Commit be3dfa50 authored by jerrrrry's avatar jerrrrry
Browse files

Initial commit

parents
Pipeline #2876 failed with stages
in 0 seconds
from opencompass.openicl.icl_prompt_template import PromptTemplate
from opencompass.openicl.icl_retriever import ZeroRetriever
from opencompass.openicl.icl_inferencer import GenInferencer
from opencompass.openicl.icl_evaluator import EMEvaluator
from opencompass.datasets import ReCoRDDatasetV2, ReCoRD_postprocess
ReCoRD_reader_cfg = dict(
input_columns=['question', 'text'], output_column='answers')
ReCoRD_infer_cfg = dict(
prompt_template=dict(
type=PromptTemplate,
template=dict(round=[
dict(
role='HUMAN', prompt='Passage:\n{text}\nResult:\n{question}\nQuestion:\nWhat entity does ____ refer to in the Result?\nAnswer:'
),
]),
),
retriever=dict(type=ZeroRetriever),
inferencer=dict(type=GenInferencer))
ReCoRD_eval_cfg = dict(
evaluator=dict(type=EMEvaluator),
pred_role='BOT',
pred_postprocessor=dict(type=ReCoRD_postprocess))
ReCoRD_datasets = [
dict(
type=ReCoRDDatasetV2,
abbr='ReCoRD',
path='./data/SuperGLUE/ReCoRD/val.jsonl',
reader_cfg=ReCoRD_reader_cfg,
infer_cfg=ReCoRD_infer_cfg,
eval_cfg=ReCoRD_eval_cfg)
]
from mmengine.config import read_base
with read_base():
from .SuperGLUE_WSC_gen_fe4bf3 import WSC_datasets # noqa: F401, F403
from opencompass.openicl.icl_prompt_template import PromptTemplate
from opencompass.openicl.icl_retriever import ZeroRetriever
from opencompass.openicl.icl_inferencer import GenInferencer
from opencompass.openicl.icl_evaluator import AccEvaluator
from opencompass.datasets import WSCDatasetV2
from opencompass.utils.text_postprocessors import first_capital_postprocess
WSC_reader_cfg = dict(
input_columns=['span1', 'span2', 'text'],
output_column='label',
)
WSC_infer_cfg = dict(
prompt_template=dict(
type=PromptTemplate,
template=dict(round=[
dict(
role='HUMAN',
prompt=
"{text}\nIs '{span1}' and '{span2}' refers to the same entity in the above sentence?\nA. Yes\nB. No\nAnswer:"
),
]),
),
retriever=dict(type=ZeroRetriever),
inferencer=dict(type=GenInferencer),
)
WSC_eval_cfg = dict(
evaluator=dict(type=AccEvaluator),
pred_role='BOT',
pred_postprocessor=dict(type=first_capital_postprocess),
)
WSC_datasets = [
dict(
abbr='WSC',
type=WSCDatasetV2,
path='./data/SuperGLUE/WSC/val.jsonl',
reader_cfg=WSC_reader_cfg,
infer_cfg=WSC_infer_cfg,
eval_cfg=WSC_eval_cfg,
)
]
from opencompass.openicl.icl_prompt_template import PromptTemplate
from opencompass.openicl.icl_retriever import ZeroRetriever
from opencompass.openicl.icl_inferencer import GenInferencer
from opencompass.openicl.icl_evaluator import AccEvaluator
from opencompass.datasets import WSCDatasetV3
from opencompass.utils.text_postprocessors import first_capital_postprocess
WSC_reader_cfg = dict(
input_columns=['span1', 'span2', 'text'],
output_column='label',
)
WSC_infer_cfg = dict(
prompt_template=dict(
type=PromptTemplate,
template=dict(round=[
dict(
role='HUMAN',
prompt=
'Passage: {text}\nDoes the pronoun # {span2} # refer to * {span1} *?\nA. Yes\nB. No\nAnswer:'
),
]),
),
retriever=dict(type=ZeroRetriever),
inferencer=dict(type=GenInferencer),
)
WSC_eval_cfg = dict(
evaluator=dict(type=AccEvaluator),
pred_role='BOT',
pred_postprocessor=dict(type=first_capital_postprocess),
)
WSC_datasets = [
dict(
abbr='WSC',
type=WSCDatasetV3,
path='./data/SuperGLUE/WSC/val.jsonl',
reader_cfg=WSC_reader_cfg,
infer_cfg=WSC_infer_cfg,
eval_cfg=WSC_eval_cfg,
)
]
from mmengine.config import read_base
with read_base():
from .SuperGLUE_WSC_ppl_1c4a90 import WSC_datasets # noqa: F401, F403
from opencompass.openicl.icl_prompt_template import PromptTemplate
from opencompass.openicl.icl_retriever import ZeroRetriever
from opencompass.openicl.icl_inferencer import PPLInferencer
from opencompass.openicl.icl_evaluator import AccEvaluator
from opencompass.datasets import WSCDataset
WSC_reader_cfg = dict(
input_columns=['span1', 'span2', 'text', 'new_text'],
output_column='answer',
)
WSC_infer_cfg = dict(
prompt_template=dict(
type=PromptTemplate,
template={
0: dict(round=[
dict(role='HUMAN', prompt='{text}'),
]),
1: dict(round=[
dict(role='HUMAN', prompt='{new_text}'),
]),
},
),
retriever=dict(type=ZeroRetriever),
inferencer=dict(type=PPLInferencer),
)
WSC_eval_cfg = dict(evaluator=dict(type=AccEvaluator))
WSC_datasets = [
dict(
type=WSCDataset,
path='json',
abbr='WSC',
data_files='./data/SuperGLUE/WSC/val.jsonl',
split='train',
reader_cfg=WSC_reader_cfg,
infer_cfg=WSC_infer_cfg,
eval_cfg=WSC_eval_cfg,
)
]
from opencompass.openicl.icl_prompt_template import PromptTemplate
from opencompass.openicl.icl_retriever import ZeroRetriever
from opencompass.openicl.icl_inferencer import PPLInferencer
from opencompass.openicl.icl_evaluator import AccEvaluator
from opencompass.datasets import WSCDatasetV3
WSC_reader_cfg = dict(
input_columns=['span1', 'span2', 'text'],
output_column='label',
)
WSC_infer_cfg = dict(
prompt_template=dict(
type=PromptTemplate,
template={
'A':
dict(round=[
dict(
role='HUMAN',
prompt='Passage: {text}\nDoes the pronoun # {span2} # refer to * {span1} *?\nA. Yes\nB. No\nAnswer: '
),
dict(role='BOT', prompt='A'),
]),
'B':
dict(round=[
dict(
role='HUMAN',
prompt='Passage: {text}\nDoes the pronoun # {span2} # refer to * {span1} *?\nA. Yes\nB. No\nAnswer: '
),
dict(role='BOT', prompt='B'),
]),
},
),
retriever=dict(type=ZeroRetriever),
inferencer=dict(type=PPLInferencer),
)
WSC_eval_cfg = dict(evaluator=dict(type=AccEvaluator), )
WSC_datasets = [
dict(
abbr='WSC',
type=WSCDatasetV3,
path='./data/SuperGLUE/WSC/val.jsonl',
reader_cfg=WSC_reader_cfg,
infer_cfg=WSC_infer_cfg,
eval_cfg=WSC_eval_cfg,
)
]
from opencompass.openicl.icl_prompt_template import PromptTemplate
from opencompass.openicl.icl_retriever import ZeroRetriever
from opencompass.openicl.icl_inferencer import PPLInferencer
from opencompass.openicl.icl_evaluator import AccEvaluator
from opencompass.datasets import WSCDatasetV2
WSC_reader_cfg = dict(
input_columns=['span1', 'span2', 'text'],
output_column='label',
)
WSC_infer_cfg = dict(
prompt_template=dict(
type=PromptTemplate,
template={
'A':
dict(round=[
dict(
role='HUMAN',
prompt=
"{text}\nIs '{span1}' and '{span2}' refers to the same entity in the above sentence?"
),
dict(role='BOT', prompt='Yes'),
]),
'B':
dict(round=[
dict(
role='HUMAN',
prompt=
"{text}\nIs '{span1}' and '{span2}' refers to the same entity in the above sentence?"
),
dict(role='BOT', prompt='No'),
]),
},
),
retriever=dict(type=ZeroRetriever),
inferencer=dict(type=PPLInferencer),
)
WSC_eval_cfg = dict(evaluator=dict(type=AccEvaluator), )
WSC_datasets = [
dict(
abbr='WSC',
type=WSCDatasetV2,
path='./data/SuperGLUE/WSC/val.jsonl',
reader_cfg=WSC_reader_cfg,
infer_cfg=WSC_infer_cfg,
eval_cfg=WSC_eval_cfg,
)
]
from opencompass.openicl.icl_prompt_template import PromptTemplate
from opencompass.openicl.icl_retriever import ZeroRetriever
from opencompass.openicl.icl_inferencer import PPLInferencer
from opencompass.openicl.icl_evaluator import AccEvaluator
from opencompass.datasets import WSCDataset
WSC_reader_cfg = dict(
input_columns=['span1', 'span2', 'text', 'new_text'],
output_column='answer')
WSC_infer_cfg = dict(
prompt_template=dict(
type=PromptTemplate,
template={
0: '{text}',
1: '{new_text}'
}),
retriever=dict(type=ZeroRetriever),
inferencer=dict(type=PPLInferencer))
WSC_eval_cfg = dict(evaluator=dict(type=AccEvaluator))
WSC_datasets = [
dict(
type=WSCDataset,
path='json',
abbr='WSC',
data_files='./data/SuperGLUE/WSC/val.jsonl',
split='train',
reader_cfg=WSC_reader_cfg,
infer_cfg=WSC_infer_cfg,
eval_cfg=WSC_eval_cfg,
)
]
from mmengine.config import read_base
with read_base():
from .SuperGLUE_WiC_gen_d06864 import WiC_datasets # noqa: F401, F403
from opencompass.openicl.icl_prompt_template import PromptTemplate
from opencompass.openicl.icl_retriever import ZeroRetriever
from opencompass.openicl.icl_inferencer import GenInferencer
from opencompass.openicl.icl_evaluator import AccEvaluator
from opencompass.datasets import WiCDatasetV2
from opencompass.utils.text_postprocessors import first_capital_postprocess
WiC_reader_cfg = dict(
input_columns=[
'word',
'sentence1',
'sentence2',
],
output_column='label',
)
WiC_infer_cfg = dict(
prompt_template=dict(
type=PromptTemplate,
template=dict(round=[
dict(
role='HUMAN',
prompt=
"Sentence 1: {sentence1}\nSentence 2: {sentence2}\nAre '{word}' in the above two sentenses the same?\nA. Yes\nB. No\nAnswer:"
),
]),
),
retriever=dict(type=ZeroRetriever),
inferencer=dict(type=GenInferencer),
)
WiC_eval_cfg = dict(
evaluator=dict(type=AccEvaluator),
pred_role='BOT',
pred_postprocessor=dict(type=first_capital_postprocess),
)
WiC_datasets = [
dict(
abbr='WiC',
type=WiCDatasetV2,
path='./data/SuperGLUE/WiC/val.jsonl',
reader_cfg=WiC_reader_cfg,
infer_cfg=WiC_infer_cfg,
eval_cfg=WiC_eval_cfg,
)
]
from mmengine.config import read_base
with read_base():
from .SuperGLUE_WiC_ppl_312de9 import WiC_datasets # noqa: F401, F403
from opencompass.openicl.icl_prompt_template import PromptTemplate
from opencompass.openicl.icl_retriever import ZeroRetriever
from opencompass.openicl.icl_inferencer import PPLInferencer
from opencompass.openicl.icl_evaluator import AccEvaluator
from opencompass.datasets import WiCDataset
WiC_reader_cfg = dict(
input_columns=[
'word',
'sentence1',
'sentence2',
],
output_column='answer',
test_split='train')
WiC_infer_cfg = dict(
prompt_template=dict(
type=PromptTemplate,
template={
0:
dict(round=[
dict(
role='HUMAN',
prompt=
"Sentence 1: {sentence1}\nSentence 2: {sentence2}\n'{word}' in the above two sentenses are different."
),
]),
1:
dict(round=[
dict(
role='HUMAN',
prompt=
"Sentence 1: {sentence1}\nSentence 2: {sentence2}\n'{word}' in the above two sentenses are the same."
),
]),
},
),
retriever=dict(type=ZeroRetriever),
inferencer=dict(type=PPLInferencer),
)
WiC_eval_cfg = dict(evaluator=dict(type=AccEvaluator))
WiC_datasets = [
dict(
type=WiCDataset,
abbr='WiC',
path='json',
data_files='./data/SuperGLUE/WiC/val.jsonl',
split='train',
reader_cfg=WiC_reader_cfg,
infer_cfg=WiC_infer_cfg,
eval_cfg=WiC_eval_cfg,
)
]
from opencompass.openicl.icl_prompt_template import PromptTemplate
from opencompass.openicl.icl_retriever import ZeroRetriever
from opencompass.openicl.icl_inferencer import PPLInferencer
from opencompass.openicl.icl_evaluator import AccEvaluator
from opencompass.datasets import WiCDataset
WiC_reader_cfg = dict(
input_columns=[
'word',
'sentence1',
'sentence2',
],
output_column='answer',
test_split='train')
WiC_infer_cfg = dict(
prompt_template=dict(
type=PromptTemplate,
template={
0: '{word} in {sentence1} and {sentence2} is different.',
1: '{word} in {sentence1} and {sentence2} is same.'
}),
retriever=dict(type=ZeroRetriever),
inferencer=dict(type=PPLInferencer))
WiC_eval_cfg = dict(evaluator=dict(type=AccEvaluator))
WiC_datasets = [
dict(
type=WiCDataset,
abbr='WiC',
path='json',
data_files='./data/SuperGLUE/WiC/val.jsonl',
split='train',
reader_cfg=WiC_reader_cfg,
infer_cfg=WiC_infer_cfg,
eval_cfg=WiC_eval_cfg)
]
from opencompass.openicl.icl_prompt_template import PromptTemplate
from opencompass.openicl.icl_retriever import ZeroRetriever
from opencompass.openicl.icl_inferencer import PPLInferencer
from opencompass.openicl.icl_evaluator import AccEvaluator
from opencompass.datasets import WiCDataset
WiC_reader_cfg = dict(
input_columns=[
'word',
'sentence1',
'sentence2',
],
output_column='answer',
test_split='train')
WiC_infer_cfg = dict(
prompt_template=dict(
type=PromptTemplate,
template={
0:
dict(round=[
dict(
role='HUMAN',
prompt='{word} in {sentence1} and {sentence2} is different.'),
]),
1:
dict(round=[
dict(role='HUMAN', prompt='{word} in {sentence1} and {sentence2} is same.'),
]),
},
),
retriever=dict(type=ZeroRetriever),
inferencer=dict(type=PPLInferencer),
)
WiC_eval_cfg = dict(evaluator=dict(type=AccEvaluator))
WiC_datasets = [
dict(
type=WiCDataset,
abbr='WiC',
path='json',
data_files='./data/SuperGLUE/WiC/val.jsonl',
split='train',
reader_cfg=WiC_reader_cfg,
infer_cfg=WiC_infer_cfg,
eval_cfg=WiC_eval_cfg,
)
]
from mmengine.config import read_base
with read_base():
from .TabMWP_gen_2aef96 import TabMWP_datasets # noqa: F401, F403
from opencompass.openicl.icl_prompt_template import PromptTemplate
from opencompass.openicl.icl_retriever import ZeroRetriever
from opencompass.openicl.icl_inferencer import GenInferencer
from opencompass.datasets import TabMWPDataset, TabMWPEvaluator
# None of the TabMWP dataset in huggingface is correctly parsed, so we use our own dataset reader
# Please download the dataset from https://github.com/lupantech/PromptPG/tree/main
input_format='TQ'
output_format='A'
elements = {'Q': 'Question: {question}',
'T': 'Table: {table}',
'S': 'Solution: {solution}',
'A': 'Answer: The answer is {answer}.',
'AS': 'Answer: The answer is {answer}. BECAUSE: {solution}',
'SA': 'Answer: {solution} The answer is {answer}.'}
TabMWP_reader_cfg = dict(
input_columns=['question', 'table'],
output_column='test_elements',
train_split='dev',
)
TabMWP_infer_cfg = dict(
prompt_template=dict(
type=PromptTemplate,
template=dict(
round=[
dict(
role='HUMAN',
prompt= '\n'.join(elements[label] for label in input_format)
),
],
),
),
retriever=dict(type=ZeroRetriever),
inferencer=dict(type=GenInferencer),
)
TabMWP_eval_cfg = dict(
evaluator=dict(type=TabMWPEvaluator)
)
TabMWP_datasets = [
dict(
type=TabMWPDataset,
path='./data/tabmwp/',
reader_cfg=TabMWP_reader_cfg,
infer_cfg=TabMWP_infer_cfg,
eval_cfg=TabMWP_eval_cfg,)
]
# TheoremQA
```bash
python3 run.py --models hf_internlm2_7b --datasets TheoremQA_5shot_gen_6f0af8 --debug
python3 run.py --models hf_internlm2_chat_7b --datasets TheoremQA_5shot_gen_6f0af8 --debug
```
## Base Models
| model | TheoremQA |
|:------------------------:|------------:|
| llama-7b-turbomind | 10.25 |
| llama-13b-turbomind | 11.25 |
| llama-30b-turbomind | 14.25 |
| llama-65b-turbomind | 15.62 |
| llama-2-7b-turbomind | 12.62 |
| llama-2-13b-turbomind | 11.88 |
| llama-2-70b-turbomind | 15.62 |
| llama-3-8b-turbomind | 20.25 |
| llama-3-70b-turbomind | 33.62 |
| internlm2-1.8b-turbomind | 10.50 |
| internlm2-7b-turbomind | 21.88 |
| internlm2-20b-turbomind | 26.00 |
| qwen-1.8b-turbomind | 9.38 |
| qwen-7b-turbomind | 15.00 |
| qwen-14b-turbomind | 21.62 |
| qwen-72b-turbomind | 27.12 |
| qwen1.5-0.5b-hf | 5.88 |
| qwen1.5-1.8b-hf | 12.00 |
| qwen1.5-4b-hf | 13.75 |
| qwen1.5-7b-hf | 4.25 |
| qwen1.5-14b-hf | 12.62 |
| qwen1.5-32b-hf | 26.62 |
| qwen1.5-72b-hf | 26.62 |
| qwen1.5-moe-a2-7b-hf | 7.50 |
| mistral-7b-v0.1-hf | 17.00 |
| mistral-7b-v0.2-hf | 16.25 |
| mixtral-8x7b-v0.1-hf | 24.12 |
| mixtral-8x22b-v0.1-hf | 36.75 |
| yi-6b-hf | 13.88 |
| yi-34b-hf | 24.75 |
| deepseek-7b-base-hf | 12.38 |
| deepseek-67b-base-hf | 21.25 |
## Chat Models
| model | TheoremQA |
|:-----------------------------:|------------:|
| qwen1.5-0.5b-chat-hf | 9.00 |
| qwen1.5-1.8b-chat-hf | 9.25 |
| qwen1.5-4b-chat-hf | 13.88 |
| qwen1.5-7b-chat-hf | 12.25 |
| qwen1.5-14b-chat-hf | 13.63 |
| qwen1.5-32b-chat-hf | 19.25 |
| qwen1.5-72b-chat-hf | 22.75 |
| qwen1.5-110b-chat-hf | 17.50 |
| internlm2-chat-1.8b-hf | 13.63 |
| internlm2-chat-1.8b-sft-hf | 12.88 |
| internlm2-chat-7b-hf | 18.50 |
| internlm2-chat-7b-sft-hf | 18.75 |
| internlm2-chat-20b-hf | 23.00 |
| internlm2-chat-20b-sft-hf | 25.12 |
| llama-3-8b-instruct-hf | 19.38 |
| llama-3-70b-instruct-hf | 36.25 |
| llama-3-8b-instruct-lmdeploy | 19.62 |
| llama-3-70b-instruct-lmdeploy | 34.50 |
| mistral-7b-instruct-v0.1-hf | 12.62 |
| mistral-7b-instruct-v0.2-hf | 11.38 |
| mixtral-8x7b-instruct-v0.1-hf | 26.00 |
from mmengine.config import read_base
from opencompass.openicl.icl_prompt_template import PromptTemplate
from opencompass.openicl.icl_retriever import ZeroRetriever
from opencompass.openicl.icl_inferencer import GenInferencer
from opencompass.datasets import TheoremQADatasetV3, TheoremQA_postprocess_v3, TheoremQAEvaluatorV3
with read_base():
from .TheoremQA_few_shot_examples import examples
num_shot = 5
rounds = []
for index, (query, response) in enumerate(examples[:num_shot]):
if index == 0:
desc = 'You are supposed to provide a solution to a given problem.\n\n'
else:
desc = ''
rounds += [
dict(role='HUMAN', prompt=f'{desc}Problem:\n{query}\nSolution:'),
dict(role='BOT', prompt=f'{response}')
]
rounds += [dict(role='HUMAN', prompt='Problem:\n{Question}\nSolution:')]
TheoremQA_reader_cfg = dict(input_columns=['Question', 'Answer_type'], output_column='Answer', train_split='test', test_split='test')
TheoremQA_infer_cfg = dict(
prompt_template=dict(type=PromptTemplate, template=dict(round=rounds)),
retriever=dict(type=ZeroRetriever),
inferencer=dict(type=GenInferencer, max_out_len=1024, stopping_criteria=['Problem:', 'Problem']),
)
TheoremQA_eval_cfg = dict(
evaluator=dict(type=TheoremQAEvaluatorV3),
pred_postprocessor=dict(type=TheoremQA_postprocess_v3)
)
TheoremQA_datasets = [
dict(
abbr='TheoremQA',
type=TheoremQADatasetV3,
path='data/TheoremQA/theoremqa_test.json',
reader_cfg=TheoremQA_reader_cfg,
infer_cfg=TheoremQA_infer_cfg,
eval_cfg=TheoremQA_eval_cfg,
)
]
examples = [
(
'In a 10 Gigabit Ethernet network, the average size of a frame is 1500 bytes. If a burst of noise lasting 1ms interrupts the network, how many frames are lost?',
'First, calculate the data rate in bytes/s:\n$$10 Gigabit/s * (1 Byte / 8 bits) = 1.25 * 10^9 Bytes/s$$\nNext, calculate the data loss in bytes due to the noise:\n$$1 ms * 1.25 * 10^9 Bytes/s = 1.25 * 10^6 Bytes$$\nFinally, divide the data loss by the average frame size to get the number of frames lost:\n$$1.25 * 10^6 Bytes / 1500 Bytes/frame \\approx 833.33 frames$$\nThe answer is 833.33',
),
(
'Given x = 0.157, what is the value of $x \\times \\frac{\\prod_{n=1}^\\infty (1 - \\frac{x^2}{n^2 \\pi^2})}{\\sin(x)}$?',
"To evaluate the expression $x \\times \\frac{\\prod_{n=1}^{\\infty} (1 - \\frac{x^2}{n^2 \\pi^2})}{\\sin(x)}$ given x = 0.157, we first recognize that the product in the numerator is related to the sine function through the Euler's reflection formula for the sine function, which can be expressed as:\n$$\\sin(x) = x \\prod_{n=1}^{\\infty} \\left(1 - \\frac{x^2}{n^2 \\pi^2}\\right)$$\nTherefore, the given expression simplifies to: $x \\times \\frac{\\sin(x)}{\\sin(x)}$\nBecause sin(x) in the numerator and denominator cancels out, the expression simplifies further to just x.\nSo, given x = 0.157, the value of the expression is 0.157. This result is derived from the properties of the sine function and does not require computational evaluation.\nThe answer is 0.157",
),
(
'Consider the basis C of $\\mathbb{R}^2$ consisting of vectors $u_1 = [2, 4]$ and $u_2 = [1, -1]$. If $y = [8, 12]$, find the C-coordinate vector of y.',
"The goal is to express y as a linear combination of the basis vectors of C, i.e., $y = a\\cdot u_1 + b\\cdot u_2$, where a and b are the scalar coefficients that we want to find. These coefficients will form the C-coordinate vector of y, which we'll denote as $[a, b]_C$.\nGiven:\n- $u_1 = [2, 4]$,\n- $u_2 = [1, -1]$,\n- $y = [8, 12]$.\nWe need to solve the system of linear equations:\n2a + 1b = 8\n4a - 1b = 12\nLet's solve this system of equations to find a and b.\nThe solution to the system of equations is $a = \\frac{10}{3} and b = \\frac{4}{3}$. Therefore, the C-coordinate vector of y in the basis consisting of vectors $u_1 = [2, 4]$ and $u_2 = [1, -1]$ is $\\left[\\frac{10}{3}, \\frac{4}{3}\\right]_C$.\nLet's calculate the numerical value of $\\left[\\frac{10}{3}, \\frac{4}{3}\\right]_C$ as [3.33, 1.33].\nThe answer is [3.33, 1.33]",
),
(
'One can draw a simple, connected planar graph with 200 vertices and 397 edges. Is this statement True or False?',
"To determine the answer, we can use Euler's formula for planar graphs, which states that for any finite, connected, planar graph, $V - E + F = 2$, where V is the number of vertices, E is the number of edges, and F is the number of faces.\nGiven the modified question, we have V = 200 vertices and E = 397 edges. We want to find if we can have a graph that satisfies these conditions, adhering to Euler's formula.\nFirst, let's rearrange Euler's formula to solve for F: F = E - V + 2\nSubstituting the given values: F = 397 - 200 + 2, F = 199\nThis means a graph with 200 vertices and 397 edges would have 199 faces. However, to determine the truth of this possibility, we should check if this graph doesn't violate any other planar graph constraints, particularly regarding the number of edges.\nFor a simple, connected planar graph, there's also a relationship between vertices, edges, and faces given by the inequality: $E \\leq 3V - 6$\nSubstituting V = 200 gives: $E \\leq 3*200 - 6 = 594$\nWith E = 397, the condition $E \\leq 594$ is satisfied, meaning it's theoretically possible in terms of the edge condition for a planar graph.\nTherefore, one can draw a simple, connected planar graph with 200 vertices and 397 edges, resulting in 199 faces, without violating the conditions for it to be planar according to both Euler's formula and the constraint on the maximum number of edges.\nThe answer is True",
),
(
'Given a finite group G, and a collection of permutations H on a set. Then (a) there always exists H such that G is isomorphic to H; (b) for any H, G is isomorphic to H; (c) G can never be isomorphic to H; (d) none of the above. Which option is correct?',
"This is based on Cayley's theorem, which states that every group G is isomorphic to a subgroup of the symmetric group acting on G.\nIn other words, for every finite group G, there exists a collection of permutations H (which in this context, can be thought of as the set of permutations representing the action of G on itself) such that G is isomorphic to H.\nTherefore, there always exists H such that G is isomorphic to H.\nThe answer is (a)",
),
]
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment