from mmengine.config import read_base with read_base(): from ..datasets.ARC_c.ARC_c_gen_1e0de5 import ARC_c_datasets from ..datasets.ARC_e.ARC_e_gen_1e0de5 import ARC_e_datasets # from ..datasets.gpqa.gpqa_openai_simple_evals_gen_5aeece import gpqa_datasets # from ..datasets.math.math_0shot_gen_393424 import math_datasets from ..summarizers.example import summarizer datasets = sum([v for k, v in locals().items() if k.endswith("_datasets") or k == 'datasets'], []) work_dir = './outputs/llama-series/' from opencompass.models import VLLMwithChatTemplate settings = [ ('llama-3.1-8b-instruct-vllm', 'meta-llama/Meta-Llama-3.1-8B-Instruct', 1), ('llama-3.1-70b-instruct-vllm', 'meta-llama/Meta-Llama-3.1-70B-Instruct', 4), ] models = [] for abbr, path, num_gpus in settings: models.append( dict( type=VLLMwithChatTemplate, abbr=abbr, path=path, model_kwargs=dict(tensor_parallel_size=num_gpus), max_out_len=100, max_seq_len=2048, batch_size=32, generation_kwargs=dict(temperature=0), run_cfg=dict(num_gpus=num_gpus, num_procs=1), ) )