from mmengine.config import read_base with read_base(): # from ..datasets.ARC_c.ARC_c_gen_1e0de5 import ARC_c_datasets # from ..datasets.ARC_e.ARC_e_gen_1e0de5 import ARC_e_datasets from ..datasets.ceval.ceval_gen_5f30c7 import ceval_datasets from ..datasets.SuperGLUE_BoolQ.SuperGLUE_BoolQ_gen_883d50 import BoolQ_datasets from ..datasets.humaneval.humaneval_gen_8e312c import humaneval_datasets from ..summarizers.example import summarizer datasets = sum([v for k, v in locals().items() if k.endswith("_datasets") or k == 'datasets'], []) work_dir = './outputs/mixtral-series-instruct/' from opencompass.models import VLLMwithChatTemplate settings = [ ('mixtral-8x7b-instruct-v0.1-vllm', 'mistralai/Mixtral-8x7B-Instruct-v0.1', 2), ('mixtral-8x22b-instruct-v0.1-vllm', 'mistralai/Mixtral-8x22B-Instruct-v0.1', 8), ('mixtral-large-instruct-2407-vllm', 'mistralai/Mistral-Large-Instruct-2407', 8), ] models = [] for abbr, path, num_gpus in settings: models.append( dict( type=VLLMwithChatTemplate, abbr=abbr, path=path, model_kwargs=dict(tensor_parallel_size=num_gpus,gpu_memory_utilization=0.9), # add quantization="awq" or quantization="gptq" to eval quantization models max_out_len=256, batch_size=16, generation_kwargs=dict(temperature=0), run_cfg=dict(num_gpus=num_gpus), ) )