Commit be3dfa50 authored by jerrrrry's avatar jerrrrry
Browse files

Initial commit

parents
Pipeline #2876 failed with stages
in 0 seconds
from opencompass.openicl.icl_prompt_template import PromptTemplate
from opencompass.openicl.icl_retriever import ZeroRetriever
from opencompass.openicl.icl_inferencer import PPLInferencer
from opencompass.openicl.icl_evaluator import AccEvaluator
from opencompass.datasets import HellaswagDataset_V2
hellaswag_reader_cfg = dict(
input_columns=['query', 'A', 'B', 'C', 'D'],
output_column='label')
hellaswag_infer_cfg = dict(
prompt_template=dict(
type=PromptTemplate,
template={
ans: dict(round=[
dict(role='HUMAN', prompt='{ctx}\nQuestion: Which ending makes the most sense?\nA. {A}\nB. {B}\nC. {C}\nD. {D}\nAnswer: '),
dict(role='BOT', prompt=f'{ans}'),
]) for ans in ['A', 'B', 'C', 'D']
}),
retriever=dict(type=ZeroRetriever),
inferencer=dict(type=PPLInferencer))
hellaswag_eval_cfg = dict(evaluator=dict(type=AccEvaluator))
hellaswag_datasets = [
dict(
abbr='hellaswag',
type=HellaswagDataset_V2,
path='opencompass/hellaswag',
reader_cfg=hellaswag_reader_cfg,
infer_cfg=hellaswag_infer_cfg,
eval_cfg=hellaswag_eval_cfg)
]
from opencompass.openicl.icl_prompt_template import PromptTemplate
from opencompass.openicl.icl_retriever import ZeroRetriever
from opencompass.openicl.icl_inferencer import PPLInferencer
from opencompass.openicl.icl_evaluator import AccEvaluator
from opencompass.datasets import HellaswagDataset
hellaswag_reader_cfg = dict(
input_columns=['ctx', 'A', 'B', 'C', 'D'],
output_column='label'
)
hellaswag_infer_cfg = dict(
prompt_template=dict(
type=PromptTemplate,
template={
0: '{ctx} {A}',
1: '{ctx} {B}',
2: '{ctx} {C}',
3: '{ctx} {D}',
}),
retriever=dict(type=ZeroRetriever),
inferencer=dict(type=PPLInferencer))
hellaswag_eval_cfg = dict(evaluator=dict(type=AccEvaluator))
hellaswag_datasets = [
dict(
abbr='hellaswag',
type=HellaswagDataset,
path='opencompass/hellaswag',
reader_cfg=hellaswag_reader_cfg,
infer_cfg=hellaswag_infer_cfg,
eval_cfg=hellaswag_eval_cfg)
]
from opencompass.openicl.icl_prompt_template import PromptTemplate
from opencompass.openicl.icl_retriever import ZeroRetriever
from opencompass.openicl.icl_inferencer import PPLInferencer
from opencompass.openicl.icl_evaluator import AccEvaluator
from opencompass.datasets import HellaswagDataset_V3
hellaswag_reader_cfg = dict(
input_columns=['query', 'A', 'B', 'C', 'D'],
output_column='gold')
hellaswag_infer_cfg = dict(
prompt_template=dict(
type=PromptTemplate,
template={
'0': dict(
round=[dict(role='HUMAN', prompt='{query} {A}')]
),
'1': dict(
round=[dict(role='HUMAN', prompt='{query} {B}')]
),
'2': dict(
round=[dict(role='HUMAN', prompt='{query} {C}')]
),
'3': dict(
round=[dict(role='HUMAN', prompt='{query} {D}')]
),
}),
retriever=dict(type=ZeroRetriever),
inferencer=dict(type=PPLInferencer))
hellaswag_eval_cfg = dict(evaluator=dict(type=AccEvaluator))
hellaswag_datasets = [
dict(
abbr='hellaswag',
type=HellaswagDataset_V3,
path='opencompass/hellaswag',
reader_cfg=hellaswag_reader_cfg,
infer_cfg=hellaswag_infer_cfg,
eval_cfg=hellaswag_eval_cfg)
]
# HumanEval
```bash
python3 run.py --models hf_internlm2_7b --datasets deprecated_humaneval_gen_d2537e --debug
python3 run.py --models hf_internlm2_chat_7b --datasets humaneval_gen_8e312c --debug
```
## Base Models
| model | pass@1 |
|:------------------------:|---------:|
| llama-7b-turbomind | 12.80 |
| llama-13b-turbomind | 15.24 |
| llama-30b-turbomind | 9.15 |
| llama-65b-turbomind | 7.32 |
| llama-2-7b-turbomind | 14.02 |
| llama-2-13b-turbomind | 15.24 |
| llama-2-70b-turbomind | 15.24 |
| llama-3-8b-turbomind | 28.05 |
| llama-3-70b-turbomind | 28.05 |
| internlm2-1.8b-turbomind | 30.49 |
| internlm2-7b-turbomind | 48.17 |
| internlm2-20b-turbomind | 51.83 |
| qwen-1.8b-turbomind | 16.46 |
| qwen-7b-turbomind | 23.78 |
| qwen-14b-turbomind | 23.78 |
| qwen-72b-turbomind | 66.46 |
| qwen1.5-0.5b-hf | 8.54 |
| qwen1.5-1.8b-hf | 23.17 |
| qwen1.5-4b-hf | 41.46 |
| qwen1.5-7b-hf | 53.05 |
| qwen1.5-14b-hf | 57.32 |
| qwen1.5-32b-hf | 70.12 |
| qwen1.5-72b-hf | 65.85 |
| qwen1.5-moe-a2-7b-hf | 45.73 |
| mistral-7b-v0.1-hf | 14.02 |
| mistral-7b-v0.2-hf | 9.15 |
| mixtral-8x7b-v0.1-hf | 24.39 |
| mixtral-8x22b-v0.1-hf | 16.46 |
| yi-6b-hf | 14.63 |
| yi-34b-hf | 17.07 |
| deepseek-7b-base-hf | 18.29 |
| deepseek-67b-base-hf | 23.17 |
## Chat Models
| model | pass@1 |
|:-----------------------------:|---------:|
| qwen1.5-0.5b-chat-hf | 9.15 |
| qwen1.5-1.8b-chat-hf | 15.85 |
| qwen1.5-4b-chat-hf | 30.49 |
| qwen1.5-7b-chat-hf | 40.85 |
| qwen1.5-14b-chat-hf | 50.00 |
| qwen1.5-32b-chat-hf | 57.93 |
| qwen1.5-72b-chat-hf | 60.37 |
| qwen1.5-110b-chat-hf | 65.24 |
| internlm2-chat-1.8b-hf | 33.54 |
| internlm2-chat-1.8b-sft-hf | 34.15 |
| internlm2-chat-7b-hf | 56.71 |
| internlm2-chat-7b-sft-hf | 61.59 |
| internlm2-chat-20b-hf | 67.68 |
| internlm2-chat-20b-sft-hf | 67.68 |
| llama-3-8b-instruct-hf | 55.49 |
| llama-3-70b-instruct-hf | 70.73 |
| llama-3-8b-instruct-lmdeploy | 57.93 |
| llama-3-70b-instruct-lmdeploy | 70.73 |
| mistral-7b-instruct-v0.1-hf | 32.32 |
| mistral-7b-instruct-v0.2-hf | 29.27 |
| mixtral-8x7b-instruct-v0.1-hf | 34.15 |
from opencompass.openicl.icl_prompt_template import PromptTemplate
from opencompass.openicl.icl_retriever import ZeroRetriever
from opencompass.openicl.icl_inferencer import GenInferencer
from opencompass.datasets import HumanevalDataset, HumanEvalEvaluator, humaneval_postprocess
humaneval_reader_cfg = dict(
input_columns=['prompt'], output_column='task_id', train_split='test')
# TODO: allow empty output-column
humaneval_infer_cfg = dict(
prompt_template=dict(
type=PromptTemplate,
template=dict(round=[
dict(
role='HUMAN',
prompt='Below is an instruction that describes a task. Write a response that appropriately completes the request.\n\n### Instruction:\nCreate a Python script for this problem:\n{prompt}\n\n### Response:\n'),
])),
retriever=dict(type=ZeroRetriever),
inferencer=dict(type=GenInferencer, max_out_len=512))
humaneval_eval_cfg = dict(
evaluator=dict(type=HumanEvalEvaluator),
pred_role='BOT',
k=[1, 10, 100], # the parameter only for humaneval
pred_postprocessor=dict(type=humaneval_postprocess),
)
humaneval_datasets = [
dict(
abbr='openai_humaneval',
type=HumanevalDataset,
path='opencompass/humaneval',
reader_cfg=humaneval_reader_cfg,
infer_cfg=humaneval_infer_cfg,
eval_cfg=humaneval_eval_cfg)
]
from opencompass.openicl.icl_prompt_template import PromptTemplate
from opencompass.openicl.icl_retriever import ZeroRetriever
from opencompass.openicl.icl_inferencer import GenInferencer
from opencompass.datasets import HumanevalDataset, HumanEvalEvaluator, humaneval_postprocess
humaneval_reader_cfg = dict(
input_columns=['prompt'], output_column='task_id', train_split='test')
# TODO: allow empty output-column
humaneval_infer_cfg = dict(
prompt_template=dict(
type=PromptTemplate,
template=dict(round=[
dict(
role='HUMAN',
prompt='Below is an instruction that describes a task. Write a response that appropriately completes the request.\n\n### Instruction:\nComplete the following python function.:\n{prompt}\n\n### Response:\n'),
])),
retriever=dict(type=ZeroRetriever),
inferencer=dict(type=GenInferencer, max_out_len=512))
humaneval_eval_cfg = dict(
evaluator=dict(type=HumanEvalEvaluator),
pred_role='BOT',
k=[1, 10, 100], # the parameter only for humaneval
pred_postprocessor=dict(type=humaneval_postprocess),
)
humaneval_datasets = [
dict(
abbr='openai_humaneval',
type=HumanevalDataset,
path='opencompass/humaneval',
reader_cfg=humaneval_reader_cfg,
infer_cfg=humaneval_infer_cfg,
eval_cfg=humaneval_eval_cfg)
]
from opencompass.openicl.icl_prompt_template import PromptTemplate
from opencompass.openicl.icl_retriever import ZeroRetriever
from opencompass.openicl.icl_inferencer import GenInferencer
from opencompass.datasets import HumanevalDataset, HumanEvalEvaluator, humaneval_postprocess_v2
humaneval_reader_cfg = dict(
input_columns=['prompt'], output_column='task_id', train_split='test')
# TODO: allow empty output-column
humaneval_infer_cfg = dict(
prompt_template=dict(
type=PromptTemplate,
template=dict(round=[
dict(
role='HUMAN',
prompt='{prompt}'),
])),
retriever=dict(type=ZeroRetriever),
inferencer=dict(type=GenInferencer, max_out_len=512))
humaneval_eval_cfg = dict(
evaluator=dict(type=HumanEvalEvaluator),
pred_role='BOT',
k=[1, 10, 100], # the parameter only for humaneval
pred_postprocessor=dict(type=humaneval_postprocess_v2),
)
humaneval_datasets = [
dict(
abbr='openai_humaneval',
type=HumanevalDataset,
path='opencompass/humaneval',
reader_cfg=humaneval_reader_cfg,
infer_cfg=humaneval_infer_cfg,
eval_cfg=humaneval_eval_cfg)
]
from opencompass.openicl.icl_prompt_template import PromptTemplate
from opencompass.openicl.icl_retriever import ZeroRetriever
from opencompass.openicl.icl_inferencer import GenInferencer
from opencompass.datasets import HumanevalDataset, HumanEvalEvaluator, humaneval_postprocess_v2
humaneval_reader_cfg = dict(
input_columns=['prompt'], output_column='task_id', train_split='test')
# TODO: allow empty output-column
humaneval_infer_cfg = dict(
prompt_template=dict(
type=PromptTemplate,
template='Complete the following python code:\n{prompt}',
),
retriever=dict(type=ZeroRetriever),
inferencer=dict(type=GenInferencer, max_out_len=512))
humaneval_eval_cfg = dict(
evaluator=dict(type=HumanEvalEvaluator),
pred_role='BOT',
k=[1, 10, 100], # the parameter only for humaneval
pred_postprocessor=dict(type=humaneval_postprocess_v2),
)
humaneval_datasets = [
dict(
abbr='openai_humaneval',
type=HumanevalDataset,
path='opencompass/humaneval',
reader_cfg=humaneval_reader_cfg,
infer_cfg=humaneval_infer_cfg,
eval_cfg=humaneval_eval_cfg)
]
from opencompass.openicl.icl_prompt_template import PromptTemplate
from opencompass.openicl.icl_retriever import ZeroRetriever
from opencompass.openicl.icl_inferencer import GenInferencer
from opencompass.datasets import HumanevalDataset, HumanEvalEvaluator, humaneval_postprocess
humaneval_reader_cfg = dict(
input_columns=['prompt'], output_column='task_id', train_split='test')
# TODO: allow empty output-column
humaneval_infer_cfg = dict(
prompt_template=dict(
type=PromptTemplate,
template='{prompt}'),
retriever=dict(type=ZeroRetriever),
inferencer=dict(type=GenInferencer, max_out_len=512))
humaneval_eval_cfg = dict(
evaluator=dict(type=HumanEvalEvaluator),
k=[1, 10, 100], # the parameter only for humaneval
pred_postprocessor=dict(type=humaneval_postprocess),
)
humaneval_datasets = [
dict(
abbr='openai_humaneval',
type=HumanevalDataset,
path='opencompass/humaneval',
reader_cfg=humaneval_reader_cfg,
infer_cfg=humaneval_infer_cfg,
eval_cfg=humaneval_eval_cfg)
]
from opencompass.openicl.icl_prompt_template import PromptTemplate
from opencompass.openicl.icl_retriever import ZeroRetriever
from opencompass.openicl.icl_inferencer import GenInferencer
from opencompass.datasets import HumanevalDataset, HumanEvalEvaluator, humaneval_postprocess
humaneval_reader_cfg = dict(
input_columns=['prompt'], output_column='task_id', train_split='test')
# TODO: allow empty output-column
humaneval_infer_cfg = dict(
prompt_template=dict(
type=PromptTemplate,
template=dict(
begin=[
dict(
role='SYSTEM',
fallback_role='HUMAN',
prompt='Complete the following python code:'),
],
round=[
dict(role='HUMAN', prompt='{prompt}'),
])),
retriever=dict(type=ZeroRetriever),
inferencer=dict(type=GenInferencer))
humaneval_eval_cfg = dict(
evaluator=dict(type=HumanEvalEvaluator),
pred_role='BOT',
k=[1, 10, 100], # the parameter only for humaneval
pred_postprocessor=dict(type=humaneval_postprocess),
)
humaneval_datasets = [
dict(
abbr='openai_humaneval',
type=HumanevalDataset,
path='opencompass/humaneval',
reader_cfg=humaneval_reader_cfg,
infer_cfg=humaneval_infer_cfg,
eval_cfg=humaneval_eval_cfg)
]
from mmengine.config import read_base
with read_base():
from .humaneval_gen_8e312c import humaneval_datasets # noqa: F401, F403
from opencompass.openicl.icl_prompt_template import PromptTemplate
from opencompass.openicl.icl_retriever import ZeroRetriever
from opencompass.openicl.icl_inferencer import GenInferencer
from opencompass.datasets import HumanevalDataset, HumanEvalEvaluator, humaneval_postprocess_v2
humaneval_reader_cfg = dict(input_columns=['prompt'], output_column='task_id', train_split='test')
HUMANEVAL_TEMPLATE = dict(
round=[
dict(role='HUMAN', prompt='You are an intelligent programming assistant to produce Python algorithmic solutions.\nCan you complete the following Python function?\n```python\n{prompt}\n```'),
]
)
humaneval_infer_cfg = dict(
prompt_template=dict(type=PromptTemplate, template=HUMANEVAL_TEMPLATE),
retriever=dict(type=ZeroRetriever),
inferencer=dict(type=GenInferencer, max_out_len=1024),
)
humaneval_eval_cfg = dict(
evaluator=dict(type=HumanEvalEvaluator),
k=[1, 10, 100],
pred_postprocessor=dict(type=humaneval_postprocess_v2),
)
humaneval_datasets = [
dict(
abbr='openai_humaneval',
type=HumanevalDataset,
path='opencompass/humaneval',
reader_cfg=humaneval_reader_cfg,
infer_cfg=humaneval_infer_cfg,
eval_cfg=humaneval_eval_cfg,
)
]
# THIS SHALL ALSO BE DEPRECATED
from opencompass.openicl.icl_prompt_template import PromptTemplate
from opencompass.openicl.icl_retriever import ZeroRetriever
from opencompass.openicl.icl_inferencer import GenInferencer
from opencompass.datasets import HumanevalDataset, HumanEvalEvaluator, humaneval_postprocess_v2
humaneval_reader_cfg = dict(
input_columns=['prompt'], output_column='task_id', train_split='test')
# TODO: allow empty output-column
humaneval_infer_cfg = dict(
prompt_template=dict(
type=PromptTemplate,
template=dict(round=[
dict(
role='HUMAN',
prompt='Complete the following python code:\n{prompt}'),
])),
retriever=dict(type=ZeroRetriever),
inferencer=dict(type=GenInferencer, max_out_len=512))
humaneval_eval_cfg = dict(
evaluator=dict(type=HumanEvalEvaluator),
pred_role='BOT',
k=[1, 10, 100], # the parameter only for humaneval
pred_postprocessor=dict(type=humaneval_postprocess_v2),
)
humaneval_datasets = [
dict(
abbr='openai_humaneval',
type=HumanevalDataset,
path='opencompass/humaneval',
reader_cfg=humaneval_reader_cfg,
infer_cfg=humaneval_infer_cfg,
eval_cfg=humaneval_eval_cfg)
]
from opencompass.openicl.icl_prompt_template import PromptTemplate
from opencompass.openicl.icl_retriever import ZeroRetriever
from opencompass.openicl.icl_inferencer import GenInferencer
from opencompass.datasets import HumanevalDataset, HumanEvalEvaluator, humaneval_postprocess_v2
humaneval_reader_cfg = dict(
input_columns=['prompt'], output_column='task_id', train_split='test')
# TODO: allow empty output-column
humaneval_infer_cfg = dict(
prompt_template=dict(
type=PromptTemplate,
template=dict(round=[
dict(
role='HUMAN',
prompt='Read the following function signature and docstring, and fully implement the function described. Your response should only contain the code for this function.\n{prompt}'),
])),
retriever=dict(type=ZeroRetriever),
inferencer=dict(type=GenInferencer, max_out_len=512))
humaneval_eval_cfg = dict(
evaluator=dict(type=HumanEvalEvaluator),
pred_role='BOT',
k=[1, 10, 100], # the parameter only for humaneval
pred_postprocessor=dict(type=humaneval_postprocess_v2),
)
humaneval_datasets = [
dict(
abbr='openai_humaneval',
type=HumanevalDataset,
path='opencompass/humaneval',
reader_cfg=humaneval_reader_cfg,
infer_cfg=humaneval_infer_cfg,
eval_cfg=humaneval_eval_cfg)
]
from opencompass.openicl.icl_prompt_template import PromptTemplate
from opencompass.openicl.icl_retriever import ZeroRetriever
from opencompass.openicl.icl_inferencer import GenInferencer
from opencompass.datasets import HumanevalDataset, HumanEvalEvaluator, humaneval_postprocess_v2
humaneval_reader_cfg = dict(
input_columns=['prompt'], output_column='task_id', train_split='test')
# TODO: allow empty output-column
humaneval_infer_cfg = dict(
prompt_template=dict(
type=PromptTemplate,
template=dict(round=[
dict(
role='HUMAN',
prompt='Read the following function signature and docstring, and fully implement the function described. Your response should only contain the code for this function.\n{prompt}'),
])),
retriever=dict(type=ZeroRetriever),
inferencer=dict(type=GenInferencer))
humaneval_eval_cfg = dict(
evaluator=dict(type=HumanEvalEvaluator),
pred_role='BOT',
k=[1, 10, 100], # the parameter only for humaneval
pred_postprocessor=dict(type=humaneval_postprocess_v2),
)
humaneval_datasets = [
dict(
abbr='openai_humaneval',
type=HumanevalDataset,
path='opencompass/humaneval',
reader_cfg=humaneval_reader_cfg,
infer_cfg=humaneval_infer_cfg,
eval_cfg=humaneval_eval_cfg)
]
from opencompass.openicl.icl_prompt_template import PromptTemplate
from opencompass.openicl.icl_retriever import ZeroRetriever
from opencompass.openicl.icl_inferencer import GenInferencer
from opencompass.datasets import HumanevalDataset, HumanEvalEvaluator, humaneval_postprocess_v3
humaneval_reader_cfg = dict(
input_columns=['prompt'], output_column='task_id', train_split='test')
# TODO: allow empty output-column
humaneval_infer_cfg = dict(
prompt_template=dict(
type=PromptTemplate,
template=dict(round=[
dict(
role='HUMAN',
prompt='Read the following function signature and docstring, and fully implement the function described. Your response should only contain the code for this function.\n{prompt}'),
])),
retriever=dict(type=ZeroRetriever),
inferencer=dict(type=GenInferencer, max_out_len=8192))
humaneval_eval_cfg = dict(
evaluator=dict(type=HumanEvalEvaluator),
pred_role='BOT',
k=[1, 10, 100], # the parameter only for humaneval
pred_postprocessor=dict(type=humaneval_postprocess_v3),
)
humaneval_datasets = [
dict(
abbr='openai_humaneval_o1_style',
type=HumanevalDataset,
path='opencompass/humaneval',
reader_cfg=humaneval_reader_cfg,
infer_cfg=humaneval_infer_cfg,
eval_cfg=humaneval_eval_cfg)
]
from opencompass.openicl.icl_prompt_template import PromptTemplate
from opencompass.openicl.icl_retriever import ZeroRetriever
from opencompass.openicl.icl_inferencer import GenInferencer
from opencompass.datasets import HumanevalDataset, HumanEvalEvaluator, humaneval_postprocess_v2
humaneval_reader_cfg = dict(
input_columns=['prompt'], output_column='task_id', train_split='test')
# TODO: allow empty output-column
humaneval_infer_cfg = dict(
prompt_template=dict(
type=PromptTemplate,
template=dict(round=[
dict(
role='HUMAN',
prompt='Complete the following python code:\n{prompt}'),
])),
retriever=dict(type=ZeroRetriever),
inferencer=dict(type=GenInferencer, max_out_len=512))
humaneval_eval_cfg = dict(
evaluator=dict(type=HumanEvalEvaluator),
pred_role='BOT',
k=[1, 10, 100], # the parameter only for humaneval
pred_postprocessor=dict(type=humaneval_postprocess_v2),
)
humaneval_datasets = [
dict(
abbr='openai_humaneval_passk',
type=HumanevalDataset,
path='opencompass/humaneval',
reader_cfg=humaneval_reader_cfg,
infer_cfg=humaneval_infer_cfg,
eval_cfg=humaneval_eval_cfg)
]
from opencompass.openicl.icl_prompt_template import PromptTemplate
from opencompass.openicl.icl_retriever import ZeroRetriever
from opencompass.openicl.icl_inferencer import GenInferencer
from opencompass.datasets import HumanevalDataset, HumanEvalEvaluator, humaneval_postprocess_v2
humaneval_reader_cfg = dict(
input_columns=['prompt'], output_column='task_id', train_split='test')
# TODO: allow empty output-column
humaneval_infer_cfg = dict(
prompt_template=dict(
type=PromptTemplate,
template=dict(round=[
dict(
role='HUMAN',
prompt='Complete the following python code:\n{prompt}'),
])),
retriever=dict(type=ZeroRetriever),
inferencer=dict(type=GenInferencer))
humaneval_eval_cfg = dict(
evaluator=dict(type=HumanEvalEvaluator),
pred_role='BOT',
k=[1, 10, 100], # the parameter only for humaneval
pred_postprocessor=dict(type=humaneval_postprocess_v2),
)
humaneval_datasets = [
dict(
abbr='openai_humaneval_repeat10',
type=HumanevalDataset,
path='opencompass/humaneval',
num_repeats=10,
reader_cfg=humaneval_reader_cfg,
infer_cfg=humaneval_infer_cfg,
eval_cfg=humaneval_eval_cfg)
]
from opencompass.openicl.icl_prompt_template import PromptTemplate
from opencompass.openicl.icl_retriever import ZeroRetriever
from opencompass.openicl.icl_inferencer import GenInferencer
from opencompass.datasets import HumanevalDataset, HumanEvalEvaluator, humaneval_internal_v2_postprocess
humaneval_reader_cfg = dict(
input_columns=['prompt'], output_column='task_id', train_split='test')
# TODO: allow empty output-column
humaneval_infer_cfg = dict(
prompt_template=dict(
type=PromptTemplate,
template='# Complete the following python code:\n{prompt}',
),
retriever=dict(type=ZeroRetriever),
inferencer=dict(type=GenInferencer, max_out_len=512))
humaneval_eval_cfg = dict(
evaluator=dict(type=HumanEvalEvaluator),
pred_role='BOT',
k=[1, 10, 100], # the parameter only for humaneval
pred_postprocessor=dict(type=humaneval_internal_v2_postprocess),
)
humaneval_datasets = [
dict(
abbr='openai_humaneval',
type=HumanevalDataset,
path='opencompass/humaneval',
reader_cfg=humaneval_reader_cfg,
infer_cfg=humaneval_infer_cfg,
eval_cfg=humaneval_eval_cfg)
]
from opencompass.openicl.icl_prompt_template import PromptTemplate
from opencompass.openicl.icl_retriever import ZeroRetriever
from opencompass.openicl.icl_inferencer import GenInferencer
from opencompass.datasets import HumanevalDataset, HumanEvalEvaluator, humaneval_internal_v1_postprocess
humaneval_reader_cfg = dict(
input_columns=['prompt'], output_column='task_id', train_split='test')
# TODO: allow empty output-column
humaneval_infer_cfg = dict(
prompt_template=dict(
type=PromptTemplate,
template='Complete the following python code:\n{prompt}',
),
retriever=dict(type=ZeroRetriever),
inferencer=dict(type=GenInferencer, max_out_len=512))
humaneval_eval_cfg = dict(
evaluator=dict(type=HumanEvalEvaluator),
pred_role='BOT',
k=[1, 10, 100], # the parameter only for humaneval
pred_postprocessor=dict(type=humaneval_internal_v1_postprocess),
)
humaneval_datasets = [
dict(
abbr='openai_humaneval',
type=HumanevalDataset,
path='opencompass/humaneval',
reader_cfg=humaneval_reader_cfg,
infer_cfg=humaneval_infer_cfg,
eval_cfg=humaneval_eval_cfg)
]
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment