch.cuda/xformers
# before CUDA_VISIBLE_DEVICES is set in the Worker
from .worker import Worker # pylint: disable=import-outside-toplevel
rank = int(os.getenv("RANK"))
self.worker = Worker(
model,
self.model_config,
self.parallel_config,
self.scheduler_config,
self.device_config,
rank,
distributed_init_method,
lora_config=self.lora_config,
kv_cache_dtype=self.cache_config.cache_dtype,
)
# NOTE(shengguangming): torch.distributed.init_process_group will be called inside the init_model()
self.worker.init_model()
self.worker.load_model()
def _verify_args(self) -> None:
self.model_config.verify_with_parallel_config(self.parallel_config)
self.cache_config.verify_with_parallel_config(self.parallel_config)
def _init_cache_sp(self) -> None:
"""Profiles the memory usage and initializes the KV cache."""
# Get the maximum number of blocks that can be allocated on GPU and CPU.
num_blocks = self.worker.profile_num_available_blocks(
block_size=self.cache_config.block_size,
gpu_memory_utilization=self.cache_config.gpu_memory_utilization,
cpu_swap_space=self.cache_config.swap_space_bytes,
cache_dtype=self.cache_config.cache_dtype,
)
# NOTE(shengguangming): Now we don't use a shared centralized controler but each process will
# have its own scheduler
num_gpu_blocks = num_blocks[0]
num_cpu_blocks = num_blocks[1]
# FIXME(woosuk): Change to debug log.
logger.info(f"# GPU blocks: {num_gpu_blocks}, "
f"# CPU blocks: {num_cpu_blocks}")
if num_gpu_blocks <= 0:
raise ValueError("No available memory for the cache blocks. "
"Try increasing `gpu_memory_utilization` when "
"initializing the engine.")
max_seq_len = self.cache_config.block_size * num_gpu_blocks
if self.model_config.max_model_len > max_seq_len:
raise ValueError(f"The model's max seq len ({self.model_config.max_model_len}) "
"is larger than the maximum number of tokens that can be "
f"stored in KV cache ({max_seq_len}). Try increasing "
"`gpu_memory_utilization` or decreasing `max_model_len` when "
"initializing the engine.")
self.cache_config.num_gpu_blocks = num_gpu_blocks
self.cache_config.num_cpu_blocks = num_cpu_blocks
# Initialize the cache.
self.worker.init_cache_engine(cache_config=self.cache_config)
self.worker.warm_up_model()
def init_cache_engine(self):
self.worker.init_cache_engine(cache_config=self.cache_config)
def free_cache_engine(self):
self.worker.free_cache_engine()
@classmethod
def from_engine_args(cls, model, tokenizer, engine_args: EngineArgs) -> "LLMEngine":
"""Creates an LLM engine from the engine arguments."""
# Create the engine configs.
engine_configs = engine_args.create_engine_configs()
parallel_config = engine_configs[2]
# Initialize the cluster.
distributed_init_method, placement_group = initialize_cluster(parallel_config)
# Create the LLM engine.
engine = cls(model,
tokenizer,
*engine_configs,
distributed_init_method,
placement_group,
log_stats=not engine_args.disable_log_stats)
return engine
def add_request(
self,
request_id: str,
prompt: Optional[str],
sampling_params: SamplingParams,
prompt_token_ids: Optional[List[int]] = None,
arrival_time: Optional[float] = None,
lora_request: Optional[LoRARequest] = None,
prefix_pos: Optional[int] = None,
) -> None:
"""Add a request to the engine's request pool.
The request is added to the request pool and will be processed by the
scheduler as `engine.step()` is called. The exact scheduling policy is
determined by the scheduler.
Args:
request_id: The unique ID of the request.
prompt: The prompt string. Can be None if prompt_token_ids is
provided.
sampling_params: The sampling parameters for text generation.
prompt_token_ids: The token IDs of the prompt. If None, we
use the tokenizer to convert the prompts to token IDs.
arrival_time: The arrival time of the request. If None, we use
the current monotonic time.
prefix_pos: If not None, we use the given position as the prefix
position for each prompt. We will cache the prefix's KV
cache and reuse it for the next request with the same prefix.
This is an experimental feature, and may be replaced with
automatic prefix caching in the future.
Details:
- Set arrival_time to the current time if it is None.
- Set prompt_token_ids to the encoded prompt if it is None.
- Create `best_of` number of :class:`~vllm.Sequence` objects.
- Create a :class:`~vllm.SequenceGroup` object
from the list of :class:`~vllm.Sequence`.
- Add the :class:`~vllm.SequenceGroup` object to the scheduler.
Example:
>>> # initialize engine
>>> engine = LLMEngine.from_engine_args(engine_args)
>>> # set request arguments
>>> example_prompt = "Who is the president of the United States?"
>>> sampling_params = SamplingParams(temperature=0.0)
>>> request_id = 0
>>>
>>> # add the request to the engine
>>> engine.add_request(
>>> str(request_id),
>>> example_prompt,
>>> SamplingParams(temperature=0.0))
>>> # continue the request processing
>>> ...
"""
if lora_request is not None and not self.lora_config:
raise ValueError(f"Got lora_request {lora_request} but LoRA is "
"not enabled!")
if arrival_time is None:
arrival_time = time.monotonic()
if prompt_token_ids is None:
assert prompt is not None
prompt_token_ids = self.tokenizer.encode(prompt)
# Create the sequences.
block_size = self.cache_config.block_size
seq_id = next(self.seq_counter)
seq = Sequence(seq_id, prompt, prompt_token_ids, block_size, lora_request)
# Check whether the input specifies prefix
prefix = self.scheduler.prefix_pool.add_or_get_prefix(prompt_token_ids[:prefix_pos], lora_request.lora_int_id if
lora_request else 0) if prefix_pos is not None else None
# Create the sequence group.
seq_group = SequenceGroup(request_id, [seq], sampling_params, arrival_time, lora_request, prefix)
# Add the sequence group to the scheduler.
self.scheduler.add_seq_group(seq_group)
def abort_request(self, request_id: Union[str, Iterable[str]]) -> None:
"""Aborts a request(s) with the given ID.
Args:
request_id: The ID(s) of the request to abort.
Details:
- Refer to the
:meth:`~vllm.core.scheduler.Scheduler.abort_seq_group`
from class :class:`~vllm.core.scheduler.Scheduler`.
Example:
>>> # initialize engine and add a request with request_id
>>> request_id = str(0)
>>> # abort the request
>>> engine.abort_request(request_id)
"""
self.scheduler.abort_seq_group(request_id)
def get_model_config(self) -> ModelConfig:
"""Gets the model configuration."""
return self.model_config
def get_num_unfinished_requests(self) -> int:
"""Gets the number of unfinished requests."""
return self.scheduler.get_num_unfinished_seq_groups()
def has_unfinished_requests(self) -> bool:
"""Returns True if there are unfinished requests."""
return self.scheduler.has_unfinished_seqs()
def _check_beam_search_early_stopping(
self,
early_stopping: Union[bool, str],
sampling_params: SamplingParams,
best_running_seq: Sequence,
current_worst_seq: Sequence,
) -> bool:
assert sampling_params.use_beam_search
length_penalty = sampling_params.length_penalty
if early_stopping is True:
return True
current_worst_score = (current_worst_seq.get_beam_search_score(
length_penalty=length_penalty, eos_token_id=self.get_tokenizer_for_seq(current_worst_seq).eos_token_id))
if early_stopping is False:
highest_attainable_score = (best_running_seq.get_beam_search_score(
length_penalty=length_penalty, eos_token_id=self.get_tokenizer_for_seq(best_running_seq).eos_token_id))
else:
assert early_stopping == "never"
if length_penalty > 0.0:
# If length_penalty > 0.0, beam search will prefer longer
# sequences. The highest attainable score calculation is
# based on the longest possible sequence length in this case.
max_possible_length = max(best_running_seq.get_prompt_len() + sampling_params.max_tokens,
self.scheduler_config.max_model_len)
highest_attainable_score = (best_running_seq.get_beam_search_score(
length_penalty=length_penalty,
eos_token_id=self.get_tokenizer_for_seq(best_running_seq).eos_token_id,
seq_len=max_possible_length))
else:
# Otherwise, beam search will prefer shorter sequences. The
# highest attainable score calculation is based on the current
# sequence length.
highest_attainable_score = (best_running_seq.get_beam_search_score(
length_penalty=length_penalty,
eos_token_id=self.get_tokenizer_for_seq(best_running_seq).eos_token_id))
def _process_sequence_group_outputs(self, seq_group: SequenceGroup, outputs: SequenceGroupOutput) -> None:
# Process prompt logprobs
prompt_logprobs = outputs.prompt_logprobs
if prompt_logprobs is not None:
seq_group.prompt_logprobs = prompt_logprobs
# Process samples
samples = outputs.samples
parent_seqs = seq_group.get_seqs(status=SequenceStatus.RUNNING)
existing_finished_seqs = seq_group.get_finished_seqs()
parent_child_dict = {parent_seq.seq_id: [] for parent_seq in parent_seqs}
for sample in samples:
parent_child_dict[sample.parent_seq_id].append(sample)
# List of (child, parent)
child_seqs: List[Tuple[Sequence, Sequence]] = []
# Process the child samples for each parent sequence
for parent in parent_seqs:
child_samples: List[SequenceOutput] = parent_child_dict[parent.seq_id]
if len(child_samples) == 0:
# This parent sequence has no children samples. Remove
# the parent sequence from the sequence group since it will
# not be used in the future iterations.
parent.status = SequenceStatus.FINISHED_ABORTED
seq_group.remove(parent.seq_id)
self.scheduler.free_seq(parent)
continue
# Fork the parent sequence if there are multiple child samples.
for child_sample in child_samples[:-1]:
new_child_seq_id = next(self.seq_counter)
child = parent.fork(new_child_seq_id)
child.append_token_id(child_sample.output_token, child_sample.logprobs)
child_seqs.append((child, parent))
# Continue the parent sequence for the last child sample.
# We reuse the parent sequence here to reduce redundant memory
# copies, especially when using non-beam search sampling methods.
last_child_sample = child_samples[-1]
parent.append_token_id(last_child_sample.output_token, last_child_sample.logprobs)
child_seqs.append((parent, parent))
for seq, _ in child_seqs:
# self._decode_sequence(seq, seq_group.sampling_params)
self._check_stop(seq, seq_group.sampling_params)
# Non-beam search case
if not seq_group.sampling_params.use_beam_search:
# For newly created child sequences, add them to the sequence group
# and fork them in block manager if they are not finished.
for seq, parent in child_seqs:
if seq is not parent:
seq_group.add(seq)
if not seq.is_finished():
self.scheduler.fork_seq(parent, seq)
# Free the finished and selected parent sequences' memory in block
# manager. Keep them in the sequence group as candidate output.
# NOTE: we need to fork the new sequences before freeing the
# old sequences.
for seq, parent in child_seqs:
if seq is parent and seq.is_finished():
self.scheduler.free_seq(seq)
return
# Beam search case
# Select the child sequences to keep in the sequence group.
selected_child_seqs = []
unselected_child_seqs = []
beam_width = seq_group.sampling_params.best_of
length_penalty = seq_group.sampling_params.length_penalty
# Select the newly finished sequences with the highest scores
# to replace existing finished sequences.
# Tuple of (seq, parent, is_new)
existing_finished_seqs = [(seq, None, False) for seq in existing_finished_seqs]
new_finished_seqs = [(seq, parent, True) for seq, parent in child_seqs if seq.is_finished()]
all_finished_seqs = existing_finished_seqs + new_finished_seqs
# Sort the finished sequences by their scores.
all_finished_seqs.sort(key=lambda x: x[0].get_beam_search_score(
length_penalty=length_penalty, eos_token_id=self.get_tokenizer_for_seq(x[0]).eos_token_id),
reverse=True)
for seq, parent, is_new in all_finished_seqs[:beam_width]:
if is_new:
# A newly generated child sequence finishes and has a high
# score, so we will add it into the sequence group.
selected_child_seqs.append((seq, parent))
for seq, parent, is_new in all_finished_seqs[beam_width:]:
if is_new:
# A newly generated child sequence finishes but has a low
# score, so we will not add it into the sequence group.
# Additionally, if this sequence is a continuation of a
# parent sequence, we will need remove the parent sequence
# from the sequence group.
unselected_child_seqs.append((seq, parent))
else:
# An existing finished sequence has a low score, so we will
# remove it from the sequence group.
seq_group.remove(seq.seq_id)
# select the top beam_width sequences from the running
# sequences for the next iteration to continue the beam
# search.
running_child_seqs = [(seq, parent) for seq, parent in child_seqs if not seq.is_finished()]
# Sort the running sequences by their scores.
running_child_seqs.sort(key=lambda x: x[0].get_beam_search_score(
length_penalty=length_penalty, eos_token_id=self.get_tokenizer_for_seq(x[0]).eos_token_id),
reverse=True)
# Check if we can stop the beam search.
if len(running_child_seqs) == 0:
# No running sequences, stop the beam search.
stop_beam_search = True
elif len(all_finished_seqs) < beam_width:
# Not enough finished sequences, continue the beam search.
stop_beam_search = False
else:
# Check the early stopping criteria
best_running_seq = running_child_seqs[0][0]
current_worst_seq = all_finished_seqs[beam_width - 1][0]
stop_beam_search = self._check_beam_search_early_stopping(seq_group.sampling_params.early_stopping,
seq_group.sampling_params, best_running_seq,
current_worst_seq)
if stop_beam_search:
# Stop the beam search and remove all the running sequences from
# the sequence group.
unselected_child_seqs.extend(running_child_seqs)
else:
# Continue the beam search and select the top beam_width sequences
# to continue the beam search.
selected_child_seqs.extend(running_child_seqs[:beam_width])
# The remaining running sequences will not be used in the next
# iteration. Again, if these sequences are continuations of
# parent sequences, we will need to remove the parent sequences
# from the sequence group.
unselected_child_seqs.extend(running_child_seqs[beam_width:])
# For newly created child sequences, add them to the sequence group
# and fork them in block manager if they are not finished.
for seq, parent in selected_child_seqs:
if seq is not parent:
seq_group.add(seq)
if not seq.is_finished():
self.scheduler.fork_seq(parent, seq)
# Free the finished and selected parent sequences' memory in block
# manager. Keep them in the sequence group as candidate output.
for seq, parent in selected_child_seqs:
if seq is parent and seq.is_finished():
self.scheduler.free_seq(seq)
# Remove the unselected parent sequences from the sequence group and
# free their memory in block manager.
for seq, parent in unselected_child_seqs:
if seq is parent:
# Remove the parent sequence if it is not selected for next
# iteration
seq_group.remove(seq.seq_id)
self.scheduler.free_seq(seq)
def _process_model_outputs(self, output: SamplerOutput, scheduler_outputs: SchedulerOutputs) -> List[RequestOutput]:
# Update the scheduled sequence groups with the model outputs.
scheduled_seq_groups = scheduler_outputs.scheduled_seq_groups
for seq_group, outputs in zip(scheduled_seq_groups, output):
self._process_sequence_group_outputs(seq_group, outputs)
# Free the finished sequence groups.
self.scheduler.free_finished_seq_groups()
# Create the outputs.
request_outputs: List[RequestOutput] = []
for seq_group in scheduled_seq_groups:
request_output = RequestOutput.from_seq_group(seq_group)
request_outputs.append(request_output)
for seq_group in scheduler_outputs.ignored_seq_groups:
request_output = RequestOutput.from_seq_group(seq_group)
request_outputs.append(request_output)
# Update prefix state, now all the uncomputed prefixes are computed.
for seq_group in scheduled_seq_groups:
if (seq_group.prefix is not None and seq_group.prefix.allocated and not seq_group.prefix.computed):
seq_group.prefix.computed = True
# Log stats.
if self.log_stats:
self.stat_logger.log(self._get_stats(scheduler_outputs))
return request_outputs
def step(self) -> List[RequestOutput]:
"""Performs one decoding iteration and returns newly generated results.
This function performs one decoding iteration of the engine. It first
schedules the sequences to be executed in the next iteration and the
token blocks to be swapped in/out/copy. Then, it executes the model
and updates the scheduler with the model outputs. Finally, it decodes
the sequences and returns the newly generated results.
"""
seq_group_metadata_list, scheduler_outputs = self.scheduler.schedule()
if not scheduler_outputs.is_empty():
output = self.worker.execute_model(
seq_group_metadata_list=seq_group_metadata_list, # TODO: check this input
blocks_to_swap_in=scheduler_outputs.blocks_to_swap_in,
blocks_to_swap_out=scheduler_outputs.blocks_to_swap_out,
blocks_to_copy=scheduler_outputs.blocks_to_copy,)
else:
return [RequestOutput.from_seq_group(seq_group) for seq_group in scheduler_outputs.ignored_seq_groups]
return self._process_model_outputs(output, scheduler_outputs)
def do_log_stats(self) -> None:
"""Forced log when no requests active."""
if self.log_stats:
self.stat_logger.log(self._get_stats(scheduler_outputs=None))
def _get_stats(self, scheduler_outputs: Optional[SchedulerOutputs]) -> Stats:
"""Get Stats to be Logged to Prometheus."""
now = time.monotonic()
# KV Cache Usage in %.
num_total_gpu = self.cache_config.num_gpu_blocks
num_free_gpu = self.scheduler.block_manager.get_num_free_gpu_blocks()
gpu_cache_usage = 1.0 - (num_free_gpu / num_total_gpu)
num_total_cpu = self.cache_config.num_cpu_blocks
cpu_cache_usage = 0.
if num_total_cpu > 0:
num_free_cpu = self.scheduler.block_manager.get_num_free_cpu_blocks()
cpu_cache_usage = 1.0 - (num_free_cpu / num_total_cpu)
# Scheduler State
num_running = len(self.scheduler.running)
num_swapped = len(self.scheduler.swapped)
num_waiting = len(self.scheduler.waiting)
# Iteration stats if we have scheduler output.
num_prompt_tokens = 0
num_generation_tokens = 0
time_to_first_tokens = []
time_per_output_tokens = []
time_e2e_requests = []
if scheduler_outputs is not None:
prompt_run = scheduler_outputs.prompt_run
# Number of Tokens.
if prompt_run:
num_prompt_tokens = scheduler_outputs.num_batched_tokens
else:
num_generation_tokens = scheduler_outputs.num_batched_tokens
# Latency Timings.
time_last_iters = []
for seq_group in scheduler_outputs.scheduled_seq_groups:
# Time since last token. (n.b. updates seq_group.last_token_time)
time_last_iters.append(seq_group.get_last_latency(now))
# Time since arrival for all finished requests.
if seq_group.is_finished():
time_e2e_requests.append(now - seq_group.arrival_time)
time_to_first_tokens = time_last_iters if prompt_run else []
time_per_output_tokens = [] if prompt_run else time_last_iters
return Stats(
now=now,
num_running=num_running,
num_swapped=num_swapped,
num_waiting=num_waiting,
gpu_cache_usage=gpu_cache_usage,
cpu_cache_usage=cpu_cache_usage,
num_prompt_tokens=num_prompt_tokens,
num_generation_tokens=num_generation_tokens,
time_to_first_tokens=time_to_first_tokens,
time_per_output_tokens=time_per_output_tokens,
time_e2e_requests=time_e2e_requests,
)
# TODO: we may not need to decode
def _decode_sequence(self, seq: Sequence, prms: SamplingParams) -> None:
"""Decodes the new token for a sequence."""
(new_tokens, new_output_text, prefix_offset, read_offset) = detokenize_incrementally(
self.get_tokenizer_for_seq(seq),
all_input_ids=seq.get_token_ids(),
prev_tokens=seq.tokens,
prefix_offset=seq.prefix_offset,
read_offset=seq.read_offset,
skip_special_tokens=prms.skip_special_tokens,
spaces_between_special_tokens=prms.spaces_between_special_tokens,
)
if seq.tokens is None:
seq.tokens = new_tokens
else:
seq.tokens.extend(new_tokens)
seq.prefix_offset = prefix_offset
seq.read_offset = read_offset
seq.output_text += new_output_text
def _check_stop(self, seq: Sequence, sampling_params: SamplingParams) -> None:
"""Stop the finished sequences."""
# for stop_str in sampling_params.stop:
# if seq.output_text.endswith(stop_str):
# self._finalize_sequence(seq, sampling_params, stop_str)
# seq.status = SequenceStatus.FINISHED_STOPPED
# return
# if seq.get_last_token_id() in sampling_params.stop_token_ids:
# stop_str = self.get_tokenizer_for_seq(seq).convert_ids_to_tokens(seq.get_last_token_id())
# self._finalize_sequence(seq, sampling_params, stop_str)
# seq.status = SequenceStatus.FINISHED_STOPPED
# return
# Check if the sequence has reached max_model_len.
if seq.get_len() > self.scheduler_config.max_model_len:
seq.status = SequenceStatus.FINISHED_LENGTH_CAPPED
return
# Check if the sequence has reached max_tokens.
if seq.get_output_len() == sampling_params.max_tokens:
seq.status = SequenceStatus.FINISHED_LENGTH_CAPPED
return
# Check if the sequence has generated the EOS token.
if ((not sampling_params.ignore_eos) and
seq.get_last_token_id() == self.get_tokenizer_for_seq(seq).eos_token_id):
seq.status = SequenceStatus.FINISHED_STOPPED
return
def _finalize_sequence(self, seq: Sequence, sampling_params: SamplingParams, stop_string: str) -> None:
if not sampling_params.include_stop_str_in_output and stop_string:
# Truncate the output text so that the stop string is
# not included in the output.
seq.output_text = seq.output_text[:-len(stop_string)]
def add_lora(self, lora_request: LoRARequest) -> bool:
assert lora_request.lora_int_id > 0, "lora_id must be greater than 0."
return self.worker.add_lora(lora_request)
def remove_lora(self, lora_id: int) -> bool:
assert lora_id > 0, "lora_id must be greater than 0."
return self.worker.remove_lora(lora_id)
def list_loras(self) -> List[int]:
return self.worker.list_loras()
def sync_model_weights(self, actor_weights: Dict[str, torch.Tensor]) -> None:
self.worker.sync_model_weights(actor_weights=actor_weights)
def offload_model_weights(self) -> None:
self.worker.offload_model_weights()
def initialize_cluster(
parallel_config: ParallelConfig,
engine_use_ray: bool = False,
ray_address: Optional[str] = None,
) -> Tuple[str, Optional[None]]:
"""Initialize the distributed cluster probably with Ray.
Args:
parallel_config: The configurations for parallel execution.
engine_use_ray: Whether to use Ray for async engine.
ray_address: The address of the Ray cluster. If None, uses
the default Ray cluster address.
Returns:
A tuple of (`distributed_init_method`, `placement_group`). The
`distributed_init_method` is the address for initializing the
distributed backend. `placement_group` includes the specification
of the resources for each distributed worker.
"""
# Initialize cluster locally.
port = get_open_port()
# We need to setup the distributed init method to make sure
# the distributed megatron code (e.g., get world size) works correctly.
distributed_init_method = f"tcp://localhost:{port}"
return distributed_init_method, None
def get_open_port():
with socket.socket(socket.AF_INET, socket.SOCK_STREAM) as s:
s.bind(("", 0))
return s.getsockname()[1]
# Copyright 2024 Bytedance Ltd. and/or its affiliates
# Copyright 2023 The vLLM team.
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# Adapted from https://github.com/vllm-project/vllm/tree/main/vllm/model_executor/model_loader
"""Utilities for selecting and loading models."""
import contextlib
from typing import Dict, Type, Union
import torch
import torch.nn as nn
from transformers import PretrainedConfig, PreTrainedModel
from megatron.core.tensor_parallel.utils import VocabUtility
from vllm.model_executor.models import ModelRegistry
from vllm.model_executor.weight_utils import (get_quant_config, initialize_dummy_weights)
from .config import ModelConfig
from vllm.config import DeviceConfig, LoRAConfig
from .weight_loaders import *
from vllm.model_executor.sampling_metadata import SamplingMetadata, SamplingTensors
from vllm.sequence import SamplerOutput
from typing import Optional
from vllm.model_executor.layers.sampler import Sampler
from vllm.model_executor.layers.sampler import _prune_hidden_states, _apply_logits_processors, _apply_penalties, _apply_top_k_top_p, _apply_min_p, _apply_penalties, _sample, _get_logprobs, _build_sampler_output
@contextlib.contextmanager
def _set_default_torch_dtype(dtype: torch.dtype):
"""Sets the default torch dtype to the given dtype."""
old_dtype = torch.get_default_dtype()
torch.set_default_dtype(dtype)
yield
torch.set_default_dtype(old_dtype)
def _get_model_architecture(config: PretrainedConfig) -> Type[nn.Module]:
architectures = getattr(config, "architectures", [])
for arch in architectures:
model_cls = ModelRegistry.load_model_cls(arch)
if model_cls is not None:
return model_cls
raise ValueError(f"Model architectures {architectures} are not supported for now. "
f"Supported architectures: {ModelRegistry.get_supported_archs()}")
from vllm.model_executor.layers.linear import *
from vllm.model_executor.layers.vocab_parallel_embedding import VocabParallelEmbedding, ParallelLMHead
from vllm.model_executor.layers.activation import ScaledActivation
__LAYER_WEIGHT_LOADER_REGISTRY__ = {
ColumnParallelLinear: parallel_weight_loader,
MergedColumnParallelLinear: parallel_weight_loader,
QKVParallelLinear: parallel_weight_loader,
RowParallelLinear: parallel_weight_loader,
VocabParallelEmbedding: parallel_weight_loader,
ParallelLMHead: parallel_weight_loader
# "ScaledActivation.weight_loader": ScaledActivation, # TODO(shengguangming): latest commit in vllm fix awq for this function and add load_weights
# "default_weight_loader": default_weight_loader
}
# NOTE(gmsheng): change the weight_loader function in runtime
for layer_class, weight_loader in __LAYER_WEIGHT_LOADER_REGISTRY__.items():
layer_class.weight_loader = weight_loader
__MODEL_WEIGHT_LOADER_REGISTRY__ = {
'GPT2LMHeadModel': gpt2_weight_loader,
'LlamaForCausalLM': llama_weight_loader,
'LLaMAForCausalLM': llama_weight_loader,
'MistralForCausalLM': mistral_weight_loader,
}
# FIXME(shengguangming): the vLLM vocab will pad to 64, which may incur out of bounds
# so we need to rewrite the init function of vocab
DEFAULT_VOCAB_PADDING_SIZE = 64
def vocab_init(self,
num_embeddings: int,
embedding_dim: int,
params_dtype: Optional[torch.dtype] = None,
org_num_embeddings: Optional[int] = None,
padding_size: int = DEFAULT_VOCAB_PADDING_SIZE):
super(VocabParallelEmbedding, self).__init__()
# Keep the input dimensions.
# TODO (pad to be divided by 4)
self.num_embeddings = num_embeddings
self.org_vocab_size = org_num_embeddings or num_embeddings
# self.num_embeddings_padded = pad_vocab_size(num_embeddings,
# padding_size)
self.embedding_dim = embedding_dim
if params_dtype is None:
params_dtype = torch.get_default_dtype()
self.tp_size = get_tensor_model_parallel_world_size()
# Divide the weight matrix along the vocaburaly dimension.
self.vocab_start_index, self.vocab_end_index = (VocabUtility.vocab_range_from_global_vocab_size(
self.num_embeddings, get_tensor_model_parallel_rank(), self.tp_size))
self.num_embeddings_per_partition = (self.vocab_end_index - self.vocab_start_index)
self.weight = Parameter(
torch.empty(
self.num_embeddings_per_partition,
self.embedding_dim,
# device=torch.cuda.current_device(),
dtype=params_dtype))
set_weight_attrs(self.weight, {"parallel_dim": 0, "weight_loader": self.weight_loader})
VocabParallelEmbedding.__init__ = vocab_init
def _get_model_weight_loader(arch: str):
if arch in __MODEL_WEIGHT_LOADER_REGISTRY__:
return __MODEL_WEIGHT_LOADER_REGISTRY__[arch]
raise ValueError(f"Model architectures {arch} are not supported for now. "
f"Supported architectures: {ModelRegistry.get_supported_archs()}")
def get_model(actor_model: Union[PreTrainedModel, Dict],
model_config: ModelConfig,
device_config: DeviceConfig,
lora_config: Optional[LoRAConfig] = None) -> nn.Module:
model_class = _get_model_architecture(model_config.hf_config)
# Get the quantization config.
linear_method = None
quant_config = None
if model_config.quantization is not None:
quant_config = get_quant_config(model_config.quantization, model_config.model, model_config.hf_config,
model_config.download_dir)
capability = torch.cuda.get_device_capability()
capability = capability[0] * 10 + capability[1]
if capability < quant_config.get_min_capability():
raise ValueError(f"The quantization method {model_config.quantization} is not "
"supported for the current GPU. "
f"Minimum capability: {quant_config.get_min_capability()}. "
f"Current capability: {capability}.")
supported_dtypes = quant_config.get_supported_act_dtypes()
if model_config.dtype not in supported_dtypes:
raise ValueError(f"{model_config.dtype} is not supported for quantization "
f"method {model_config.quantization}. Supported dtypes: "
f"{supported_dtypes}")
linear_method = quant_config.get_linear_method()
with _set_default_torch_dtype(model_config.dtype):
# Create a model instance.
# The weights will be initialized as empty tensors.
# with torch.device(device_config.device):
# NOTE(sgm): init the model in cpu
model = model_class(model_config.hf_config, linear_method)
if model_config.load_format == "dummy":
model = model.cuda()
# NOTE(woosuk): For accurate performance evaluation, we assign
# random values to the weights.
initialize_dummy_weights(model)
elif model_config.load_format == 'model' or model_config.load_format == 'auto':
# NOTE(shengguangming) Load the weights from the actor model
if isinstance(actor_model, nn.Module):
load_weights(actor_weights=dict(actor_model.named_parameters(remove_duplicate=False)), vllm_model=model)
else:
load_weights(actor_weights=actor_model, vllm_model=model)
# NOTE(sgm) Some weights are point to gpu, but still need this.
model = model.cuda() # NOTE (zhangchi.usc1992) We need this for vllm to profile memory usage
return model.eval()
# the actor model is .state_dict()
def load_weights(actor_weights: Dict, vllm_model: nn.Module):
weight_loader = _get_model_weight_loader(vllm_model.__class__.__name__)
weight_loader(actor_weights, vllm_model)
# NOTE(sgm) to reduce peak memory usage, we offload vllm model to cpu
# after init, and we need this after sync model weights for in first iter.
vllm_model = vllm_model.cuda()
# FIXME(sgm): hack the Sampler function in vllm v0.3.1
# as they use ray, the sampler result will only need to return to the driver node,
# therefore gather is enough. However, we use SPMD instead of a central scheduler,
# all_gather is required (aligned with v0.2.6)
def _get_logits(self, hidden_states: torch.Tensor, embedding: torch.Tensor,
embedding_bias: Optional[torch.Tensor]) -> torch.Tensor:
# Get the logits for the next tokens.
logits = torch.matmul(hidden_states, embedding.t())
if embedding_bias is not None:
logits += embedding_bias
logits = tensor_model_parallel_all_gather(logits)
# Remove paddings in vocab (if any).
if logits is not None:
logits = logits[:, :self.org_vocab_size]
return logits
def forward(
self,
embedding: torch.Tensor,
hidden_states: torch.Tensor,
sampling_metadata: SamplingMetadata,
embedding_bias: Optional[torch.Tensor] = None,
) -> Optional[SamplerOutput]:
# Get the hidden states that we use for sampling.
hidden_states = _prune_hidden_states(hidden_states, sampling_metadata)
# Get the logits for the next tokens.
logits = self._get_logits(hidden_states, embedding, embedding_bias)
# save origin logprobs for sampler_output
origin_logprobs = torch.log_softmax(logits, dim=-1, dtype=torch.float)
# Only perform sampling in the driver worker.
# Note: `_get_logits` is still distributed across TP workers because
# the `embedding` weight is distributed across TP workers.
# TODO(zhuohan): Change the get_logits part to a separate stage.
if not sampling_metadata.perform_sampling:
return None
assert logits is not None
_, vocab_size = logits.shape
# Apply logits processors (if any).
logits = _apply_logits_processors(logits, sampling_metadata)
# Prepare sampling tensors with pinned memory to avoid blocking.
(sampling_tensors, do_penalties, do_top_p_top_k,
do_min_p) = SamplingTensors.from_sampling_metadata(sampling_metadata, vocab_size, logits.device, logits.dtype)
# Apply presence and frequency penalties.
if do_penalties:
logits = _apply_penalties(logits, sampling_tensors.prompt_tokens, sampling_tensors.output_tokens,
sampling_tensors.presence_penalties, sampling_tensors.frequency_penalties,
sampling_tensors.repetition_penalties)
# Apply temperature scaling.
# Use in-place division to avoid creating a new tensor.
logits.div_(sampling_tensors.temperatures.unsqueeze_(dim=1))
if do_top_p_top_k:
logits = _apply_top_k_top_p(logits, sampling_tensors.top_ps, sampling_tensors.top_ks)
if do_min_p:
logits = _apply_min_p(logits, sampling_tensors.min_ps)
# We use float32 for probabilities and log probabilities.
# Compute the probabilities.
probs = torch.softmax(logits, dim=-1, dtype=torch.float)
# Compute the log probabilities.
# Use log_softmax to ensure numerical stability.
logprobs = torch.log_softmax(logits, dim=-1, dtype=torch.float)
# Sample the next tokens.
sample_results = _sample(probs, logprobs, sampling_metadata)
# Get the logprobs query results.
# prompt_logprobs, sample_logprobs = _get_logprobs(
# logprobs, sampling_metadata, sample_results)
prompt_logprobs, sample_logprobs = _get_logprobs(origin_logprobs, sampling_metadata, sample_results)
return _build_sampler_output(sample_results, sampling_metadata, prompt_logprobs, sample_logprobs)
from vllm.model_executor.layers.sampler import Sampler
Sampler._get_logits = _get_logits
Sampler.forward = forward
# Copyright 2024 Bytedance Ltd. and/or its affiliates
# Copyright 2023 The vLLM team.
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# Adapted from https://github.com/vllm-project/vllm/blob/main/vllm/worker/model_runner.py
from typing import Dict, List, Optional, Tuple, Set, Union
import contextlib
import time
import numpy as np
import torch
import torch.nn as nn
from vllm.config import (DeviceConfig, ModelConfig, LoRAConfig, ParallelConfig, SchedulerConfig)
from vllm.logger import init_logger
from vllm.model_executor import InputMetadata, SamplingMetadata
from vllm.sampling_params import SamplingParams, SamplingType
from vllm.sequence import SamplerOutput, SequenceData, SequenceGroupMetadata
from vllm.lora.worker_manager import LRUCacheWorkerLoRAManager
from vllm.lora.layers import LoRAMapping
from vllm.lora.request import LoRARequest
from vllm.utils import in_wsl
from vllm.worker.model_runner import ModelRunner, CUDAGraphRunner, _async_h2d
from .model_loader import get_model
logger = init_logger(__name__)
KVCache = Tuple[torch.Tensor, torch.Tensor]
_PAD_SLOT_ID = -1
LORA_WARMUP_RANK = 8
# Capture graphs for batch size 1, 2, 4, 8, 16, 24, 32, 40, ..., 256.
# NOTE: _get_graph_batch_size needs to be updated if this list is changed.
_BATCH_SIZES_TO_CAPTURE = [1, 2, 4] + [8 * i for i in range(1, 33)]
class ModelRunner(ModelRunner):
def __init__(
self,
model: Union[nn.Module, Dict], # model itself or its parameter dict
model_config: ModelConfig,
parallel_config: ParallelConfig,
scheduler_config: SchedulerConfig,
device_config: DeviceConfig,
lora_config: Optional[LoRAConfig],
kv_cache_dtype: Optional[str] = "auto",
):
self.model_config = model_config
self.parallel_config = parallel_config
self.scheduler_config = scheduler_config
self.lora_config = lora_config
# model_config can be None in tests/samplers/test_sampler.py.
# FIXME(woosuk): This is a hack to make the tests work. Refactor this.
self.sliding_window = (model_config.get_sliding_window() if model_config is not None else None)
self.device_config = (device_config if device_config is not None else DeviceConfig())
self.device = self.device_config.device
self.model = model # this will be replaced by get_model()
self.block_size = None # Set after initial profiling.
self.lora_manager = None
self.graph_runners: Dict[int, CUDAGraphRunner] = {}
self.graph_memory_pool = None # Set during graph capture.
self.max_context_len_to_capture = (self.model_config.max_context_len_to_capture
if self.model_config is not None else 0)
# When using CUDA graph, the input block tables must be padded to
# max_context_len_to_capture. However, creating the block table in
# Python can be expensive. To optimize this, we cache the block table
# in numpy and only copy the actual input content at every iteration.
# The shape of the cached block table will be
# (max batch size to capture, max context len to capture / block size).
self.graph_block_tables = None # Set after initial profiling.
# cache in_wsl result
self.in_wsl = in_wsl()
self.kv_cache_dtype = kv_cache_dtype
def load_model(self) -> None:
self.model = get_model(actor_model=self.model,
model_config=self.model_config,
device_config=self.device_config,
lora_config=self.lora_config)
vocab_size = self.model.config.vocab_size
if self.lora_config:
assert hasattr(
self.model,
"supported_lora_modules") and self.model.supported_lora_modules, "Model does not support LoRA"
assert hasattr(self.model, "embedding_modules"), "Model does not have embedding_modules"
assert hasattr(self.model, "embedding_padding_modules"), "Model does not have embedding_padding_modules"
self.lora_manager = LRUCacheWorkerLoRAManager(
self.scheduler_config.max_num_seqs,
self.scheduler_config.max_num_batched_tokens + self.scheduler_config.max_paddings, vocab_size,
self.lora_config, self.device, self.model.embedding_modules, self.model.embedding_padding_modules)
self.model = self.lora_manager.create_lora_manager(self.model)
def _prepare_sample(
self,
seq_group_metadata_list: List[SequenceGroupMetadata],
prompt_lens: List[int],
subquery_lens: Optional[List[int]],
) -> SamplingMetadata:
seq_groups: List[Tuple[List[int], SamplingParams]] = []
selected_token_indices: List[int] = []
selected_token_start_idx = 0
categorized_sample_indices = {t: [] for t in SamplingType}
categorized_sample_indices_start_idx = 0
max_subquery_len = max(subquery_lens) if subquery_lens else 1
for i, seq_group_metadata in enumerate(seq_group_metadata_list):
seq_ids = list(seq_group_metadata.seq_data.keys())
sampling_params = seq_group_metadata.sampling_params
seq_groups.append((seq_ids, sampling_params))
if seq_group_metadata.is_prompt:
assert len(seq_ids) == 1
assert subquery_lens is not None
subquery_len = subquery_lens[i]
if sampling_params.prompt_logprobs is not None:
# NOTE: prompt token positions do not need sample, skip
categorized_sample_indices_start_idx += subquery_len - 1
categorized_sample_indices[sampling_params.sampling_type].append(categorized_sample_indices_start_idx)
categorized_sample_indices_start_idx += 1
if sampling_params.prompt_logprobs is not None:
selected_token_indices.extend(
range(selected_token_start_idx, selected_token_start_idx + subquery_len - 1))
selected_token_indices.append(selected_token_start_idx + subquery_len - 1)
selected_token_start_idx += max_subquery_len
else:
num_seqs = len(seq_ids)
selected_token_indices.extend(range(selected_token_start_idx, selected_token_start_idx + num_seqs))
selected_token_start_idx += num_seqs
categorized_sample_indices[sampling_params.sampling_type].extend(
range(categorized_sample_indices_start_idx, categorized_sample_indices_start_idx + num_seqs))
categorized_sample_indices_start_idx += num_seqs
selected_token_indices = _async_h2d(selected_token_indices,
dtype=torch.long,
target_device=self.device,
pin_memory=not self.in_wsl)
categorized_sample_indices = {
t: _async_h2d(seq_ids, dtype=torch.int, target_device=self.device, pin_memory=not self.in_wsl)
for t, seq_ids in categorized_sample_indices.items()
}
seq_data: Dict[int, SequenceData] = {}
for seq_group_metadata in seq_group_metadata_list:
seq_data.update(seq_group_metadata.seq_data)
sampling_metadata = SamplingMetadata(
seq_groups=seq_groups,
seq_data=seq_data,
prompt_lens=prompt_lens,
selected_token_indices=selected_token_indices,
categorized_sample_indices=categorized_sample_indices,
)
return sampling_metadata
def prepare_input_tensors(
self,
seq_group_metadata_list: Optional[List[SequenceGroupMetadata]],
) -> Tuple[torch.Tensor, torch.Tensor, InputMetadata, SamplingMetadata, Set[int], LoRAMapping]:
# NOTE: We assume that all sequences in the group are all prompts or
# all decodes.
is_prompt = seq_group_metadata_list[0].is_prompt
# Prepare input tensors.
if is_prompt:
(input_tokens, input_positions, input_metadata, prompt_lens, subquery_lens, lora_index_mapping,
lora_prompt_mapping, lora_requests) = self._prepare_prompt(seq_group_metadata_list)
else:
(input_tokens, input_positions, input_metadata, lora_index_mapping, lora_prompt_mapping,
lora_requests) = self._prepare_decode(seq_group_metadata_list)
prompt_lens = []
subquery_lens = None
sampling_metadata = self._prepare_sample(seq_group_metadata_list, prompt_lens, subquery_lens)
if self.lora_config:
flat_lora_index_mapping = [item for sublist in lora_index_mapping for item in sublist]
lora_mapping = LoRAMapping(
flat_lora_index_mapping,
lora_prompt_mapping,
)
else:
lora_mapping = None
return (input_tokens, input_positions, input_metadata, sampling_metadata, lora_requests, lora_mapping)
@torch.inference_mode()
def execute_model(
self,
seq_group_metadata_list: Optional[List[SequenceGroupMetadata]],
kv_caches: List[Tuple[torch.Tensor, torch.Tensor]],
) -> Optional[SamplerOutput]:
(input_tokens, input_positions, input_metadata, sampling_metadata, lora_requests,
lora_mapping) = self.prepare_input_tensors(seq_group_metadata_list)
if self.lora_config:
self.set_active_loras(lora_requests, lora_mapping)
# Execute the model.
if input_metadata.use_cuda_graph:
graph_batch_size = input_tokens.shape[0]
model_executable = self.graph_runners[graph_batch_size]
else:
model_executable = self.model
hidden_states = model_executable(
input_ids=input_tokens,
positions=input_positions,
kv_caches=kv_caches,
input_metadata=input_metadata,
)
# Sample the next token.
output = self.model.sample(
hidden_states=hidden_states,
sampling_metadata=sampling_metadata,
)
return output
@torch.inference_mode()
def profile_run(self) -> None:
# Enable top-k sampling to reflect the accurate memory usage.
vocab_size = self.model_config.get_vocab_size()
# FIXME(sgm): this sampling params will call cumsum(), causing the
# deterministic cumsum throw error
sampling_params = SamplingParams(top_p=0.99, top_k=vocab_size - 1)
max_num_batched_tokens = self.scheduler_config.max_num_batched_tokens
max_num_seqs = self.scheduler_config.max_num_seqs
# This represents the maximum number of different requests
# that will have unique loras, an therefore the max amount of memory
# consumption create dummy lora request copies from the lora request
# passed in, which contains a lora from the lora warmup path.
dummy_lora_requests = []
dummy_lora_requests_per_seq = []
if self.lora_config:
for idx in range(self.lora_config.max_loras):
lora_id = idx + 1
dummy_lora_request = LoRARequest(
lora_name=f"warmup_{lora_id}",
lora_int_id=lora_id,
lora_local_path="/not/a/real/path",
)
self.lora_manager.add_dummy_lora(dummy_lora_request, rank=LORA_WARMUP_RANK)
dummy_lora_requests.append(dummy_lora_request)
dummy_lora_requests_per_seq = [
dummy_lora_requests[idx % len(dummy_lora_requests)] for idx in range(max_num_seqs)
]
# Profile memory usage with max_num_sequences sequences and the total
# number of tokens equal to max_num_batched_tokens.
seqs: List[SequenceGroupMetadata] = []
for group_id in range(max_num_seqs):
seq_len = (max_num_batched_tokens // max_num_seqs + (group_id < max_num_batched_tokens % max_num_seqs))
seq_data = SequenceData([0] * seq_len)
seq = SequenceGroupMetadata(
request_id=str(group_id),
is_prompt=True,
seq_data={group_id: seq_data},
sampling_params=sampling_params,
block_tables=None,
lora_request=dummy_lora_requests_per_seq[group_id] if dummy_lora_requests_per_seq else None,
)
seqs.append(seq)
# Run the model with the dummy inputs.
num_layers = self.model_config.get_num_layers(self.parallel_config)
kv_caches = [(None, None)] * num_layers
self.execute_model(seqs, kv_caches)
torch.cuda.synchronize()
return
# Copyright 2024 Bytedance Ltd. and/or its affiliates
# Copyright 2023 The vLLM team.
# Adapted from
# https://github.com/NVIDIA/Megatron-LM/blob/main/megatron/core/parallel_state.py
# Copyright (c) 2022, NVIDIA CORPORATION. All rights reserved.
"""Model and data parallel groups."""
import torch
import torch.distributed
import vllm.model_executor.parallel_utils.parallel_state as ps
"""
This version is strongly tied with Megatron to implement HybridEngine and weight sharing between vllm and Megatron.
- We assume the Megatron tp+dp+pp world is already established before calling this function.
"""
# Tensor model parallel group that the current rank belongs to.
_TENSOR_MODEL_PARALLEL_GROUP = None
# Micro Data parallel group. Micro data parallel group is additional dp group that origins from splitting training tp
# into infer_tp and micro_tp. By default, we use order micro_dp - tp
_MICRO_DATA_PARALLEL_GROUP = None
def initialize_model_parallel_from_megatron(
tensor_model_parallel_size=None # we set None for backward compatibility to set infer_tp = train_tp
) -> None:
from megatron.core import parallel_state as mpu
from megatron.distributed import new_group
# Get world size and rank. Ensure some consistencies.
assert torch.distributed.is_initialized()
if tensor_model_parallel_size is None:
tensor_model_parallel_size = mpu.get_tensor_model_parallel_world_size()
else:
assert isinstance(tensor_model_parallel_size, int)
# Build the tensor model-parallel groups.
assert ps._TENSOR_MODEL_PARALLEL_GROUP is None, ("tensor model parallel group is already initialized")
assert tensor_model_parallel_size <= mpu.get_tensor_model_parallel_world_size(
), 'Not implemented for infer_tp > train_tp'
global _TENSOR_MODEL_PARALLEL_GROUP
global _MICRO_DATA_PARALLEL_GROUP
assert mpu.get_tensor_model_parallel_world_size() % tensor_model_parallel_size == 0
micro_dp_size = mpu.get_tensor_model_parallel_world_size() // tensor_model_parallel_size
world_size: int = torch.distributed.get_world_size()
num_micro_dp_groups = world_size // micro_dp_size
rank = torch.distributed.get_rank()
# Build the micro dp groups.
assert _MICRO_DATA_PARALLEL_GROUP is None, ("micro data parallel group is already initialized")
for i in range(num_micro_dp_groups):
ranks = range(i * micro_dp_size, (i + 1) * micro_dp_size)
group = new_group(rank=rank, ranks=ranks, group_type='micro_dp')
if rank in ranks:
_MICRO_DATA_PARALLEL_GROUP = group
if tensor_model_parallel_size == mpu.get_tensor_model_parallel_world_size():
# using the same tp group as Megatron
ps._TENSOR_MODEL_PARALLEL_GROUP = mpu.get_tensor_model_parallel_group()
_TENSOR_MODEL_PARALLEL_GROUP = mpu.get_tensor_model_parallel_group()
# no _MICRO_DATA_PARALLEL_GROUP
else:
# initialize a micro_dp group and a tp group
# assume training tp=4, infer tp=2, then, weight is partitioned as
# [1], [2], [3], [4] for training and [1,2], [1,2], [3,4], [3,4] for inference
# Build the inference tp groups
train_tp = mpu.get_tensor_model_parallel_world_size()
num_tensor_model_parallel_groups_per_train_tp = train_tp // tensor_model_parallel_size
num_tensor_model_parallel_groups = world_size // tensor_model_parallel_size
assert _TENSOR_MODEL_PARALLEL_GROUP is None, ("tensor model parallel group is already initialized")
for i in range(num_tensor_model_parallel_groups // num_tensor_model_parallel_groups_per_train_tp):
start = train_tp * i
end = train_tp * (i + 1)
for j in range(num_tensor_model_parallel_groups_per_train_tp):
ranks = list(range(start, end, num_tensor_model_parallel_groups_per_train_tp))
for i in range(len(ranks)):
ranks[i] += j
# group = torch.distributed.new_group(ranks)
group = new_group(rank=rank, ranks=ranks, group_type='infer_tp')
if rank in ranks:
_TENSOR_MODEL_PARALLEL_GROUP = group
ps._TENSOR_MODEL_PARALLEL_GROUP = _TENSOR_MODEL_PARALLEL_GROUP
# Build the pipeline model-parallel groups.
# global _PIPELINE_MODEL_PARALLEL_GROUP
# global _PIPELINE_GLOBAL_RANKS
# assert ps._PIPELINE_MODEL_PARALLEL_GROUP is None, ("pipeline model parallel group is already initialized")
# ps._PIPELINE_MODEL_PARALLEL_GROUP = mpu.get_pipeline_model_parallel_group()
# ps._PIPELINE_GLOBAL_RANKS = mpu.get_pipeline_model_parallel_ranks()
"""
Tensor model parallel utilities
"""
def get_tensor_model_parallel_group():
"""Get the tensor model parallel group the caller rank belongs to."""
assert _TENSOR_MODEL_PARALLEL_GROUP is not None, ("tensor model parallel group is not initialized")
return _TENSOR_MODEL_PARALLEL_GROUP
def get_tensor_model_parallel_world_size():
"""Return world size for the tensor model parallel group."""
return torch.distributed.get_world_size(group=get_tensor_model_parallel_group())
def get_tensor_model_parallel_rank():
"""Return my rank for the tensor model parallel group."""
return torch.distributed.get_rank(group=get_tensor_model_parallel_group())
def get_tensor_model_parallel_src_rank():
"""Calculate the global rank corresponding to the first local rank
in the tensor model parallel group."""
global_rank = torch.distributed.get_rank()
local_world_size = get_tensor_model_parallel_world_size()
return (global_rank // local_world_size) * local_world_size
"""
Micro Data parallel group
"""
def get_micro_data_parallel_group():
assert _MICRO_DATA_PARALLEL_GROUP is not None
return _MICRO_DATA_PARALLEL_GROUP
def get_micro_data_parallel_world_size():
return torch.distributed.get_world_size(group=get_micro_data_parallel_group())
def get_micro_data_parallel_rank():
return torch.distributed.get_rank(group=get_micro_data_parallel_group())
# Copyright 2024 Bytedance Ltd. and/or its affiliates
# Copyright 2023 The vLLM team.
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# Adapted from https://github.com/vllm-project/vllm/blob/main/vllm/transformers_utils/tokenizer_group/tokenizer_group.py
from typing import List, Optional, Tuple, Union
from transformers import (AutoTokenizer, PreTrainedTokenizer, PreTrainedTokenizerFast)
from vllm.lora.request import LoRARequest
from vllm.utils import make_async, LRUCache
from vllm.transformers_utils.tokenizers import *
class TokenizerGroup:
"""A group of tokenizers that can be used for LoRA adapters."""
def __init__(self, tokenizer: PreTrainedTokenizer, enable_lora: bool, max_num_seqs: int,
max_input_length: Optional[int]):
self.enable_lora = enable_lora
self.max_input_length = max_input_length
self.tokenizer = tokenizer
if enable_lora:
self.lora_tokenizers = LRUCache(capacity=max_num_seqs)
else:
self.lora_tokenizers = None
def encode(self,
prompt: str,
request_id: Optional[str] = None,
lora_request: Optional[LoRARequest] = None) -> List[int]:
tokenizer = self.get_lora_tokenizer(lora_request)
return tokenizer.encode(prompt)
async def encode_async(self,
prompt: str,
request_id: Optional[str] = None,
lora_request: Optional[LoRARequest] = None) -> List[int]:
tokenizer = await self.get_lora_tokenizer_async(lora_request)
return tokenizer.encode(prompt)
def get_lora_tokenizer(self, lora_request: Optional[LoRARequest]) -> "PreTrainedTokenizer":
if not lora_request or not self.enable_lora:
return self.tokenizer
if lora_request.lora_int_id not in self.lora_tokenizers:
# TODO(sgm): the lora tokenizer is also passed, but may be different
tokenizer = self.tokenizer
# tokenizer = (get_lora_tokenizer(
# lora_request, **self.tokenizer_config) or self.tokenizer)
self.lora_tokenizers.put(lora_request.lora_int_id, tokenizer)
return tokenizer
else:
return self.lora_tokenizers.get(lora_request.lora_int_id)
# FIXME(sgm): for simplicity, we assign the special token here
@property
def pad_token_id(self):
return self.tokenizer.pad_token_id
@property
def eos_token_id(self):
return self.tokenizer.eos_token_id
# Copyright 2024 Bytedance Ltd. and/or its affiliates
# Copyright 2023 The vLLM team.
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# Adapted from https://github.com/vllm-project/vllm/tree/main/vllm/model_executor/models
from typing import Dict
import torch
import torch.nn as nn
# NOTE(shengguangming): replace the origin weight loader function in the class
def parallel_weight_loader(self, param: torch.Tensor, loaded_weight: torch.Tensor) -> None:
"""Parallel Linear weight loader."""
assert param.size() == loaded_weight.size(
), 'the parameter size is not align with the loaded weight size, param size: {}, loaded_weight size: {}'.format(
param.size(), loaded_weight.size())
assert param.data.dtype == loaded_weight.data.dtype, "if we want to shared weights, the data type should also be the same"
param.data = loaded_weight.data
def default_weight_loader(param: torch.Tensor, loaded_weight: torch.Tensor) -> None:
"""Default weight loader."""
assert param.size() == loaded_weight.size()
assert param.data.dtype == loaded_weight.data.dtype, "if we want to shared weights, the data type should also be the same"
param.data = loaded_weight.data
def gpt2_weight_loader(actor_weights: Dict, vllm_model: nn.Module) -> nn.Module:
params_dict = dict(vllm_model.named_parameters(remove_duplicate=False))
for name, loaded_weight in actor_weights.items():
if "lm_head.weight" in name:
# GPT-2 ties the weights of the embedding layer and the final
# linear layer.
continue
if ".attn.bias" in name or ".attn.masked_bias" in name:
# Skip attention mask.
# NOTE: "c_attn.bias" should not be skipped.
continue
if not name.startswith("transformer."):
name = "transformer." + name
param = params_dict[name]
# The HF's GPT-2 implementation uses Conv1D instead of Linear.
# Because of this, we need to transpose the weights.
# Note(zhuohan): the logic below might break quantized models.
for conv1d_weight_name in ["c_attn", "c_proj", "c_fc"]:
if conv1d_weight_name not in name:
continue
if not name.endswith(".weight"):
continue
# TODO: check megatron
loaded_weight = loaded_weight.t()
weight_loader = getattr(param, "weight_loader", default_weight_loader)
weight_loader(param, loaded_weight)
def llama_weight_loader(actor_weights: Dict, vllm_model: nn.Module) -> nn.Module:
# NOTE(shengguangming): the megatron llama may have this prefix
prefix = '0.module.module.'
params_dict = dict(vllm_model.named_parameters())
for name, loaded_weight in actor_weights.items():
if name[:len(prefix)] == prefix:
name = name[len(prefix):]
if "rotary_emb.inv_freq" in name:
continue
else:
param = params_dict[name]
weight_loader = getattr(param, "weight_loader", default_weight_loader)
weight_loader(param, loaded_weight)
def mistral_weight_loader(actor_weights: Dict, vllm_model: nn.Module) -> nn.Module:
# TODO: need to implement a general way to deal with prefix
prefix = '0.module.module.'
params_dict = dict(vllm_model.named_parameters())
for name, loaded_weight in actor_weights.items():
if name[:len(prefix)] == prefix:
name = name[len(prefix):]
if "rotary_emb.inv_freq" in name:
continue
else:
param = params_dict[name]
weight_loader = getattr(param, "weight_loader", default_weight_loader)
weight_loader(param, loaded_weight)
# Copyright 2024 Bytedance Ltd. and/or its affiliates
# Copyright 2023 The vLLM team.
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# Adapted from https://github.com/vllm-project/vllm/blob/main/vllm/worker/worker.py
"""A GPU worker class."""
import os
import gc
from typing import Dict, List, Tuple, Optional, Union, Set
import torch
import torch.distributed
import torch.nn as nn
from vllm.config import (CacheConfig, DeviceConfig, ModelConfig, ParallelConfig, SchedulerConfig, LoRAConfig)
from vllm.model_executor import InputMetadata, set_random_seed
from vllm.model_executor.parallel_utils.parallel_state import (initialize_model_parallel)
from vllm.sampling_params import SamplingParams, SamplingType
from vllm.sequence import SamplerOutput, SequenceData, SequenceGroupMetadata
from vllm.worker.cache_engine import CacheEngine
from vllm.model_executor.parallel_utils.custom_all_reduce import init_custom_ar
from vllm.model_executor.parallel_utils.parallel_state import get_tensor_model_parallel_group
from .model_runner import ModelRunner
from .model_loader import load_weights
from .parallel_state import initialize_model_parallel_from_megatron
from vllm.lora.request import LoRARequest
class Worker:
"""A worker class that executes (a partition of) the model on a GPU.
Each worker is associated with a single GPU. The worker is responsible for
maintaining the KV cache and executing the model on the GPU. In case of
distributed inference, each worker is assigned a partition of the model.
"""
def __init__(
self,
model: Union[nn.Module, Dict], # model itself or its parameter dict
model_config: ModelConfig,
parallel_config: ParallelConfig,
scheduler_config: SchedulerConfig,
device_config: DeviceConfig,
rank: Optional[int] = None,
distributed_init_method: Optional[str] = None,
lora_config: Optional[LoRAConfig] = None,
kv_cache_dtype: Optional[str] = "auto",
) -> None:
# self.model = model # will be replaced in the init_model
self.model_config = model_config
self.parallel_config = parallel_config
self.scheduler_config = scheduler_config
self.rank = rank
self.distributed_init_method = distributed_init_method
self.lora_config = lora_config
self.model_runner = ModelRunner(
model,
model_config,
parallel_config,
scheduler_config,
device_config,
lora_config=self.lora_config,
kv_cache_dtype=kv_cache_dtype,
)
# Uninitialized cache engine. Will be initialized by
# self.init_cache_engine().
self.cache_config = None
self.block_size = None
self.sliding_window = None
self.cache_engine = None
self.cache_events = None
self.gpu_cache = None
# For offloading inference engine params
self.cpu_model = None
def init_model(self, cupy_port: Optional[int] = None):
# torch.distributed.all_reduce does not free the input tensor until
# the synchronization point. This causes the memory usage to grow
# as the number of all_reduce calls increases. This env var disables
# this behavior.
# Related issue:
# https://discuss.pytorch.org/t/cuda-allocation-lifetime-for-inputs-to-distributed-all-reduce/191573
os.environ["TORCH_NCCL_AVOID_RECORD_STREAMS"] = "1"
# Env vars will be set by TORCHRUN.
self.rank = self.rank if self.rank is not None else int(os.getenv("RANK", "-1"))
local_rank = int(os.getenv("LOCAL_RANK", "0"))
self.device = torch.device(f"cuda:{local_rank}")
if self.rank < 0:
raise ValueError("Invalid or unspecified rank.")
torch.cuda.set_device(self.device)
_check_if_gpu_supports_dtype(self.model_config.dtype)
# Initialize the distributed environment.
# TODO: do not use cupy
_init_distributed_environment(self.parallel_config, self.rank, self.distributed_init_method)
if not self.parallel_config.disable_custom_all_reduce:
init_custom_ar()
# Initialize the model.
set_random_seed(self.model_config.seed)
# self.model = get_model(actor_model=self.model, model_config=self.model_config)
def load_model(self):
self.model_runner.load_model()
@torch.inference_mode()
def profile_num_available_blocks(
self,
block_size: int,
gpu_memory_utilization: float,
cpu_swap_space: int,
cache_dtype: str,
) -> Tuple[int, int]:
# Profile the memory usage of the model and get the maximum number of
# cache blocks that can be allocated with the remaining free memory.
torch.cuda.empty_cache()
# torch.cuda.reset_peak_memory_stats()
# Execute a forward pass with dummy inputs to profile the memory usage
# of the model.
self.model_runner.profile_run()
# Calculate the number of blocks that can be allocated with the
# profiled peak memory.
torch.cuda.synchronize()
free_gpu_memory, total_gpu_memory = torch.cuda.mem_get_info()
peak_memory = total_gpu_memory - free_gpu_memory
cache_block_size = CacheEngine.get_cache_block_size(block_size, cache_dtype, self.model_config,
self.parallel_config)
# NOTE(sgm) use the remaining memory
num_gpu_blocks = int((free_gpu_memory * gpu_memory_utilization) // cache_block_size)
# num_gpu_blocks = int((total_gpu_memory * gpu_memory_utilization - peak_memory) // cache_block_size)
num_cpu_blocks = int(cpu_swap_space // cache_block_size)
num_gpu_blocks = max(num_gpu_blocks, 0)
num_cpu_blocks = max(num_cpu_blocks, 0)
if self.model_runner.lora_manager:
self.model_runner.remove_all_loras()
gc.collect()
torch.cuda.empty_cache()
# Synchronize number of blocks with all the rank
num_gpu_blocks = torch.tensor([num_gpu_blocks], device='cuda')
num_cpu_blocks = torch.tensor([num_cpu_blocks], device='cuda')
torch.distributed.all_reduce(num_gpu_blocks,
op=torch.distributed.ReduceOp.MIN,
group=get_tensor_model_parallel_group())
torch.distributed.all_reduce(num_cpu_blocks,
op=torch.distributed.ReduceOp.MIN,
group=get_tensor_model_parallel_group())
num_gpu_blocks = num_gpu_blocks.item()
num_cpu_blocks = num_cpu_blocks.item()
return num_gpu_blocks, num_cpu_blocks
def init_cache_engine(self, cache_config: CacheConfig) -> None:
if self.cache_engine is None and self.gpu_cache is None:
self.cache_config = cache_config
self.cache_engine = CacheEngine(self.cache_config, self.model_config, self.parallel_config)
self.cache_events = self.cache_engine.events
self.gpu_cache = self.cache_engine.gpu_cache
self.model_runner.set_block_size(self.cache_engine.block_size)
def free_cache_engine(self):
# ensure `enforce_eager=True`
self.cache_engine = None
self.gpu_cache = None
def warm_up_model(self) -> None:
if not self.model_config.enforce_eager:
self.model_runner.capture_model(self.gpu_cache)
# Reset the seed to ensure that the random state is not affected by
# the model initialization and profiling.
set_random_seed(self.model_config.seed)
def cache_swap(
self,
blocks_to_swap_in: Dict[int, int],
blocks_to_swap_out: Dict[int, int],
blocks_to_copy: Dict[int, List[int]],
) -> None:
# Issue cache operations.
issued_cache_op = False
if blocks_to_swap_in:
self.cache_engine.swap_in(blocks_to_swap_in)
issued_cache_op = True
if blocks_to_swap_out:
self.cache_engine.swap_out(blocks_to_swap_out)
issued_cache_op = True
if blocks_to_copy:
self.cache_engine.copy(blocks_to_copy)
issued_cache_op = True
cache_events = self.cache_events if issued_cache_op else None
# Wait for cache operations to finish.
# TODO(woosuk): Profile swapping overhead and optimize if needed.
if cache_events is not None:
for event in cache_events:
event.wait()
@torch.inference_mode()
def execute_model(
self,
seq_group_metadata_list: List[SequenceGroupMetadata],
blocks_to_swap_in: Dict[int, int],
blocks_to_swap_out: Dict[int, int],
blocks_to_copy: Dict[int, List[int]],
) -> SamplerOutput:
num_seq_groups = len(seq_group_metadata_list)
self.cache_swap(blocks_to_swap_in, blocks_to_swap_out, blocks_to_copy)
# If there is no input, we don't need to execute the model.
if num_seq_groups == 0:
return {}
output = self.model_runner.execute_model(seq_group_metadata_list, self.gpu_cache)
return output
# # Prepare input tensors.
# # NOTE(shengguangming): currently we pad in our dataloader and unpad it in pre_process_input, j
# # we can just input un-padded sequence for better performance
# input_tokens, input_positions, input_metadata = self._prepare_inputs(seq_group_metadata_list)
# # Execute the model.
# output = self.model(
# input_ids=input_tokens,
# positions=input_positions,
# kv_caches=self.gpu_cache,
# input_metadata=input_metadata,
# cache_events=cache_events,
# )
# return output
# assume the input is .state_dict()
def sync_model_weights(self, actor_weights: Dict):
load_weights(actor_weights, self.model_runner.model)
def offload_model_weights(self) -> None:
if self.cpu_model == None:
self.cpu_model = {}
for name, params in self.model_runner.model.named_parameters():
self.cpu_model[name] = torch.empty_like(params, device='cpu')
params.data = self.cpu_model[name]
else:
for name, params in self.model_runner.model.named_parameters():
params.data = self.cpu_model[name]
def add_lora(self, lora_request: LoRARequest) -> bool:
return self.model_runner.add_lora(lora_request)
def remove_lora(self, lora_id: int) -> bool:
return self.model_runner.remove_lora(lora_id)
def list_loras(self) -> Set[int]:
return self.model_runner.list_loras()
def _init_distributed_environment(
parallel_config: ParallelConfig,
rank: int,
distributed_init_method: Optional[str] = None,
) -> None:
"""Initialize the distributed environment."""
if torch.distributed.is_initialized():
print('The distributed environment has been initialized before vLLM')
elif not distributed_init_method:
raise ValueError("distributed_init_method must be set if torch.distributed "
"is not already initialized")
else:
torch.distributed.init_process_group(
backend="nccl",
world_size=parallel_config.world_size,
rank=rank,
# init_method=distributed_init_method,
)
# A small all_reduce for warmup.
torch.distributed.all_reduce(torch.zeros(1).cuda())
# TODO (shengguangming): maybe we should also flag the megatron is initialized
if torch.distributed.get_world_size() > 1:
initialize_model_parallel_from_megatron(tensor_model_parallel_size=parallel_config.tensor_parallel_size)
else:
initialize_model_parallel()
def _pad_to_alignment(x: List[int], multiple_of: int, pad: int) -> List[int]:
return x + [pad] * ((-len(x)) % multiple_of)
def _pad_to_max(x: List[int], max_len: int, pad: int) -> List[int]:
return x + [pad] * (max_len - len(x))
def _check_if_gpu_supports_dtype(torch_dtype: torch.dtype):
# Check if the GPU supports the dtype.
if torch_dtype == torch.bfloat16:
compute_capability = torch.cuda.get_device_capability()
if compute_capability[0] < 8:
gpu_name = torch.cuda.get_device_name()
raise ValueError("Bfloat16 is only supported on GPUs with compute capability "
f"of at least 8.0. Your {gpu_name} GPU has compute capability "
f"{compute_capability[0]}.{compute_capability[1]}.")
# Copyright 2024 Bytedance Ltd. and/or its affiliates
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# Copyright 2024 Bytedance Ltd. and/or its affiliates
# Copyright 2023 The vLLM team.
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# Adapted from https://github.com/vllm-project/vllm/blob/main/vllm/engine/arg_utils.py
import os
import argparse
import dataclasses
from dataclasses import dataclass
from typing import List, Optional, Union
import torch.nn as nn
from transformers import PretrainedConfig
from .config import ModelConfig, LoadConfig
from vllm.config import (CacheConfig, DecodingConfig, DeviceConfig, EngineConfig, LoRAConfig, ParallelConfig,
SchedulerConfig, SpeculativeConfig, TokenizerPoolConfig, VisionLanguageConfig)
from vllm.model_executor.layers.quantization import QUANTIZATION_METHODS
from vllm.utils import str_to_int_tuple
def nullable_str(val: str):
if not val or val == "None":
return None
return val
@dataclass
class EngineArgs:
"""Arguments for vLLM engine."""
model_hf_config: PretrainedConfig = None
skip_tokenizer_init: bool = False
served_model_name: Optional[Union[str, List[str]]] = None # TODO
download_dir: Optional[str] = None
load_format: str = 'auto'
dtype: str = 'auto'
kv_cache_dtype: str = 'auto'
quantization_param_path: Optional[str] = None
seed: int = 0
max_model_len: Optional[int] = None
worker_use_ray: bool = False
pipeline_parallel_size: int = 1
tensor_parallel_size: int = 1
max_parallel_loading_workers: Optional[int] = None
block_size: int = 16
enable_prefix_caching: bool = False
use_v2_block_manager: bool = False
swap_space: int = 4 # GiB
gpu_memory_utilization: float = 0.90
max_num_batched_tokens: Optional[int] = None
max_num_seqs: int = 256
max_logprobs: int = 5 # OpenAI default value
disable_log_stats: bool = False
revision: Optional[str] = None
code_revision: Optional[str] = None
tokenizer_revision: Optional[str] = None
quantization: Optional[str] = None
enforce_eager: bool = False
max_context_len_to_capture: Optional[int] = None
max_seq_len_to_capture: int = 8192
disable_custom_all_reduce: bool = False
tokenizer_pool_size: int = 0
tokenizer_pool_type: str = "ray"
tokenizer_pool_extra_config: Optional[dict] = None
enable_lora: bool = False
max_loras: int = 1
max_lora_rank: int = 16
fully_sharded_loras: bool = False
lora_extra_vocab_size: int = 256
lora_dtype = 'auto'
max_cpu_loras: Optional[int] = None
device: str = 'auto'
ray_workers_use_nsight: bool = False
num_gpu_blocks_override: Optional[int] = None
num_lookahead_slots: int = 0
model_loader_extra_config: Optional[dict] = None
# Related to Vision-language models such as llava
image_input_type: Optional[str] = None
image_token_id: Optional[int] = None
image_input_shape: Optional[str] = None
image_feature_size: Optional[int] = None
scheduler_delay_factor: float = 0.0
enable_chunked_prefill: bool = False
guided_decoding_backend: str = 'outlines'
# Speculative decoding configuration.
speculative_model: Optional[str] = None
num_speculative_tokens: Optional[int] = None
speculative_max_model_len: Optional[int] = None
ngram_prompt_lookup_max: Optional[int] = None
ngram_prompt_lookup_min: Optional[int] = None
@staticmethod
def add_cli_args(parser: argparse.ArgumentParser) -> argparse.ArgumentParser:
"""Shared CLI arguments for vLLM engine."""
# Model arguments
# TODO(shengguangming): delete the unused args
parser.add_argument('--model',
type=str,
default='facebook/opt-125m',
help='name or path of the huggingface model to use')
parser.add_argument('--tokenizer',
type=str,
default=EngineArgs.tokenizer,
help='name or path of the huggingface tokenizer to use')
parser.add_argument('--revision',
type=str,
default=None,
help='the specific model version to use. It can be a branch '
'name, a tag name, or a commit id. If unspecified, will use '
'the default version.')
parser.add_argument('--tokenizer-revision',
type=str,
default=None,
help='the specific tokenizer version to use. It can be a branch '
'name, a tag name, or a commit id. If unspecified, will use '
'the default version.')
parser.add_argument('--tokenizer-mode',
type=str,
default=EngineArgs.tokenizer_mode,
choices=['auto', 'slow'],
help='tokenizer mode. "auto" will use the fast '
'tokenizer if available, and "slow" will '
'always use the slow tokenizer.')
parser.add_argument('--trust-remote-code', action='store_true', help='trust remote code from huggingface')
parser.add_argument('--download-dir',
type=str,
default=EngineArgs.download_dir,
help='directory to download and load the weights, '
'default to the default cache dir of '
'huggingface')
parser.add_argument('--load-format',
type=str,
default=EngineArgs.load_format,
choices=['auto', 'pt', 'safetensors', 'npcache', 'dummy'],
help='The format of the model weights to load. '
'"auto" will try to load the weights in the safetensors format '
'and fall back to the pytorch bin format if safetensors format '
'is not available. '
'"pt" will load the weights in the pytorch bin format. '
'"safetensors" will load the weights in the safetensors format. '
'"npcache" will load the weights in pytorch format and store '
'a numpy cache to speed up the loading. '
'"dummy" will initialize the weights with random values, '
'which is mainly for profiling.')
parser.add_argument('--dtype',
type=str,
default=EngineArgs.dtype,
choices=['auto', 'half', 'float16', 'bfloat16', 'float', 'float32'],
help='data type for model weights and activations. '
'The "auto" option will use FP16 precision '
'for FP32 and FP16 models, and BF16 precision '
'for BF16 models.')
parser.add_argument('--max-model-len',
type=int,
default=None,
help='model context length. If unspecified, '
'will be automatically derived from the model.')
# Parallel arguments
parser.add_argument('--worker-use-ray',
action='store_true',
help='use Ray for distributed serving, will be '
'automatically set when using more than 1 GPU')
parser.add_argument('--pipeline-parallel-size',
'-pp',
type=int,
default=EngineArgs.pipeline_parallel_size,
help='number of pipeline stages')
parser.add_argument('--tensor-parallel-size',
'-tp',
type=int,
default=EngineArgs.tensor_parallel_size,
help='number of tensor parallel replicas')
# KV cache arguments
parser.add_argument('--block-size',
type=int,
default=EngineArgs.block_size,
choices=[8, 16, 32],
help='token block size')
# TODO(woosuk): Support fine-grained seeds (e.g., seed per request).
parser.add_argument('--seed', type=int, default=EngineArgs.seed, help='random seed')
parser.add_argument('--swap-space',
type=int,
default=EngineArgs.swap_space,
help='CPU swap space size (GiB) per GPU')
parser.add_argument('--gpu-memory-utilization',
type=float,
default=EngineArgs.gpu_memory_utilization,
help='the percentage of GPU memory to be used for'
'the model executor')
parser.add_argument('--max-num-batched-tokens',
type=int,
default=EngineArgs.max_num_batched_tokens,
help='maximum number of batched tokens per '
'iteration')
parser.add_argument('--max-num-seqs',
type=int,
default=EngineArgs.max_num_seqs,
help='maximum number of sequences per iteration')
parser.add_argument('--disable-log-stats', action='store_true', help='disable logging statistics')
# Quantization settings.
parser.add_argument('--quantization',
'-q',
type=str,
choices=['awq', None],
default=None,
help='Method used to quantize the weights')
return parser
@classmethod
def from_cli_args(cls, args: argparse.Namespace) -> 'EngineArgs':
# Get the list of attributes of this dataclass.
attrs = [attr.name for attr in dataclasses.fields(cls)]
# Set the attributes from the parsed arguments.
engine_args = cls(**{attr: getattr(args, attr) for attr in attrs})
return engine_args
def create_engine_config(
self,
) -> EngineConfig:
device_config = DeviceConfig(self.device)
# NOTE(sgm): we only modify ModelConfig, other configs are import from vllm
model_config = ModelConfig(self.model_hf_config, self.dtype, self.seed, self.revision, self.code_revision,
self.tokenizer_revision, self.max_model_len, self.quantization,
self.quantization_param_path, self.enforce_eager, self.max_context_len_to_capture,
self.max_seq_len_to_capture, self.max_logprobs, self.skip_tokenizer_init,
self.served_model_name)
cache_config = CacheConfig(self.block_size, self.gpu_memory_utilization,
self.swap_space, self.kv_cache_dtype, self.num_gpu_blocks_override,
model_config.get_sliding_window(), self.enable_prefix_caching)
parallel_config = ParallelConfig(
self.pipeline_parallel_size, self.tensor_parallel_size, self.worker_use_ray,
self.max_parallel_loading_workers, self.disable_custom_all_reduce,
TokenizerPoolConfig.create_config(
self.tokenizer_pool_size,
self.tokenizer_pool_type,
self.tokenizer_pool_extra_config,
), self.ray_workers_use_nsight)
# Use the world_size set by TORCHRUN
world_size = int(os.getenv("WORLD_SIZE", "-1"))
assert world_size != -1, "The world_size is set to -1, not initialized by TORCHRUN"
parallel_config.world_size = world_size
# TODO: spec config
speculative_config = SpeculativeConfig.maybe_create_spec_config(
target_model_config=model_config,
target_parallel_config=parallel_config,
target_dtype=self.dtype,
speculative_model=self.speculative_model,
num_speculative_tokens=self.num_speculative_tokens,
speculative_max_model_len=self.speculative_max_model_len,
enable_chunked_prefill=self.enable_chunked_prefill,
use_v2_block_manager=self.use_v2_block_manager,
ngram_prompt_lookup_max=self.ngram_prompt_lookup_max,
ngram_prompt_lookup_min=self.ngram_prompt_lookup_min,
)
scheduler_config = SchedulerConfig(
self.max_num_batched_tokens,
self.max_num_seqs,
model_config.max_model_len,
self.use_v2_block_manager,
num_lookahead_slots=(self.num_lookahead_slots
if speculative_config is None else speculative_config.num_lookahead_slots),
delay_factor=self.scheduler_delay_factor,
enable_chunked_prefill=self.enable_chunked_prefill,
)
lora_config = LoRAConfig(max_lora_rank=self.max_lora_rank,
max_loras=self.max_loras,
fully_sharded_loras=self.fully_sharded_loras,
lora_extra_vocab_size=self.lora_extra_vocab_size,
lora_dtype=self.lora_dtype,
max_cpu_loras=self.max_cpu_loras if self.max_cpu_loras and self.max_cpu_loras > 0 else
None) if self.enable_lora else None
load_config = LoadConfig(
load_format=self.load_format,
download_dir=self.download_dir,
model_loader_extra_config=self.model_loader_extra_config,
)
if self.image_input_type:
if (not self.image_token_id or not self.image_input_shape or not self.image_feature_size):
raise ValueError('Specify `image_token_id`, `image_input_shape` and '
'`image_feature_size` together with `image_input_type`.')
vision_language_config = VisionLanguageConfig(
image_input_type=VisionLanguageConfig.get_image_input_enum_type(self.image_input_type),
image_token_id=self.image_token_id,
image_input_shape=str_to_int_tuple(self.image_input_shape),
image_feature_size=self.image_feature_size,
)
else:
vision_language_config = None
decoding_config = DecodingConfig(guided_decoding_backend=self.guided_decoding_backend)
return EngineConfig(model_config=model_config,
cache_config=cache_config,
parallel_config=parallel_config,
scheduler_config=scheduler_config,
device_config=device_config,
lora_config=lora_config,
vision_language_config=vision_language_config,
speculative_config=speculative_config,
load_config=load_config,
decoding_config=decoding_config)
# Copyright 2024 Bytedance Ltd. and/or its affiliates
# Copyright 2023 The vLLM team.
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# Adapted from https://github.com/vllm-project/vllm/blob/main/vllm/config.py
import enum
import json
from typing import List, Optional, Union
from dataclasses import dataclass, field, fields
from transformers import PretrainedConfig
from vllm.logger import init_logger
from vllm.model_executor.layers.quantization import get_quantization_config
from vllm.transformers_utils.config import get_hf_text_config
from vllm.utils import is_hip
# Add for verl
from vllm.config import ModelConfig, _get_and_verify_dtype, _get_and_verify_max_len
GPTQMarlinConfig = get_quantization_config("gptq_marlin")
logger = init_logger(__name__)
_GB = 1 << 30
class ModelConfig(ModelConfig):
"""Configuration for the model.
Args:
model: Name or path of the huggingface model to use.
tokenizer: Name or path of the huggingface tokenizer to use.
tokenizer_mode: Tokenizer mode. "auto" will use the fast tokenizer if
available, and "slow" will always use the slow tokenizer.
trust_remote_code: Trust remote code (e.g., from HuggingFace) when
downloading the model and tokenizer.
download_dir: Directory to download and load the weights, default to the
default cache directory of huggingface.
load_format: The format of the model weights to load:
"auto" will try to load the weights in the safetensors format and
fall back to the pytorch bin format if safetensors format is
not available.
"pt" will load the weights in the pytorch bin format.
"safetensors" will load the weights in the safetensors format.
"npcache" will load the weights in pytorch format and store
a numpy cache to speed up the loading.
"dummy" will initialize the weights with random values, which is
mainly for profiling.
dtype: Data type for model weights and activations. The "auto" option
will use FP16 precision for FP32 and FP16 models, and BF16 precision
for BF16 models.
seed: Random seed for reproducibility.
revision: The specific model version to use. It can be a branch name,
a tag name, or a commit id. If unspecified, will use the default
version.
code_revision: The specific revision to use for the model code on
Hugging Face Hub. It can be a branch name, a tag name, or a
commit id. If unspecified, will use the default version.
tokenizer_revision: The specific tokenizer version to use. It can be a
branch name, a tag name, or a commit id. If unspecified, will use
the default version.
max_model_len: Maximum length of a sequence (including prompt and
output). If None, will be derived from the model.
quantization: Quantization method that was used to quantize the model
weights. If None, we assume the model weights are not quantized.
quantization_param_path: Path to JSON file containing scaling factors.
Used to load KV cache scaling factors into the model when KV cache
type is FP8_E4M3 on ROCm (AMD GPU). In the future these will also
be used to load activation and weight scaling factors when the
model dtype is FP8_E4M3 on ROCm.
enforce_eager: Whether to enforce eager execution. If True, we will
disable CUDA graph and always execute the model in eager mode.
If False, we will use CUDA graph and eager execution in hybrid.
max_context_len_to_capture: Maximum context len covered by CUDA graphs.
When a sequence has context length larger than this, we fall back
to eager mode (DEPRECATED. Use max_seq_len_to_capture instead).
max_seq_len_to_capture: Maximum sequence len covered by CUDA graphs.
When a sequence has context length larger than this, we fall back
to eager mode
skip_tokenizer_init: If true, skip initialization of tokenizer and
detokenizer.
served_model_name: The model name used in metrics tag `model_name`,
matches the model name exposed via the APIs. If multiple model
names provided, the first name will be used. If not specified,
the model name will be the same as `model`.
"""
def __init__(
self,
hf_config: PretrainedConfig,
dtype: str,
seed: int,
revision: Optional[str] = None,
code_revision: Optional[str] = None,
tokenizer_revision: Optional[str] = None,
max_model_len: Optional[int] = None,
quantization: Optional[str] = None,
quantization_param_path: Optional[str] = None,
enforce_eager: bool = False,
max_context_len_to_capture: Optional[int] = None,
max_seq_len_to_capture: Optional[int] = None,
max_logprobs: int = 5,
skip_tokenizer_init: bool = False,
served_model_name: Optional[Union[str, List[str]]] = None,
) -> None:
self.model = hf_config._name_or_path
self.tokenizer = hf_config._name_or_path
self.seed = seed
self.revision = revision
self.code_revision = code_revision
self.tokenizer_revision = tokenizer_revision
self.quantization = quantization
self.quantization_param_path = quantization_param_path
self.enforce_eager = enforce_eager
self.max_context_len_to_capture = max_context_len_to_capture
if self.max_context_len_to_capture is not None:
raise ValueError("`max_context_len_to_capture` is deprecated. "
"Use `max_seq_len_to_capture` instead.")
self.max_seq_len_to_capture = (max_seq_len_to_capture or max_context_len_to_capture)
self.max_logprobs = max_logprobs
self.skip_tokenizer_init = skip_tokenizer_init
# self.hf_config = get_config(model, trust_remote_code, revision)
self.hf_config = hf_config
self.hf_text_config = get_hf_text_config(hf_config)
# TODO: for multimodal model
self.dtype = _get_and_verify_dtype(self.hf_config, dtype)
self.max_model_len = _get_and_verify_max_len(self.hf_config, max_model_len)
# self.served_model_name = get_served_model_name(model,
# served_model_name)
# self._verify_load_format()
# self._verify_tokenizer_mode()
self._verify_quantization()
self._verify_cuda_graph()
class LoadFormat(str, enum.Enum):
AUTO = 'auto'
MEGATRON = "megatron"
HF = "hf"
DTENSOR = 'dtensor'
DUMMY_HF = 'dummy_hf'
DUMMY_MEGATRON = 'dummy_megatron'
DUMMY_DTENSOR = 'dummy_dtensor'
@dataclass
class LoadConfig:
"""
download_dir: Directory to download and load the weights, default to the
default cache directory of huggingface.
load_format: The format of the model weights to load:
"auto" will try to load the weights in the safetensors format and
fall back to the pytorch bin format if safetensors format is
not available.
"pt" will load the weights in the pytorch bin format.
"safetensors" will load the weights in the safetensors format.
"npcache" will load the weights in pytorch format and store
a numpy cache to speed up the loading.
"dummy" will initialize the weights with random values, which is
mainly for profiling.
"tensorizer" will use CoreWeave's tensorizer library for
fast weight loading.
"""
load_format: Union[str, LoadFormat, "BaseModelLoader"] = LoadFormat.AUTO
download_dir: Optional[str] = None
model_loader_extra_config: Optional[Union[str, dict]] = field(default_factory=dict)
def __post_init__(self):
model_loader_extra_config = self.model_loader_extra_config or {}
if isinstance(model_loader_extra_config, str):
self.model_loader_extra_config = json.loads(model_loader_extra_config)
self._verify_load_format()
def _verify_load_format(self) -> None:
if not isinstance(self.load_format, str):
return
load_format = self.load_format.lower()
self.load_format = LoadFormat(load_format)
rocm_not_supported_load_format: List[str] = []
if is_hip() and load_format in rocm_not_supported_load_format:
rocm_supported_load_format = [
f for f in LoadFormat.__members__ if (f not in rocm_not_supported_load_format)
]
raise ValueError(f"load format '{load_format}' is not supported in ROCm. "
f"Supported load formats are "
f"{rocm_supported_load_format}")
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment