Commit be3dfa50 authored by jerrrrry's avatar jerrrrry
Browse files

Initial commit

parents
Pipeline #2876 failed with stages
in 0 seconds
from opencompass.openicl.icl_prompt_template import PromptTemplate
from opencompass.openicl.icl_retriever import ZeroRetriever
from opencompass.openicl.icl_inferencer import PPLInferencer
from opencompass.openicl.icl_evaluator import AccEvaluator
from opencompass.datasets import CluewscDataset
cluewsc_reader_cfg = dict(
input_columns=['span1', 'span2', 'text', 'new_text'],
output_column='answer')
cluewsc_infer_cfg = dict(
prompt_template=dict(
type=PromptTemplate,
template={
0:
dict(round=[
dict(
role='HUMAN',
prompt='{text}\n此处,代词“{span2}“被用于指代“{span1}“吗?'),
dict(role='BOT', prompt='否')
]),
1:
dict(round=[
dict(
role='HUMAN',
prompt='{text}\n此处,代词“{span2}“被用于指代“{span1}“吗?'),
dict(role='BOT', prompt='是')
]),
}),
retriever=dict(type=ZeroRetriever),
inferencer=dict(type=PPLInferencer))
cluewsc_eval_cfg = dict(evaluator=dict(type=AccEvaluator))
cluewsc_datasets = [
dict(
type=CluewscDataset,
path='json',
abbr='cluewsc-dev',
data_files='./data/FewCLUE/cluewsc/dev_few_all.json',
split='train',
reader_cfg=cluewsc_reader_cfg,
infer_cfg=cluewsc_infer_cfg,
eval_cfg=cluewsc_eval_cfg),
dict(
type=CluewscDataset,
path='json',
abbr='cluewsc-test',
data_files='./data/FewCLUE/cluewsc/test_public.json',
split='train',
reader_cfg=cluewsc_reader_cfg,
infer_cfg=cluewsc_infer_cfg,
eval_cfg=cluewsc_eval_cfg),
]
from mmengine.config import read_base
with read_base():
from .FewCLUE_csl_gen_28b223 import csl_datasets # noqa: F401, F403
from opencompass.openicl.icl_prompt_template import PromptTemplate
from opencompass.openicl.icl_retriever import ZeroRetriever
from opencompass.openicl.icl_inferencer import GenInferencer
from opencompass.openicl.icl_evaluator import AccEvaluator
from opencompass.datasets import CslDatasetV2
from opencompass.utils.text_postprocessors import first_capital_postprocess
csl_reader_cfg = dict(
input_columns=['abst', 'keywords'],
output_column='label',
)
csl_infer_cfg = dict(
prompt_template=dict(
type=PromptTemplate,
template=dict(round=[
dict(
role='HUMAN',
prompt=
'摘要是对论文内容不加注释和评论的简短陈述,要求扼要地说明研究工作的目的、研究方法和最终结论等。\n关键词是一篇学术论文的核心词汇,一般由一系列名词组成。关键词在全文中应有较高出现频率,且能起到帮助文献检索的作用。\n摘要:{abst}\n关键词:{keywords}\n请问上述关键词是否匹配摘要且符合要求?\nA. 否\nB. 是\n请从”A“,”B“中进行选择。\n答:'
)
]),
),
retriever=dict(type=ZeroRetriever),
inferencer=dict(type=GenInferencer),
)
csl_eval_cfg = dict(
evaluator=dict(type=AccEvaluator),
pred_role='BOT',
pred_postprocessor=dict(type=first_capital_postprocess),
)
csl_datasets = [
dict(
abbr='csl_dev',
type=CslDatasetV2,
path='./data/FewCLUE/csl/dev_few_all.json',
reader_cfg=csl_reader_cfg,
infer_cfg=csl_infer_cfg,
eval_cfg=csl_eval_cfg,
),
dict(
abbr='csl_test',
type=CslDatasetV2,
path='./data/FewCLUE/csl/test_public.json',
reader_cfg=csl_reader_cfg,
infer_cfg=csl_infer_cfg,
eval_cfg=csl_eval_cfg,
),
]
from opencompass.openicl.icl_prompt_template import PromptTemplate
from opencompass.openicl.icl_retriever import ZeroRetriever
from opencompass.openicl.icl_inferencer import GenInferencer
from opencompass.openicl.icl_evaluator import AccEvaluator
from opencompass.datasets import CslDatasetV2
from opencompass.utils.text_postprocessors import first_capital_postprocess
csl_reader_cfg = dict(
input_columns=['abst', 'keywords'],
output_column='label',
)
csl_infer_cfg = dict(
prompt_template=dict(
type=PromptTemplate,
template=dict(round=[
dict(
role='HUMAN',
prompt=
'摘要:{abst}\n关键词:{keywords}\n上述关键词出现在学术期刊中是否恰当?\nA. 否\nB. 是\n请从”A“,”B“中进行选择。\n答:'
)
]),
),
retriever=dict(type=ZeroRetriever),
inferencer=dict(type=GenInferencer),
)
csl_eval_cfg = dict(
evaluator=dict(type=AccEvaluator),
pred_role='BOT',
pred_postprocessor=dict(type=first_capital_postprocess),
)
csl_datasets = [
dict(
abbr='csl_dev',
type=CslDatasetV2,
path='./data/FewCLUE/csl/dev_few_all.json',
reader_cfg=csl_reader_cfg,
infer_cfg=csl_infer_cfg,
eval_cfg=csl_eval_cfg,
),
dict(
abbr='csl_test',
type=CslDatasetV2,
path='./data/FewCLUE/csl/test_public.json',
reader_cfg=csl_reader_cfg,
infer_cfg=csl_infer_cfg,
eval_cfg=csl_eval_cfg,
),
]
from mmengine.config import read_base
with read_base():
from .FewCLUE_csl_ppl_841b62 import csl_datasets # noqa: F401, F403
from opencompass.openicl.icl_prompt_template import PromptTemplate
from opencompass.openicl.icl_retriever import ZeroRetriever
from opencompass.openicl.icl_inferencer import PPLInferencer
from opencompass.openicl.icl_evaluator import AccEvaluator
from opencompass.datasets import CslDataset
csl_reader_cfg = dict(
input_columns=['abst', 'keywords'], output_column='label')
csl_infer_cfg = dict(
prompt_template=dict(
type=PromptTemplate,
template={
0:
dict(round=[dict(role='HUMAN', prompt='摘要:{abst}')]),
1:
dict(
round=[dict(role='HUMAN', prompt='摘要:{abst}\n关键词:{keywords}')
]),
}),
retriever=dict(type=ZeroRetriever),
inferencer=dict(type=PPLInferencer))
csl_eval_cfg = dict(evaluator=dict(type=AccEvaluator))
csl_datasets = [
dict(
type=CslDataset,
path='json',
abbr='csl_dev',
data_files='./data/FewCLUE/csl/dev_few_all.json',
split='train',
reader_cfg=csl_reader_cfg,
infer_cfg=csl_infer_cfg,
eval_cfg=csl_eval_cfg),
dict(
type=CslDataset,
path='json',
abbr='csl_test',
data_files='./data/FewCLUE/csl/test_public.json',
split='train',
reader_cfg=csl_reader_cfg,
infer_cfg=csl_infer_cfg,
eval_cfg=csl_eval_cfg)
]
from opencompass.openicl.icl_prompt_template import PromptTemplate
from opencompass.openicl.icl_retriever import ZeroRetriever
from opencompass.openicl.icl_inferencer import PPLInferencer
from opencompass.openicl.icl_evaluator import AccEvaluator
from opencompass.datasets import CslDataset
csl_reader_cfg = dict(
input_columns=['abst', 'keywords'], output_column='label')
csl_infer_cfg = dict(
prompt_template=dict(
type=PromptTemplate,
template={
0: '摘要:{abst}',
1: '摘要:{abst}\n关键词:{keywords}'
}),
retriever=dict(type=ZeroRetriever),
inferencer=dict(type=PPLInferencer))
csl_eval_cfg = dict(evaluator=dict(type=AccEvaluator))
csl_datasets = [
dict(
type=CslDataset,
path='json',
abbr='csl_dev',
data_files='./data/FewCLUE/csl/dev_few_all.json',
split='train',
reader_cfg=csl_reader_cfg,
infer_cfg=csl_infer_cfg,
eval_cfg=csl_eval_cfg),
dict(
type=CslDataset,
path='json',
abbr='csl_test',
data_files='./data/FewCLUE/csl/test_public.json',
split='train',
reader_cfg=csl_reader_cfg,
infer_cfg=csl_infer_cfg,
eval_cfg=csl_eval_cfg)
]
from mmengine.config import read_base
with read_base():
from .FewCLUE_eprstmt_gen_740ea0 import eprstmt_datasets # noqa: F401, F403
from opencompass.openicl.icl_prompt_template import PromptTemplate
from opencompass.openicl.icl_retriever import ZeroRetriever
from opencompass.openicl.icl_inferencer import GenInferencer
from opencompass.openicl.icl_evaluator import AccEvaluator
from opencompass.datasets import EprstmtDatasetV2
from opencompass.utils.text_postprocessors import first_capital_postprocess
eprstmt_reader_cfg = dict(
input_columns=['sentence'], output_column='label', test_split='train')
eprstmt_infer_cfg = dict(
prompt_template=dict(
type=PromptTemplate,
template=dict(round=[
dict(
role='HUMAN',
prompt=
'内容: "{sentence}"。请对上述内容进行情绪分类。\nA. 积极\nB. 消极\n请从”A“,”B“中进行选择。\n答:'
),
]),
),
retriever=dict(type=ZeroRetriever),
inferencer=dict(type=GenInferencer),
)
eprstmt_eval_cfg = dict(
evaluator=dict(type=AccEvaluator),
pred_role='BOT',
pred_postprocessor=dict(type=first_capital_postprocess),
)
eprstmt_datasets = [
dict(
abbr='eprstmt-dev',
type=EprstmtDatasetV2,
path='./data/FewCLUE/eprstmt/dev_few_all.json',
reader_cfg=eprstmt_reader_cfg,
infer_cfg=eprstmt_infer_cfg,
eval_cfg=eprstmt_eval_cfg,
),
dict(
abbr='eprstmt-test',
type=EprstmtDatasetV2,
path='./data/FewCLUE/eprstmt/test_public.json',
reader_cfg=eprstmt_reader_cfg,
infer_cfg=eprstmt_infer_cfg,
eval_cfg=eprstmt_eval_cfg,
),
]
from mmengine.config import read_base
with read_base():
from .FewCLUE_eprstmt_ppl_f1e631 import eprstmt_datasets # noqa: F401, F403
from opencompass.openicl.icl_prompt_template import PromptTemplate
from opencompass.openicl.icl_retriever import ZeroRetriever
from opencompass.openicl.icl_inferencer import PPLInferencer
from opencompass.openicl.icl_evaluator import AccEvaluator
from opencompass.datasets import HFDataset
eprstmt_reader_cfg = dict(
input_columns=['sentence'], output_column='label', test_split='train')
eprstmt_infer_cfg = dict(
prompt_template=dict(
type=PromptTemplate,
template={
'Negative': ' 内容: "{sentence}"。情绪分类:消极。',
'Positive': ' 内容: "{sentence}"。情绪分类:积极。',
}),
retriever=dict(type=ZeroRetriever),
inferencer=dict(type=PPLInferencer))
eprstmt_eval_cfg = dict(evaluator=dict(type=AccEvaluator))
eprstmt_datasets = [
dict(
type=HFDataset,
abbr='eprstmt-dev',
path='json',
data_files='./data/FewCLUE/eprstmt/dev_few_all.json',
split='train',
reader_cfg=eprstmt_reader_cfg,
infer_cfg=eprstmt_infer_cfg,
eval_cfg=eprstmt_eval_cfg),
dict(
type=HFDataset,
abbr='eprstmt-test',
path='json',
data_files='./data/FewCLUE/eprstmt/test_public.json',
split='train',
reader_cfg=eprstmt_reader_cfg,
infer_cfg=eprstmt_infer_cfg,
eval_cfg=eprstmt_eval_cfg)
]
from opencompass.openicl.icl_prompt_template import PromptTemplate
from opencompass.openicl.icl_retriever import ZeroRetriever
from opencompass.openicl.icl_inferencer import PPLInferencer
from opencompass.openicl.icl_evaluator import AccEvaluator
from opencompass.datasets import HFDataset
eprstmt_reader_cfg = dict(
input_columns=['sentence'], output_column='label', test_split='train')
eprstmt_infer_cfg = dict(
prompt_template=dict(
type=PromptTemplate,
template={
'Negative':
dict(round=[
dict(role='HUMAN', prompt='内容: "{sentence}"。情绪分类:'),
dict(role='BOT', prompt='消极。')
]),
'Positive':
dict(round=[
dict(role='HUMAN', prompt='内容: "{sentence}"。情绪分类:'),
dict(role='BOT', prompt='积极。')
]),
}),
retriever=dict(type=ZeroRetriever),
inferencer=dict(type=PPLInferencer))
eprstmt_eval_cfg = dict(evaluator=dict(type=AccEvaluator))
eprstmt_datasets = [
dict(
type=HFDataset,
abbr='eprstmt-dev',
path='json',
data_files='./data/FewCLUE/eprstmt/dev_few_all.json',
split='train',
reader_cfg=eprstmt_reader_cfg,
infer_cfg=eprstmt_infer_cfg,
eval_cfg=eprstmt_eval_cfg),
dict(
type=HFDataset,
abbr='eprstmt-test',
path='json',
data_files='./data/FewCLUE/eprstmt/test_public.json',
split='train',
reader_cfg=eprstmt_reader_cfg,
infer_cfg=eprstmt_infer_cfg,
eval_cfg=eprstmt_eval_cfg)
]
from mmengine.config import read_base
with read_base():
from .FewCLUE_ocnli_fc_gen_f97a97 import ocnli_fc_datasets # noqa: F401, F403
from opencompass.openicl.icl_prompt_template import PromptTemplate
from opencompass.openicl.icl_retriever import ZeroRetriever
from opencompass.openicl.icl_inferencer import GenInferencer
from opencompass.openicl.icl_evaluator import AccEvaluator
from opencompass.datasets import CMNLIDatasetV2
from opencompass.utils.text_postprocessors import first_capital_postprocess
ocnli_fc_reader_cfg = dict(
input_columns=['sentence1', 'sentence2'],
output_column='label',
test_split='train')
ocnli_fc_infer_cfg = dict(
prompt_template=dict(
type=PromptTemplate,
template=dict(round=[
dict(
role='HUMAN',
prompt=
'阅读文章:{sentence1}\n根据上文,回答如下问题:{sentence2}\nA. 对\nB. 错\nC. 可能\n请从“A”,“B”,“C”中进行选择。\n答:'
),
]),
),
retriever=dict(type=ZeroRetriever),
inferencer=dict(type=GenInferencer),
)
ocnli_fc_eval_cfg = dict(
evaluator=dict(type=AccEvaluator),
pred_role='BOT',
pred_postprocessor=dict(type=first_capital_postprocess),
)
ocnli_fc_datasets = [
dict(
abbr='ocnli_fc-dev',
type=CMNLIDatasetV2, # ocnli_fc share the same format with cmnli
path='./data/FewCLUE/ocnli/dev_few_all.json',
local_mode=True,
reader_cfg=ocnli_fc_reader_cfg,
infer_cfg=ocnli_fc_infer_cfg,
eval_cfg=ocnli_fc_eval_cfg,
),
dict(
abbr='ocnli_fc-test',
type=CMNLIDatasetV2, # ocnli_fc share the same format with cmnli
path='./data/FewCLUE/ocnli/test_public.json',
local_mode=True,
reader_cfg=ocnli_fc_reader_cfg,
infer_cfg=ocnli_fc_infer_cfg,
eval_cfg=ocnli_fc_eval_cfg,
),
]
from mmengine.config import read_base
with read_base():
from .FewCLUE_ocnli_fc_ppl_c08300 import ocnli_fc_datasets # noqa: F401, F403
from opencompass.openicl.icl_prompt_template import PromptTemplate
from opencompass.openicl.icl_retriever import ZeroRetriever
from opencompass.openicl.icl_inferencer import PPLInferencer
from opencompass.openicl.icl_evaluator import AccEvaluator
from opencompass.datasets import HFDataset
ocnli_fc_reader_cfg = dict(
input_columns=['sentence1', 'sentence2'],
output_column='label',
test_split='train')
ocnli_fc_infer_cfg = dict(
prompt_template=dict(
type=PromptTemplate,
template={
'contradiction':
dict(round=[
dict(
role='HUMAN',
prompt='阅读文章:{sentence1}\n根据上文,回答如下问题:{sentence2}?'),
dict(role='BOT', prompt='错')
]),
'entailment':
dict(round=[
dict(
role='HUMAN',
prompt='阅读文章:{sentence1}\n根据上文,回答如下问题:{sentence2}?'),
dict(role='BOT', prompt='对')
]),
'neutral':
dict(round=[
dict(
role='HUMAN', prompt='如果{sentence1}为真,那么{sentence2}也为真吗?'),
dict(role='BOT', prompt='可能')
]),
}),
retriever=dict(type=ZeroRetriever),
inferencer=dict(type=PPLInferencer))
ocnli_fc_eval_cfg = dict(evaluator=dict(type=AccEvaluator))
ocnli_fc_datasets = [
dict(
type=HFDataset,
abbr='ocnli_fc-dev',
path='json',
split='train',
data_files='./data/FewCLUE/ocnli/dev_few_all.json',
reader_cfg=ocnli_fc_reader_cfg,
infer_cfg=ocnli_fc_infer_cfg,
eval_cfg=ocnli_fc_eval_cfg),
dict(
type=HFDataset,
abbr='ocnli_fc-test',
path='json',
split='train',
data_files='./data/FewCLUE/ocnli/test_public.json',
reader_cfg=ocnli_fc_reader_cfg,
infer_cfg=ocnli_fc_infer_cfg,
eval_cfg=ocnli_fc_eval_cfg)
]
from opencompass.openicl.icl_prompt_template import PromptTemplate
from opencompass.openicl.icl_retriever import ZeroRetriever
from opencompass.openicl.icl_inferencer import PPLInferencer
from opencompass.openicl.icl_evaluator import AccEvaluator
from opencompass.datasets import HFDataset
ocnli_fc_reader_cfg = dict(
input_columns=['sentence1', 'sentence2'],
output_column='label',
test_split='train')
ocnli_fc_infer_cfg = dict(
prompt_template=dict(
type=PromptTemplate,
template={
'contradiction':
'阅读文章:{sentence1}\n根据上文,回答如下问题: {sentence2}?\n答:错',
'entailment': '阅读文章:{sentence1}\n根据上文,回答如下问题: {sentence2}?\n答:对',
'neutral': '如果{sentence1}为真,那么{sentence2}也为真吗?可能'
}),
retriever=dict(type=ZeroRetriever),
inferencer=dict(type=PPLInferencer))
ocnli_fc_eval_cfg = dict(evaluator=dict(type=AccEvaluator))
ocnli_fc_datasets = [
dict(
type=HFDataset,
abbr='ocnli_fc-dev',
path='json',
split='train',
data_files='./data/FewCLUE/ocnli/dev_few_all.json',
reader_cfg=ocnli_fc_reader_cfg,
infer_cfg=ocnli_fc_infer_cfg,
eval_cfg=ocnli_fc_eval_cfg),
dict(
type=HFDataset,
abbr='ocnli_fc-test',
path='json',
split='train',
data_files='./data/FewCLUE/ocnli/test_public.json',
reader_cfg=ocnli_fc_reader_cfg,
infer_cfg=ocnli_fc_infer_cfg,
eval_cfg=ocnli_fc_eval_cfg)
]
from mmengine.config import read_base
with read_base():
from .FewCLUE_tnews_gen_b90e4a import tnews_datasets # noqa: F401, F403
from opencompass.openicl.icl_prompt_template import PromptTemplate
from opencompass.openicl.icl_retriever import ZeroRetriever
from opencompass.openicl.icl_inferencer import GenInferencer
from opencompass.openicl.icl_evaluator import AccEvaluator
from opencompass.datasets import TNewsDatasetV2
from opencompass.utils.text_postprocessors import first_capital_postprocess
tnews_reader_cfg = dict(
input_columns='sentence',
output_column='label_desc2',
)
tnews_labels = [
'农业新闻', # news_agriculture
'旅游新闻', # news_travel
'游戏新闻', # news_game
'科技类别公司新闻', # news_tech
'体育类别新闻', # news_sports
'初升高教育新闻', # news_edu
'娱乐圈新闻', # news_entertainment
'投资资讯', # news_finance
'军事类别常识', # news_military
'车辆新闻', # news_car
'楼市新闻', # news_house
'环球不含中国类别新闻', # news_world
'书籍文化历史类别新闻', # news_culture
'故事类别新闻', # news_story
'股票市场类别新闻', # news_stock
]
_tnews_options_list_str = '\n'.join(f'{chr(ord("A") + i)}. {tnews_labels[i]}'
for i in range(len(tnews_labels)))
_tnews_options_range_str = ','.join(f'“{chr(ord("A") + i)}”'
for i in range(len(tnews_labels)))
tnews_infer_cfg = dict(
prompt_template=dict(
type=PromptTemplate,
template=dict(round=[
dict(
role='HUMAN',
prompt=
f'{{sentence}}\n请判断上述内容属于什么新闻?\n{_tnews_options_list_str}\n请从{_tnews_options_range_str}中进行选择。\n答:',
),
]),
),
retriever=dict(type=ZeroRetriever),
inferencer=dict(type=GenInferencer),
)
tnews_eval_cfg = dict(
evaluator=dict(type=AccEvaluator),
pred_role='BOT',
pred_postprocessor=dict(type=first_capital_postprocess),
)
tnews_datasets = [
dict(
abbr='tnews-dev',
type=TNewsDatasetV2,
path='./data/FewCLUE/tnews/dev_few_all.json',
reader_cfg=tnews_reader_cfg,
infer_cfg=tnews_infer_cfg,
eval_cfg=tnews_eval_cfg,
),
dict(
abbr='tnews-test',
type=TNewsDatasetV2,
path='./data/FewCLUE/tnews/test_public.json',
reader_cfg=tnews_reader_cfg,
infer_cfg=tnews_infer_cfg,
eval_cfg=tnews_eval_cfg,
),
]
del _tnews_options_list_str, _tnews_options_range_str
from mmengine.config import read_base
with read_base():
from .FewCLUE_tnews_ppl_d10e8a import tnews_datasets # noqa: F401, F403
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment