from mmengine.config import read_base from opencompass.models import OpenAI with read_base(): from ..datasets.ARC_c.ARC_c_gen_1e0de5 import ARC_c_datasets from ..datasets.ARC_e.ARC_e_gen_1e0de5 import ARC_e_datasets # from ..datasets.gpqa.gpqa_openai_simple_evals_gen_5aeece import gpqa_datasets # from ..datasets.math.math_0shot_gen_393424 import math_datasets from ..summarizers.example import summarizer api_meta_template = dict(round=[ dict(role='HUMAN', api_role='HUMAN'), dict(role='BOT', api_role='BOT', generate=True), ], ) datasets = sum([v for k, v in locals().items() if k.endswith("_datasets") or k == 'datasets'], []) work_dir = './outputs/llama-series/' settings = [ ('llama-3.1-8b-instruct-vllm', 'meta-llama/Meta-Llama-3.1-8B-Instruct', 1), ('llama-3.1-70b-instruct-vllm', 'meta-llama/Meta-Llama-3.1-70B-Instruct', 4), ] models = [] for abbr, path, num_gpus in settings: models.append( dict( type=OpenAI, abbr=abbr, path=path, openai_api_base='http://0.0.0.0:8000/v1/chat/completions', key='ENV', # The key will be obtained from $OPENAI_API_KEY, but you can write down your key here as well meta_template=api_meta_template, # query_per_second=1, max_out_len=100, max_seq_len=2048, batch_size=32, temperature=1, ) )