Commit be3dfa50 authored by jerrrrry's avatar jerrrrry
Browse files

Initial commit

parents
Pipeline #2876 failed with stages
in 0 seconds
from mmengine.config import read_base
with read_base():
from .SuperGLUE_AX_g_gen_68aac7 import AX_g_datasets # noqa: F401, F403
from opencompass.openicl.icl_prompt_template import PromptTemplate
from opencompass.openicl.icl_retriever import ZeroRetriever
from opencompass.openicl.icl_inferencer import GenInferencer
from opencompass.openicl.icl_evaluator import AccEvaluator
from opencompass.datasets import AXDatasetV2
from opencompass.utils.text_postprocessors import first_option_postprocess
AX_g_reader_cfg = dict(
input_columns=['hypothesis', 'premise'],
output_column='label',
)
AX_g_infer_cfg = dict(
prompt_template=dict(
type=PromptTemplate,
template=dict(round=[
dict(
role='HUMAN',
prompt=
'{premise}\n{hypothesis}\nIs the sentence below entailed by the sentence above?\nA. Yes\nB. No\nAnswer:'
),
]),
),
retriever=dict(type=ZeroRetriever),
inferencer=dict(type=GenInferencer),
)
AX_g_eval_cfg = dict(
evaluator=dict(type=AccEvaluator),
pred_role='BOT',
pred_postprocessor=dict(type=first_option_postprocess, options='AB'),
)
AX_g_datasets = [
dict(
abbr='AX_g',
type=AXDatasetV2,
path='./data/SuperGLUE/AX-g/AX-g.jsonl',
reader_cfg=AX_g_reader_cfg,
infer_cfg=AX_g_infer_cfg,
eval_cfg=AX_g_eval_cfg,
)
]
from mmengine.config import read_base
with read_base():
from .SuperGLUE_AX_g_ppl_66caf3 import AX_g_datasets # noqa: F401, F403
from opencompass.openicl.icl_prompt_template import PromptTemplate
from opencompass.openicl.icl_retriever import ZeroRetriever
from opencompass.openicl.icl_inferencer import PPLInferencer
from opencompass.openicl.icl_evaluator import AccEvaluator
from opencompass.datasets import HFDataset
AX_g_reader_cfg = dict(
input_columns=['hypothesis', 'premise'],
output_column='label',
test_split='train')
AX_g_infer_cfg = dict(
prompt_template=dict(
type=PromptTemplate,
template={
'entailment': '{premise}?entailment, {hypothesis}',
'not_entailment': '{premise}?not_entailment, {hypothesis}'
}),
retriever=dict(type=ZeroRetriever),
inferencer=dict(type=PPLInferencer))
AX_g_eval_cfg = dict(evaluator=dict(type=AccEvaluator))
AX_g_datasets = [
dict(
type=HFDataset,
abbr='AX_g',
path='json',
data_files='./data/SuperGLUE/AX-g/AX-g.jsonl',
split='train',
reader_cfg=AX_g_reader_cfg,
infer_cfg=AX_g_infer_cfg,
eval_cfg=AX_g_eval_cfg)
]
from opencompass.openicl.icl_prompt_template import PromptTemplate
from opencompass.openicl.icl_retriever import ZeroRetriever
from opencompass.openicl.icl_inferencer import PPLInferencer
from opencompass.openicl.icl_evaluator import AccEvaluator
from opencompass.datasets import HFDataset
AX_g_reader_cfg = dict(
input_columns=['hypothesis', 'premise'],
output_column='label',
test_split='train')
AX_g_infer_cfg = dict(
prompt_template=dict(
type=PromptTemplate,
template={
'entailment':
dict(round=[
dict(
role='HUMAN',
prompt=
'{premise}\n{hypothesis}\nIs the sentence below entailed by the sentence above?'
),
dict(role='BOT', prompt='Yes'),
]),
'not_entailment':
dict(round=[
dict(
role='HUMAN',
prompt=
'{premise}\n{hypothesis}\nIs the sentence below entailed by the sentence above?'
),
dict(role='BOT', prompt='No'),
])
},
),
retriever=dict(type=ZeroRetriever),
inferencer=dict(type=PPLInferencer),
)
AX_g_eval_cfg = dict(evaluator=dict(type=AccEvaluator))
AX_g_datasets = [
dict(
type=HFDataset,
abbr='AX_g',
path='json',
data_files='./data/SuperGLUE/AX-g/AX-g.jsonl',
split='train',
reader_cfg=AX_g_reader_cfg,
infer_cfg=AX_g_infer_cfg,
eval_cfg=AX_g_eval_cfg,
)
]
from opencompass.openicl.icl_prompt_template import PromptTemplate
from opencompass.openicl.icl_retriever import ZeroRetriever
from opencompass.openicl.icl_inferencer import GenInferencer
from opencompass.openicl.icl_evaluator import AccEvaluator
from opencompass.datasets import BoolQDatasetV2
from opencompass.utils.text_postprocessors import (
first_option_postprocess,
)
QUERY_TEMPLATE = """
Answer the following question. The last line of your response should be of the following format: 'ANSWER: $LETTER' (without quotes) where LETTER is one of AB. Think step by step before answering.
Passage: {passage}
Question: {question}
A. Yes
B. NO
""".strip()
BoolQ_reader_cfg = dict(
input_columns=['question', 'passage'],
output_column='label',
)
BoolQ_infer_cfg = dict(
prompt_template=dict(
type=PromptTemplate,
template=dict(
round=[
dict(role='HUMAN', prompt=QUERY_TEMPLATE),
]
),
),
retriever=dict(type=ZeroRetriever),
inferencer=dict(type=GenInferencer),
)
BoolQ_eval_cfg = dict(
evaluator=dict(type=AccEvaluator),
pred_role='BOT',
pred_postprocessor=dict(type=first_option_postprocess, options='AB'),
)
BoolQ_datasets = [
dict(
abbr='BoolQ',
type=BoolQDatasetV2,
path='opencompass/boolq',
reader_cfg=BoolQ_reader_cfg,
infer_cfg=BoolQ_infer_cfg,
eval_cfg=BoolQ_eval_cfg,
)
]
from opencompass.openicl.icl_prompt_template import PromptTemplate
from opencompass.openicl.icl_retriever import ZeroRetriever, FixKRetriever
from opencompass.openicl.icl_inferencer import GenInferencer
from opencompass.openicl.icl_evaluator import AccEvaluator
from opencompass.datasets import BoolQDatasetV2
from opencompass.utils.text_postprocessors import first_capital_postprocess
BoolQ_reader_cfg = dict(
input_columns=['question', 'passage'],
output_column='label',
)
BoolQ_infer_cfg = dict(
ice_template=dict(
type=PromptTemplate,
template=dict(
begin='</E>',
round=[
dict(
role='HUMAN',
prompt='{passage}\nQuestion: {question}\nA. Yes\nB. No\nAnswer:',
),
dict(role='BOT', prompt='{label}'),
],
),
ice_token='</E>',
),
retriever=dict(type=FixKRetriever, fix_id_list=[0, 2, 4, 6, 8]),
inferencer=dict(type=GenInferencer, max_out_len=50),
)
BoolQ_eval_cfg = dict(
evaluator=dict(type=AccEvaluator),
pred_role='BOT',
pred_postprocessor=dict(type=first_capital_postprocess),
)
BoolQ_datasets = [
dict(
abbr='BoolQ',
type=BoolQDatasetV2,
path='opencompass/boolq',
reader_cfg=BoolQ_reader_cfg,
infer_cfg=BoolQ_infer_cfg,
eval_cfg=BoolQ_eval_cfg,
)
]
from opencompass.openicl.icl_prompt_template import PromptTemplate
from opencompass.openicl.icl_retriever import ZeroRetriever, FixKRetriever
from opencompass.openicl.icl_evaluator import AccEvaluator
from opencompass.datasets import BoolQDatasetV2
from opencompass.openicl.icl_inferencer import PPLInferencer
from opencompass.openicl.icl_evaluator import AccEvaluator
BoolQ_reader_cfg = dict(
input_columns=['question', 'passage'],
output_column='label',
)
BoolQ_infer_cfg = dict(
ice_template=dict(
type=PromptTemplate,
template={
'B': dict(
round=[
dict(role='HUMAN', prompt='{passage}\nQuestion: {question}?'),
dict(role='BOT', prompt='No'),
]
),
'A': dict(
round=[
dict(role='HUMAN', prompt='{passage}\nQuestion: {question}?'),
dict(role='BOT', prompt='Yes'),
]
),
},
ice_token='</E>',
),
retriever=dict(type=FixKRetriever, fix_id_list=[0, 2, 4, 6, 8]),
inferencer=dict(type=PPLInferencer, max_out_len=50),
)
BoolQ_eval_cfg = dict(evaluator=dict(type=AccEvaluator))
BoolQ_datasets = [
dict(
abbr='BoolQ',
type=BoolQDatasetV2,
path='opencompass/boolq',
reader_cfg=BoolQ_reader_cfg,
infer_cfg=BoolQ_infer_cfg,
eval_cfg=BoolQ_eval_cfg,
)
]
from mmengine.config import read_base
with read_base():
from .SuperGLUE_BoolQ_gen_883d50 import BoolQ_datasets # noqa: F401, F403
from opencompass.openicl.icl_prompt_template import PromptTemplate
from opencompass.openicl.icl_retriever import ZeroRetriever
from opencompass.openicl.icl_inferencer import GenInferencer
from opencompass.openicl.icl_evaluator import AccEvaluator
from opencompass.datasets import BoolQDatasetV2
from opencompass.utils.text_postprocessors import first_capital_postprocess
BoolQ_reader_cfg = dict(
input_columns=['question', 'passage'],
output_column='label',
)
BoolQ_infer_cfg = dict(
prompt_template=dict(
type=PromptTemplate,
template=dict(round=[
dict(
role='HUMAN',
prompt='{passage}\nQuestion: {question}\nA. Yes\nB. No\nAnswer:'),
]),
),
retriever=dict(type=ZeroRetriever),
inferencer=dict(type=GenInferencer),
)
BoolQ_eval_cfg = dict(
evaluator=dict(type=AccEvaluator),
pred_role='BOT',
pred_postprocessor=dict(type=first_capital_postprocess),
)
BoolQ_datasets = [
dict(
abbr='BoolQ',
type=BoolQDatasetV2,
path='opencompass/boolq',
reader_cfg=BoolQ_reader_cfg,
infer_cfg=BoolQ_infer_cfg,
eval_cfg=BoolQ_eval_cfg,
)
]
from mmengine.config import read_base
with read_base():
from .SuperGLUE_BoolQ_ppl_314b96 import BoolQ_datasets # noqa: F401, F403
from opencompass.openicl.icl_prompt_template import PromptTemplate
from opencompass.openicl.icl_retriever import ZeroRetriever
from opencompass.openicl.icl_inferencer import PPLInferencer
from opencompass.openicl.icl_evaluator import AccEvaluator
from opencompass.datasets import BoolQDatasetV2
BoolQ_reader_cfg = dict(
input_columns=['question', 'passage'],
output_column='label',
)
BoolQ_infer_cfg = dict(
prompt_template=dict(
type=PromptTemplate,
template={
'A':
dict(round=[
dict(role='HUMAN', prompt='{passage}\nQuestion: {question}?'),
dict(role='BOT', prompt='Yes'),
]),
'B':
dict(round=[
dict(role='HUMAN', prompt='{passage}\nQuestion: {question}?'),
dict(role='BOT', prompt='No'),
]),
},
),
retriever=dict(type=ZeroRetriever),
inferencer=dict(type=PPLInferencer),
)
BoolQ_eval_cfg = dict(evaluator=dict(type=AccEvaluator))
BoolQ_datasets = [
dict(
abbr='BoolQ',
type=BoolQDatasetV2,
path='opencompass/boolq',
reader_cfg=BoolQ_reader_cfg,
infer_cfg=BoolQ_infer_cfg,
eval_cfg=BoolQ_eval_cfg,
)
]
from opencompass.openicl.icl_prompt_template import PromptTemplate
from opencompass.openicl.icl_retriever import ZeroRetriever
from opencompass.openicl.icl_inferencer import PPLInferencer
from opencompass.openicl.icl_evaluator import AccEvaluator
from opencompass.datasets import BoolQDatasetV3
BoolQ_reader_cfg = dict(
input_columns=['question', 'passage'],
output_column='label',
test_split='train')
BoolQ_infer_cfg = dict(
prompt_template=dict(
type=PromptTemplate,
template={
'false':
dict(round=[
dict(role='HUMAN', prompt='Passage: {passage}\nQuestion: {question}?'),
dict(role='BOT', prompt='Answer: No'),
]),
'true':
dict(round=[
dict(role='HUMAN', prompt='Passage: {passage}\nQuestion: {question}?'),
dict(role='BOT', prompt='Answer: Yes'),
]),
},
),
retriever=dict(type=ZeroRetriever),
inferencer=dict(type=PPLInferencer),
)
BoolQ_eval_cfg = dict(evaluator=dict(type=AccEvaluator))
BoolQ_datasets = [
dict(
abbr='BoolQ',
type=BoolQDatasetV3,
path='opencompass/boolq',
reader_cfg=BoolQ_reader_cfg,
infer_cfg=BoolQ_infer_cfg,
eval_cfg=BoolQ_eval_cfg,
)
]
from opencompass.openicl.icl_prompt_template import PromptTemplate
from opencompass.openicl.icl_retriever import ZeroRetriever
from opencompass.openicl.icl_inferencer import PPLInferencer
from opencompass.openicl.icl_evaluator import AccEvaluator
from opencompass.datasets import BoolQDataset
BoolQ_reader_cfg = dict(
input_columns=['question', 'passage'],
output_column='answer',
test_split='train')
BoolQ_infer_cfg = dict(
prompt_template=dict(
type=PromptTemplate,
template={
0:
dict(round=[
dict(role='HUMAN', prompt='{passage}\nQuestion: {question}?'),
dict(role='BOT', prompt='No'),
]),
1:
dict(round=[
dict(role='HUMAN', prompt='{passage}\nQuestion: {question}?'),
dict(role='BOT', prompt='Yes'),
]),
},
),
retriever=dict(type=ZeroRetriever),
inferencer=dict(type=PPLInferencer),
)
BoolQ_eval_cfg = dict(evaluator=dict(type=AccEvaluator))
BoolQ_datasets = [
dict(
type=BoolQDataset,
abbr='BoolQ',
path='json',
data_files='opencompass/boolq',
split='train',
reader_cfg=BoolQ_reader_cfg,
infer_cfg=BoolQ_infer_cfg,
eval_cfg=BoolQ_eval_cfg,
)
]
from opencompass.openicl.icl_prompt_template import PromptTemplate
from opencompass.openicl.icl_retriever import ZeroRetriever
from opencompass.openicl.icl_inferencer import PPLInferencer
from opencompass.openicl.icl_evaluator import AccEvaluator
from opencompass.datasets import BoolQDataset
BoolQ_reader_cfg = dict(
input_columns=['question', 'passage'],
output_column='answer',
test_split='train')
BoolQ_infer_cfg = dict(
prompt_template=dict(
type=PromptTemplate,
template={
0:
dict(round=[
dict(role='HUMAN', prompt='{passage}\nQuestion: {question}'),
dict(role='BOT', prompt='No.'),
]),
1:
dict(round=[
dict(role='HUMAN', prompt='{passage}\nQuestion: {question}'),
dict(role='BOT', prompt='Yes.'),
]),
},
),
retriever=dict(type=ZeroRetriever),
inferencer=dict(type=PPLInferencer),
)
BoolQ_eval_cfg = dict(evaluator=dict(type=AccEvaluator))
BoolQ_datasets = [
dict(
type=BoolQDataset,
abbr='BoolQ',
path='json',
data_files='opencompass/boolq',
split='train',
reader_cfg=BoolQ_reader_cfg,
infer_cfg=BoolQ_infer_cfg,
eval_cfg=BoolQ_eval_cfg,
)
]
from opencompass.openicl.icl_prompt_template import PromptTemplate
from opencompass.openicl.icl_retriever import ZeroRetriever
from opencompass.openicl.icl_inferencer import PPLInferencer
from opencompass.openicl.icl_evaluator import AccEvaluator
from opencompass.datasets import BoolQDataset
BoolQ_reader_cfg = dict(
input_columns=['question', 'passage'],
output_column='answer',
test_split='train')
BoolQ_infer_cfg = dict(
prompt_template=dict(
type=PromptTemplate,
template={
0: 'Passage:{passage}。\nQuestion:{question}。\nAnswer: No.',
1: 'Passage:{passage}。\nQuestion:{question}。\nAnswer: Yes.',
}),
retriever=dict(type=ZeroRetriever),
inferencer=dict(type=PPLInferencer))
BoolQ_eval_cfg = dict(evaluator=dict(type=AccEvaluator))
BoolQ_datasets = [
dict(
type=BoolQDataset,
abbr='BoolQ',
path='json',
data_files='opencompass/boolq',
split='train',
reader_cfg=BoolQ_reader_cfg,
infer_cfg=BoolQ_infer_cfg,
eval_cfg=BoolQ_eval_cfg)
]
from mmengine.config import read_base
with read_base():
from .SuperGLUE_CB_gen_854c6c import CB_datasets # noqa: F401, F403
from opencompass.openicl.icl_prompt_template import PromptTemplate
from opencompass.openicl.icl_retriever import ZeroRetriever
from opencompass.openicl.icl_inferencer import GenInferencer
from opencompass.openicl.icl_evaluator import AccEvaluator
from opencompass.datasets import CBDatasetV2
from opencompass.utils.text_postprocessors import first_option_postprocess
CB_reader_cfg = dict(
input_columns=['premise', 'hypothesis'],
output_column='label',
)
CB_infer_cfg = dict(
prompt_template=dict(
type=PromptTemplate,
template=dict(
round=[
dict(
role='HUMAN',
prompt=
'{premise}\n{hypothesis}\nWhat is the relation between the two sentences?\nA. Contradiction\nB. Entailment\nC. Neutral\nAnswer:'
),
], ),
),
retriever=dict(type=ZeroRetriever),
inferencer=dict(type=GenInferencer),
)
CB_eval_cfg = dict(
evaluator=dict(type=AccEvaluator),
pred_role='BOT',
pred_postprocessor=dict(type=first_option_postprocess, options='ABC'),
)
CB_datasets = [
dict(
abbr='CB',
type=CBDatasetV2,
path='./data/SuperGLUE/CB/val.jsonl',
reader_cfg=CB_reader_cfg,
infer_cfg=CB_infer_cfg,
eval_cfg=CB_eval_cfg,
)
]
from mmengine.config import read_base
with read_base():
from .SuperGLUE_CB_ppl_0143fe import CB_datasets # noqa: F401, F403
from opencompass.openicl.icl_prompt_template import PromptTemplate
from opencompass.openicl.icl_retriever import ZeroRetriever
from opencompass.openicl.icl_inferencer import PPLInferencer
from opencompass.openicl.icl_evaluator import AccEvaluator
from opencompass.datasets import HFDataset
CB_reader_cfg = dict(
input_columns=['premise', 'hypothesis'],
output_column='label',
)
CB_infer_cfg = dict(
prompt_template=dict(
type=PromptTemplate,
template={
'contradiction':
dict(round=[
dict(
role='HUMAN',
prompt=
'{premise}\n{hypothesis}\nWhat is the relation between the two sentences?'
),
dict(role='BOT', prompt='Contradiction'),
]),
'entailment':
dict(round=[
dict(
role='HUMAN',
prompt=
'{premise}\n{hypothesis}\nWhat is the relation between the two sentences?'
),
dict(role='BOT', prompt='Entailment'),
]),
'neutral':
dict(round=[
dict(
role='HUMAN',
prompt=
'{premise}\n{hypothesis}\nWhat is the relation between the two sentences?'
),
dict(role='BOT', prompt='Neutral'),
]),
},
),
retriever=dict(type=ZeroRetriever),
inferencer=dict(type=PPLInferencer),
)
CB_eval_cfg = dict(evaluator=dict(type=AccEvaluator), )
CB_datasets = [
dict(
type=HFDataset,
abbr='CB',
path='json',
split='train',
data_files='./data/SuperGLUE/CB/val.jsonl',
reader_cfg=CB_reader_cfg,
infer_cfg=CB_infer_cfg,
eval_cfg=CB_eval_cfg,
)
]
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment