Commit be3dfa50 authored by jerrrrry's avatar jerrrrry
Browse files

Initial commit

parents
Pipeline #2876 failed with stages
in 0 seconds
from opencompass.openicl.icl_prompt_template import PromptTemplate
from opencompass.openicl.icl_retriever import ZeroRetriever
from opencompass.openicl.icl_inferencer import PPLInferencer
from opencompass.openicl.icl_evaluator import AccEvaluator
from opencompass.datasets import HFDataset
CB_reader_cfg = dict(
input_columns=['premise', 'hypothesis'], output_column='label')
CB_infer_cfg = dict(
prompt_template=dict(
type=PromptTemplate,
template={
'contradiction': '{premise}?contradiction, {hypothesis}',
'entailment': '{premise}?entailment, {hypothesis}',
'neutral': '{premise}?neutral, {hypothesis}'
}),
retriever=dict(type=ZeroRetriever),
inferencer=dict(type=PPLInferencer))
CB_eval_cfg = dict(evaluator=dict(type=AccEvaluator), )
CB_datasets = [
dict(
type=HFDataset,
abbr='CB',
path='json',
split='train',
data_files='./data/SuperGLUE/CB/val.jsonl',
reader_cfg=CB_reader_cfg,
infer_cfg=CB_infer_cfg,
eval_cfg=CB_eval_cfg)
]
from mmengine.config import read_base
with read_base():
from .SuperGLUE_COPA_gen_91ca53 import COPA_datasets # noqa: F401, F403
from opencompass.openicl.icl_prompt_template import PromptTemplate
from opencompass.openicl.icl_retriever import ZeroRetriever
from opencompass.openicl.icl_inferencer import GenInferencer
from opencompass.openicl.icl_evaluator import AccEvaluator
from opencompass.datasets import COPADatasetV2
from opencompass.utils.text_postprocessors import first_option_postprocess
COPA_reader_cfg = dict(
input_columns=['question', 'premise', 'choice1', 'choice2'],
output_column='label',
)
COPA_infer_cfg = dict(
prompt_template=dict(
type=PromptTemplate,
template=dict(
round=[
dict(
role='HUMAN',
prompt=
'{premise}\nQuestion: Which may be the {question}?\nA. {choice1}\nB. {choice2}\nAnswer:'
),
], ),
),
retriever=dict(type=ZeroRetriever),
inferencer=dict(type=GenInferencer),
)
COPA_eval_cfg = dict(
evaluator=dict(type=AccEvaluator),
pred_role='BOT',
pred_postprocessor=dict(type=first_option_postprocess, options='AB'),
)
COPA_datasets = [
dict(
abbr='COPA',
type=COPADatasetV2,
path='./data/SuperGLUE/COPA/val.jsonl',
reader_cfg=COPA_reader_cfg,
infer_cfg=COPA_infer_cfg,
eval_cfg=COPA_eval_cfg,
)
]
from mmengine.config import read_base
with read_base():
from .SuperGLUE_COPA_ppl_9f3618 import COPA_datasets # noqa: F401, F403
from opencompass.openicl.icl_prompt_template import PromptTemplate
from opencompass.openicl.icl_retriever import ZeroRetriever
from opencompass.openicl.icl_inferencer import PPLInferencer
from opencompass.openicl.icl_evaluator import AccEvaluator
from opencompass.datasets import HFDataset
COPA_reader_cfg = dict(
input_columns=['question', 'premise', 'choice1', 'choice2'],
output_column='label',
test_split='train')
COPA_infer_cfg = dict(
prompt_template=dict(
type=PromptTemplate,
template={
0: 'Premise:{premise}。\nQuestion:{question}。\nAnswer: {choice1}.',
1: 'Passage:{premise}。\nQuestion:{question}。\nAnswer: {choice2}.',
}),
retriever=dict(type=ZeroRetriever),
inferencer=dict(type=PPLInferencer))
COPA_eval_cfg = dict(evaluator=dict(type=AccEvaluator))
COPA_datasets = [
dict(
type=HFDataset,
abbr='COPA',
path='json',
data_files='./data/SuperGLUE/COPA/val.jsonl',
split='train',
reader_cfg=COPA_reader_cfg,
infer_cfg=COPA_infer_cfg,
eval_cfg=COPA_eval_cfg)
]
from opencompass.openicl.icl_prompt_template import PromptTemplate
from opencompass.openicl.icl_retriever import ZeroRetriever
from opencompass.openicl.icl_inferencer import PPLInferencer
from opencompass.openicl.icl_evaluator import AccEvaluator
from opencompass.datasets import HFDataset
COPA_reader_cfg = dict(
input_columns=['question', 'premise', 'choice1', 'choice2'],
output_column='label',
test_split='train')
COPA_infer_cfg = dict(
prompt_template=dict(
type=PromptTemplate,
template={
0:
dict(round=[
dict(role='HUMAN', prompt='{premise}\nQuestion: {question}\nAnswer:'),
dict(role='BOT', prompt='{choice1}'),
]),
1:
dict(round=[
dict(role='HUMAN', prompt='{premise}\nQuestion: {question}\nAnswer:'),
dict(role='BOT', prompt='{choice2}'),
]),
},
),
retriever=dict(type=ZeroRetriever),
inferencer=dict(type=PPLInferencer),
)
COPA_eval_cfg = dict(evaluator=dict(type=AccEvaluator))
COPA_datasets = [
dict(
type=HFDataset,
abbr='COPA',
path='json',
data_files='./data/SuperGLUE/COPA/val.jsonl',
split='train',
reader_cfg=COPA_reader_cfg,
infer_cfg=COPA_infer_cfg,
eval_cfg=COPA_eval_cfg,
)
]
from opencompass.openicl.icl_prompt_template import PromptTemplate
from opencompass.openicl.icl_retriever import ZeroRetriever
from opencompass.openicl.icl_inferencer import PPLInferencer
from opencompass.openicl.icl_evaluator import AccEvaluator
from opencompass.datasets import HFDataset
COPA_reader_cfg = dict(
input_columns=['question', 'premise', 'choice1', 'choice2'],
output_column='label',
test_split='train')
COPA_infer_cfg = dict(
prompt_template=dict(
type=PromptTemplate,
template={
0:
dict(round=[
dict(
role='HUMAN',
prompt='{premise}\nQuestion: What may be the {question}?\nAnswer:'),
dict(role='BOT', prompt='{choice1}'),
]),
1:
dict(round=[
dict(
role='HUMAN',
prompt='{premise}\nQuestion: What may be the {question}?\nAnswer:'),
dict(role='BOT', prompt='{choice2}'),
]),
},
),
retriever=dict(type=ZeroRetriever),
inferencer=dict(type=PPLInferencer),
)
COPA_eval_cfg = dict(evaluator=dict(type=AccEvaluator))
COPA_datasets = [
dict(
type=HFDataset,
abbr='COPA',
path='json',
data_files='./data/SuperGLUE/COPA/val.jsonl',
split='train',
reader_cfg=COPA_reader_cfg,
infer_cfg=COPA_infer_cfg,
eval_cfg=COPA_eval_cfg,
)
]
from mmengine.config import read_base
with read_base():
from .SuperGLUE_MultiRC_gen_27071f import MultiRC_datasets # noqa: F401, F403
from opencompass.openicl.icl_prompt_template import PromptTemplate
from opencompass.openicl.icl_retriever import ZeroRetriever
from opencompass.openicl.icl_inferencer import GenInferencer
from opencompass.openicl.icl_evaluator import AccEvaluator
from opencompass.datasets import MultiRCDatasetV2
from opencompass.utils.text_postprocessors import first_option_postprocess
MultiRC_reader_cfg = dict(
input_columns=['question', 'text', 'answer'],
output_column='label',
)
MultiRC_infer_cfg = dict(
prompt_template=dict(
type=PromptTemplate,
template=dict(round=[
dict(
role='HUMAN',
prompt=
'{text}\nQuestion: {question}\nAnswer: {answer}\nIs it true?\nA. Yes\nB. No\nAnswer:'
),
]),
),
retriever=dict(type=ZeroRetriever),
inferencer=dict(type=GenInferencer),
)
MultiRC_eval_cfg = dict(
evaluator=dict(type=AccEvaluator),
pred_role='BOT',
pred_postprocessor=dict(type=first_option_postprocess, options='AB'),
)
MultiRC_datasets = [
dict(
abbr='MultiRC',
type=MultiRCDatasetV2,
path='./data/SuperGLUE/MultiRC/val.jsonl',
reader_cfg=MultiRC_reader_cfg,
infer_cfg=MultiRC_infer_cfg,
eval_cfg=MultiRC_eval_cfg,
)
]
from mmengine.config import read_base
with read_base():
from .SuperGLUE_MultiRC_ppl_ced824 import MultiRC_datasets # noqa: F401, F403
from opencompass.openicl.icl_prompt_template import PromptTemplate
from opencompass.openicl.icl_retriever import ZeroRetriever
from opencompass.openicl.icl_inferencer import PPLInferencer
from opencompass.openicl.icl_evaluator import AccEvaluator
from opencompass.datasets import MultiRCDataset
MultiRC_reader_cfg = dict(
input_columns=['question', 'text', 'answer'], output_column='label')
MultiRC_infer_cfg = dict(
prompt_template=dict(
type=PromptTemplate,
template={
0: 'Passage:{text}。\nQuestion:{question}。\nAnswer: {answer}. It is false.',
1: 'Passage:</P>。\nQuestion:{question}。\nAnswer: {answer}. It is true.',
}),
retriever=dict(type=ZeroRetriever),
inferencer=dict(type=PPLInferencer))
MultiRC_eval_cfg = dict(evaluator=dict(type=AccEvaluator))
MultiRC_datasets = [
dict(
type=MultiRCDataset,
abbr='MultiRC',
path='./data/SuperGLUE/MultiRC/val.jsonl',
reader_cfg=MultiRC_reader_cfg,
infer_cfg=MultiRC_infer_cfg,
eval_cfg=MultiRC_eval_cfg)
]
from opencompass.openicl.icl_prompt_template import PromptTemplate
from opencompass.openicl.icl_retriever import ZeroRetriever
from opencompass.openicl.icl_inferencer import PPLInferencer
from opencompass.openicl.icl_evaluator import AccEvaluator
from opencompass.datasets import MultiRCDataset
MultiRC_reader_cfg = dict(
input_columns=['question', 'text', 'answer'],
output_column='label',
)
MultiRC_infer_cfg = dict(
prompt_template=dict(
type=PromptTemplate,
template={
0:
dict(round=[
dict(
role='HUMAN',
prompt='{text}\nQuestion: {question}\nAnswer: {answer}\nIs it true?'),
dict(role='BOT', prompt='No, it is false.'),
]),
1:
dict(round=[
dict(
role='HUMAN',
prompt='{text}\nQuestion: {question}\nAnswer: {answer}\nIs it true?'),
dict(role='BOT', prompt='Yes, it is true.'),
]),
},
),
retriever=dict(type=ZeroRetriever),
inferencer=dict(type=PPLInferencer),
)
MultiRC_eval_cfg = dict(evaluator=dict(type=AccEvaluator))
MultiRC_datasets = [
dict(
type=MultiRCDataset,
abbr='MultiRC',
path='./data/SuperGLUE/MultiRC/val.jsonl',
reader_cfg=MultiRC_reader_cfg,
infer_cfg=MultiRC_infer_cfg,
eval_cfg=MultiRC_eval_cfg,
)
]
from mmengine.config import read_base
with read_base():
from .SuperGLUE_RTE_gen_68aac7 import RTE_datasets # noqa: F401, F403
from opencompass.openicl.icl_prompt_template import PromptTemplate
from opencompass.openicl.icl_retriever import ZeroRetriever
from opencompass.openicl.icl_inferencer import GenInferencer
from opencompass.openicl.icl_evaluator import AccEvaluator
from opencompass.datasets import AXDatasetV2
from opencompass.utils.text_postprocessors import first_option_postprocess
RTE_reader_cfg = dict(
input_columns=['hypothesis', 'premise'],
output_column='label',
)
RTE_infer_cfg = dict(
prompt_template=dict(
type=PromptTemplate,
template=dict(round=[
dict(
role='HUMAN',
prompt=
'{premise}\n{hypothesis}\nIs the sentence below entailed by the sentence above?\nA. Yes\nB. No\nAnswer:'
),
]),
),
retriever=dict(type=ZeroRetriever),
inferencer=dict(type=GenInferencer),
)
RTE_eval_cfg = dict(
evaluator=dict(type=AccEvaluator),
pred_role='BOT',
pred_postprocessor=dict(type=first_option_postprocess, options='AB'),
)
RTE_datasets = [
dict(
abbr='RTE',
type=AXDatasetV2, # rte share the same format with ax
path='./data/SuperGLUE/RTE/val.jsonl',
reader_cfg=RTE_reader_cfg,
infer_cfg=RTE_infer_cfg,
eval_cfg=RTE_eval_cfg,
)
]
from mmengine.config import read_base
with read_base():
from .SuperGLUE_RTE_ppl_66caf3 import RTE_datasets # noqa: F401, F403
from opencompass.openicl.icl_prompt_template import PromptTemplate
from opencompass.openicl.icl_retriever import ZeroRetriever
from opencompass.openicl.icl_inferencer import PPLInferencer
from opencompass.openicl.icl_evaluator import AccEvaluator
from opencompass.datasets import HFDataset
RTE_reader_cfg = dict(
input_columns=['hypothesis', 'premise'],
output_column='label',
test_split='train')
RTE_infer_cfg = dict(
prompt_template=dict(
type=PromptTemplate,
template={
'entailment': '{premise}?entailment, {hypothesis}',
'not_entailment': '{premise}?not_entailment, {hypothesis}'
}),
retriever=dict(type=ZeroRetriever),
inferencer=dict(type=PPLInferencer))
RTE_eval_cfg = dict(evaluator=dict(type=AccEvaluator))
RTE_datasets = [
dict(
type=HFDataset,
abbr='RTE',
path='json',
data_files='./data/SuperGLUE/RTE/val.jsonl',
split='train',
reader_cfg=RTE_reader_cfg,
infer_cfg=RTE_infer_cfg,
eval_cfg=RTE_eval_cfg)
]
from opencompass.openicl.icl_prompt_template import PromptTemplate
from opencompass.openicl.icl_retriever import ZeroRetriever
from opencompass.openicl.icl_inferencer import PPLInferencer
from opencompass.openicl.icl_evaluator import AccEvaluator
from opencompass.datasets import HFDataset
RTE_reader_cfg = dict(
input_columns=['hypothesis', 'premise'],
output_column='label',
test_split='train')
RTE_infer_cfg = dict(
prompt_template=dict(
type=PromptTemplate,
template={
'entailment':
dict(round=[
dict(
role='HUMAN',
prompt=
'{premise}\n{hypothesis}\nIs the sentence below entailed by the sentence above?'
),
dict(role='BOT', prompt='Yes'),
]),
'not_entailment':
dict(round=[
dict(
role='HUMAN',
prompt=
'{premise}\n{hypothesis}\nIs the sentence below entailed by the sentence above?'
),
dict(role='BOT', prompt='No'),
])
},
),
retriever=dict(type=ZeroRetriever),
inferencer=dict(type=PPLInferencer),
)
RTE_eval_cfg = dict(evaluator=dict(type=AccEvaluator))
RTE_datasets = [
dict(
type=HFDataset,
abbr='RTE',
path='json',
data_files='./data/SuperGLUE/RTE/val.jsonl',
split='train',
reader_cfg=RTE_reader_cfg,
infer_cfg=RTE_infer_cfg,
eval_cfg=RTE_eval_cfg,
)
]
from mmengine.config import read_base
with read_base():
from .SuperGLUE_ReCoRD_gen_30dea0 import ReCoRD_datasets # noqa: F401, F403
from opencompass.openicl.icl_prompt_template import PromptTemplate
from opencompass.openicl.icl_retriever import ZeroRetriever
from opencompass.openicl.icl_inferencer import GenInferencer
from opencompass.openicl.icl_evaluator import EMEvaluator
from opencompass.datasets import ReCoRDDataset, ReCoRD_postprocess
ReCoRD_reader_cfg = dict(
input_columns=['question', 'text'], output_column='answers')
ReCoRD_infer_cfg = dict(
prompt_template=dict(
type=PromptTemplate,
template=
'Passage:{text}\nResult:{question}\nQuestion: What entity does ____ refer to in the result?Give me the entity name:'),
retriever=dict(type=ZeroRetriever),
inferencer=dict(type=GenInferencer))
ReCoRD_eval_cfg = dict(
evaluator=dict(type=EMEvaluator), pred_postprocessor=dict(type=ReCoRD_postprocess))
ReCoRD_datasets = [
dict(
type=ReCoRDDataset,
abbr='ReCoRD',
path='./data/SuperGLUE/ReCoRD/val.jsonl',
reader_cfg=ReCoRD_reader_cfg,
infer_cfg=ReCoRD_infer_cfg,
eval_cfg=ReCoRD_eval_cfg)
]
from opencompass.openicl.icl_prompt_template import PromptTemplate
from opencompass.openicl.icl_retriever import ZeroRetriever
from opencompass.openicl.icl_inferencer import GenInferencer
from opencompass.openicl.icl_evaluator import EMEvaluator
from opencompass.datasets import ReCoRDDataset
ReCoRD_reader_cfg = dict(
input_columns=['question', 'text'],
output_column='answers',
)
ReCoRD_infer_cfg = dict(
prompt_template=dict(
type=PromptTemplate,
template=dict(round=[
dict(
role='HUMAN',
prompt=
'Passage: {text}\nResult: {question}\nQuestion: What entity does ____ refer to in the result? Give me the entity name:'
),
]),
),
retriever=dict(type=ZeroRetriever),
inferencer=dict(type=GenInferencer),
)
ReCoRD_eval_cfg = dict(
evaluator=dict(type=EMEvaluator),
pred_role='BOT',
pred_postprocessor=dict(type='ReCoRD'),
)
ReCoRD_datasets = [
dict(
type=ReCoRDDataset,
abbr='ReCoRD',
path='./data/SuperGLUE/ReCoRD/val.jsonl',
reader_cfg=ReCoRD_reader_cfg,
infer_cfg=ReCoRD_infer_cfg,
eval_cfg=ReCoRD_eval_cfg,
)
]
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment