from mmengine.config import read_base with read_base(): from ..datasets.ARC_c.ARC_c_gen_1e0de5 import ARC_c_datasets from ..datasets.ARC_e.ARC_e_gen_1e0de5 import ARC_e_datasets from ..summarizers.example import summarizer datasets = sum([v for k, v in locals().items() if k.endswith("_datasets") or k == 'datasets'], []) work_dir = './outputs/llama-series/' from opencompass.models import VLLM settings = [ ('llama-7b-vllm', 'huggyllama/llama-7b', 1), ('llama-13b-vllm', 'huggyllama/llama-13b', 1), ('llama-30b-vllm', 'huggyllama/llama-30b', 2), ('llama-65b-vllm', 'huggyllama/llama-65b', 4), ('llama-2-7b-vllm', 'meta-llama/Llama-2-7b-hf', 1), ('llama-2-13b-vllm', 'meta-llama/Llama-2-13b-hf', 1), ('llama-2-70b-vllm', 'meta-llama/Llama-2-70b-hf', 4), ('llama-3-8b-vllm', 'meta-llama/Meta-Llama-3-8B', 1), ('llama-3-70b-vllm', 'meta-llama/Meta-Llama-3-70B', 4), ] models = [] for abbr, path, num_gpus in settings: models.append( dict( type=VLLM, abbr=abbr, path=path, model_kwargs=dict(tensor_parallel_size=num_gpus), max_out_len=100, max_seq_len=2048, batch_size=32, generation_kwargs=dict(temperature=0), run_cfg=dict(num_gpus=num_gpus, num_procs=1), ) )