"git@developer.sourcefind.cn:zhaoyu6/sglang.git" did not exist on "044c3159706c190191205ea91bb9ebd2ba292bf4"
Commit be3dfa50 authored by jerrrrry's avatar jerrrrry
Browse files

Initial commit

parents
Pipeline #2876 failed with stages
in 0 seconds
from mmengine.config import read_base
with read_base():
from .charm_reason_gen_f8fca2 import charm_reason_datasets # noqa: F401, F403
import os
from mmengine.config import read_base
from opencompass.openicl.icl_prompt_template import PromptTemplate
from opencompass.openicl.icl_retriever import ZeroRetriever
from opencompass.openicl.icl_inferencer import GenInferencer
from opencompass.datasets import CharmDataset, charm_reason_postprocess, CharmReasonEvaluator
with read_base():
from .charm_reason_settings import charm_tasks, settings
charm_reason_datasets = []
for _cot, _cot_prefix, dataset_path, fewshot_example_path, prompt_template in settings:
for _task in charm_tasks:
_fewshot_example_file = os.path.join(fewshot_example_path, f'{_task}_{_cot}.txt')
with open(_fewshot_example_file, 'r') as f:
_hint = f.read()
charm_reason_reader_cfg = dict(input_columns=['input'], output_column='target')
charm_reason_infer_cfg = dict(
prompt_template=dict(
type=PromptTemplate,
template=dict(round=[dict(role='HUMAN', prompt=prompt_template.format(_hint=_hint) + _cot_prefix)]),
),
retriever=dict(type=ZeroRetriever),
inferencer=dict(type=GenInferencer, max_out_len=512),
)
charm_reason_eval_cfg = dict(
evaluator=dict(type=CharmReasonEvaluator),
pred_role='BOT',
pred_postprocessor=dict(type=charm_reason_postprocess),
dataset_postprocessor=dict(type=charm_reason_postprocess),
)
charm_reason_datasets.append(
dict(
type=CharmDataset,
path=dataset_path,
name=_task,
abbr='charm-reason-' + _task + '_' + _cot,
reader_cfg=charm_reason_reader_cfg,
infer_cfg=charm_reason_infer_cfg.copy(),
eval_cfg=charm_reason_eval_cfg.copy(),
)
)
import os
from opencompass.openicl.icl_prompt_template import PromptTemplate
from opencompass.openicl.icl_retriever import ZeroRetriever
from opencompass.openicl.icl_inferencer import PPLInferencer
from opencompass.datasets import CharmDataset
from opencompass.openicl.icl_evaluator import AccwithDetailsEvaluator
charm_tasks = [
['Chinese_Anachronisms_Judgment', 'AB'],
['Chinese_Movie_and_Music_Recommendation', 'ABCD'],
['Chinese_Natural_Language_Inference', 'ABC'],
['Chinese_Reading_Comprehension', 'ABCD'],
['Chinese_Sequence_Understanding', 'ABCD'],
['Chinese_Sport_Understanding', 'AB'],
['Chinese_Time_Understanding', 'ABCD'],
['Global_Anachronisms_Judgment', 'AB'],
['Global_Movie_and_Music_Recommendation', 'ABCD'],
['Global_Natural_Language_Inference', 'ABC'],
['Global_Reading_Comprehension', 'ABCD'],
['Global_Sequence_Understanding', 'ABCD'],
['Global_Sport_Understanding', 'AB'],
['Global_Time_Understanding', 'ABCDEF'],
]
charm_reason_datasets = []
for task_name, options in charm_tasks:
with open(os.path.join(os.path.dirname(__file__), 'few-shot-examples', f'{task_name}_Direct.txt'), 'r') as f:
few_shot_example = f.read()
charm_reason_reader_cfg = dict(input_columns=['input'], output_column='target')
charm_reason_infer_cfg = dict(
prompt_template=dict(
type=PromptTemplate,
template={
f'({opt})': f'{few_shot_example}\n{{input}}\nA: {opt}' for opt in options
},
),
retriever=dict(type=ZeroRetriever),
inferencer=dict(type=PPLInferencer),
)
charm_reason_eval_cfg = dict(evaluator=dict(type=AccwithDetailsEvaluator))
charm_reason_datasets.append(
dict(
type=CharmDataset,
abbr=f'charm-reason-{task_name}_Direct',
path=f'data/CHARM/reasoning',
name=task_name,
reader_cfg=charm_reason_reader_cfg,
infer_cfg=charm_reason_infer_cfg,
eval_cfg=charm_reason_eval_cfg,
)
)
import os
charm_tasks = [
'Chinese_Anachronisms_Judgment',
'Chinese_Movie_and_Music_Recommendation',
'Chinese_Natural_Language_Inference',
'Chinese_Reading_Comprehension',
'Chinese_Sequence_Understanding',
'Chinese_Sport_Understanding',
'Chinese_Time_Understanding',
'Global_Anachronisms_Judgment',
'Global_Movie_and_Music_Recommendation',
'Global_Natural_Language_Inference',
'Global_Reading_Comprehension',
'Global_Sequence_Understanding',
'Global_Sport_Understanding',
'Global_Time_Understanding',
]
XLT_template = 'Follow the given examples and answer the question.\n{_hint}\n\n I want you to act as an commonsense reasoning expert for Chinese. \n Request: {{input}}\n'
Translate_EN_template = 'Follow the given examples and answer the question.\n{_hint}\n\nQ: {{input}}\nA: '
Other_template = '请按照给定的例子回答问题。\n{_hint}\n\nQ:{{input}}\nA:'
data_dir = 'data/CHARM'
dataset_path_ZH = f'{data_dir}/reasoning'
dataset_path_TransEn = f'{data_dir}/reasoning_Translate-EN'
fewshot_example_path_ZH = os.path.join(os.path.dirname(__file__), 'few-shot-examples')
fewshot_example_path_TransEn = os.path.join(os.path.dirname(__file__), 'few-shot-examples_Translate-EN')
settings = [
('Direct', '', dataset_path_ZH, fewshot_example_path_ZH, Other_template),
('ZH-CoT', '让我们一步一步来思考。', dataset_path_ZH, fewshot_example_path_ZH, Other_template),
('EN-CoT', "Let's think step by step.", dataset_path_ZH, fewshot_example_path_ZH, Other_template),
('XLT', """You should retell the request in English.\nYou should do the answer step by step to choose the right answer.\nYou should step-by-step answer the request.\nYou should tell me the answer in this format 'So the answer is'.""", dataset_path_ZH, fewshot_example_path_ZH, XLT_template),
('Translate-EN', "Let's think step by step.", dataset_path_TransEn, fewshot_example_path_TransEn, Translate_EN_template),
]
from opencompass.openicl.icl_prompt_template import PromptTemplate
from opencompass.openicl.icl_retriever import ZeroRetriever
from opencompass.openicl.icl_inferencer import AgentInferencer
from opencompass.datasets import CIBenchDataset, CIBenchEvaluator
cibench_reader_cfg = dict(
input_columns=['questions'],
output_column='references',
train_split='test',
test_split='test')
cibench_infer_cfg = dict(
prompt_template=dict(
type=PromptTemplate,
template="""{questions}""",
),
retriever=dict(type=ZeroRetriever),
inferencer=dict(type=AgentInferencer, infer_mode='every'),
)
libs = ['matplotlib', 'opencv', 'pandas', 'pytorch', 'scipy', 'seaborn']
cibench_eval_cfg = dict(evaluator=dict(type=CIBenchEvaluator), pred_role='BOT')
cibench_datasets = [
dict(
abbr=f'cibench_generation/{lib}',
type=CIBenchDataset,
path=f'./data/cibench_dataset/cibench_generation/{lib}',
internet_check=False,
reader_cfg=cibench_reader_cfg,
infer_cfg=cibench_infer_cfg,
eval_cfg=cibench_eval_cfg,
) for lib in libs
]
from opencompass.openicl.icl_prompt_template import PromptTemplate
from opencompass.openicl.icl_retriever import ZeroRetriever
from opencompass.openicl.icl_inferencer import AgentInferencer
from opencompass.datasets import CIBenchDataset, CIBenchEvaluator
cibench_reader_cfg = dict(
input_columns=['questions'],
output_column='references',
train_split='test',
test_split='test')
cibench_infer_cfg = dict(
prompt_template=dict(
type=PromptTemplate,
template="""{questions}""",
),
retriever=dict(type=ZeroRetriever),
inferencer=dict(type=AgentInferencer, infer_mode='every_with_gt'),
)
libs = ['matplotlib', 'opencv', 'pandas', 'pytorch', 'scipy', 'seaborn']
cibench_eval_cfg = dict(evaluator=dict(type=CIBenchEvaluator), pred_role='BOT')
cibench_datasets = [
dict(
abbr=f'cibench_generation_oracle/{lib}',
type=CIBenchDataset,
path=f'./data/cibench_dataset/cibench_generation/{lib}',
internet_check=False,
reader_cfg=cibench_reader_cfg,
infer_cfg=cibench_infer_cfg,
eval_cfg=cibench_eval_cfg,
) for lib in libs
]
from opencompass.openicl.icl_prompt_template import PromptTemplate
from opencompass.openicl.icl_retriever import ZeroRetriever
from opencompass.openicl.icl_inferencer import AgentInferencer
from opencompass.datasets import CIBenchDataset, CIBenchEvaluator
cibench_reader_cfg = dict(
input_columns=['questions'],
output_column='references',
train_split='test',
test_split='test')
cibench_infer_cfg = dict(
prompt_template=dict(
type=PromptTemplate,
template="""{questions}""",
),
retriever=dict(type=ZeroRetriever),
inferencer=dict(type=AgentInferencer, infer_mode='every'),
)
# no tensorboard
libs = ['/lightgbm', '/matplotlib', '/nltk', '/opencv', '/pandas', '/pytorch',
'/scipy', '/seaborn', '/sklearn', '/tensorflow',
'_chinese/lightgbm', '_chinese/matplotlib', '_chinese/nltk',
'_chinese/opencv', '_chinese/pandas', '_chinese/pytorch',
'_chinese/scipy', '_chinese/seaborn', '_chinese/sklearn', '_chinese/tensorflow']
cibench_eval_cfg = dict(evaluator=dict(type=CIBenchEvaluator), pred_role='BOT')
cibench_datasets = [
dict(
abbr=f'cibench_template{lib}',
type=CIBenchDataset,
path=f'./data/cibench_dataset/cibench_template{lib}',
internet_check=False,
reader_cfg=cibench_reader_cfg,
infer_cfg=cibench_infer_cfg,
eval_cfg=cibench_eval_cfg,
) for lib in libs
]
from opencompass.openicl.icl_prompt_template import PromptTemplate
from opencompass.openicl.icl_retriever import ZeroRetriever
from opencompass.openicl.icl_inferencer import AgentInferencer
from opencompass.datasets import CIBenchDataset, CIBenchEvaluator
cibench_reader_cfg = dict(
input_columns=['questions'],
output_column='references',
train_split='test',
test_split='test')
cibench_infer_cfg = dict(
prompt_template=dict(
type=PromptTemplate,
template="""{questions}""",
),
retriever=dict(type=ZeroRetriever),
inferencer=dict(type=AgentInferencer, infer_mode='every_with_gt'),
)
# no tensorboard
libs = ['/lightgbm', '/matplotlib', '/nltk', '/opencv', '/pandas', '/pytorch',
'/scipy', '/seaborn', '/sklearn', '/tensorflow',
'_chinese/lightgbm', '_chinese/matplotlib', '_chinese/nltk',
'_chinese/opencv', '_chinese/pandas', '_chinese/pytorch',
'_chinese/scipy', '_chinese/seaborn', '_chinese/sklearn', '_chinese/tensorflow']
cibench_eval_cfg = dict(evaluator=dict(type=CIBenchEvaluator), pred_role='BOT')
cibench_datasets = [
dict(
abbr=f'cibench_template_oracle{lib}',
type=CIBenchDataset,
path=f'./data/cibench_dataset/cibench_template{lib}',
internet_check=False,
reader_cfg=cibench_reader_cfg,
infer_cfg=cibench_infer_cfg,
eval_cfg=cibench_eval_cfg,
) for lib in libs
]
from mmengine.config import read_base
with read_base():
from .CLUE_C3_gen_8c358f import C3_datasets # noqa: F401, F403
from opencompass.openicl.icl_prompt_template import PromptTemplate
from opencompass.openicl.icl_retriever import ZeroRetriever
from opencompass.openicl.icl_inferencer import GenInferencer
from opencompass.openicl.icl_evaluator import AccEvaluator
from opencompass.datasets import C3Dataset_V2
from opencompass.utils.text_postprocessors import first_capital_postprocess
C3_reader_cfg = dict(
input_columns=[
'question',
'content',
'choice0',
'choice1',
'choice2',
'choice3',
'choices',
],
output_column='label',
)
C3_infer_cfg = dict(
prompt_template=dict(
type=PromptTemplate,
template=dict(round=[
dict(
role='HUMAN',
prompt=
'{content}\n问:{question}\nA. {choice0}\nB. {choice1}\nC. {choice2}\nD. {choice3}\n请从“A”,“B”,“C”,“D”中进行选择。\n答:',
),
]),
),
retriever=dict(type=ZeroRetriever),
inferencer=dict(type=GenInferencer),
)
C3_eval_cfg = dict(
evaluator=dict(type=AccEvaluator),
pred_role='BOT',
pred_postprocessor=dict(type=first_capital_postprocess),
)
C3_datasets = [
dict(
abbr='C3',
type=C3Dataset_V2,
path='./data/CLUE/C3/dev_0.json',
reader_cfg=C3_reader_cfg,
infer_cfg=C3_infer_cfg,
eval_cfg=C3_eval_cfg,
)
]
from mmengine.config import read_base
with read_base():
from .CLUE_C3_ppl_e24a31 import C3_datasets # noqa: F401, F403
from opencompass.openicl.icl_prompt_template import PromptTemplate
from opencompass.openicl.icl_retriever import ZeroRetriever
from opencompass.openicl.icl_inferencer import PPLInferencer
from opencompass.openicl.icl_evaluator import AccEvaluator
from opencompass.datasets import C3Dataset
C3_reader_cfg = dict(
input_columns=[
'question', 'content', 'choice0', 'choice1', 'choice2', 'choice3',
'choices'
],
output_column='label')
C3_infer_cfg = dict(
prompt_template=dict(
type=PromptTemplate,
template={
0: '文章:{content}\n问题:{question}\n答案:{choice0}',
1: '文章:{content}\n问题:{question}\n答案:{choice1}',
2: '文章:{content}\n问题:{question}\n答案:{choice2}',
3: '文章:{content}\n问题:{question}\n答案:{choice3}'
}),
retriever=dict(type=ZeroRetriever),
inferencer=dict(type=PPLInferencer))
C3_eval_cfg = dict(evaluator=dict(type=AccEvaluator))
C3_datasets = [
dict(
type=C3Dataset,
abbr='C3',
path='./data/CLUE/C3/dev_0.json',
reader_cfg=C3_reader_cfg,
infer_cfg=C3_infer_cfg,
eval_cfg=C3_eval_cfg)
]
from opencompass.openicl.icl_prompt_template import PromptTemplate
from opencompass.openicl.icl_retriever import ZeroRetriever
from opencompass.openicl.icl_inferencer import PPLInferencer
from opencompass.openicl.icl_evaluator import AccEvaluator
from opencompass.datasets import C3Dataset
C3_reader_cfg = dict(
input_columns=[
'question', 'content', 'choice0', 'choice1', 'choice2', 'choice3',
'choices'
],
output_column='label')
C3_infer_cfg = dict(
prompt_template=dict(
type=PromptTemplate,
template={
i: dict(round=[
dict(role='HUMAN', prompt='文章:{content}\n问题:{question}'),
dict(role='BOT', prompt=f'答案:{{choice{i}}}')
])
for i in range(4)
}),
retriever=dict(type=ZeroRetriever),
inferencer=dict(type=PPLInferencer))
C3_eval_cfg = dict(evaluator=dict(type=AccEvaluator))
C3_datasets = [
dict(
type=C3Dataset,
abbr='C3',
path='./data/CLUE/C3/dev_0.json',
reader_cfg=C3_reader_cfg,
infer_cfg=C3_infer_cfg,
eval_cfg=C3_eval_cfg)
]
from mmengine.config import read_base
with read_base():
from .CLUE_CMRC_gen_1bd3c8 import CMRC_datasets # noqa: F401, F403
from opencompass.openicl.icl_prompt_template import PromptTemplate
from opencompass.openicl.icl_retriever import ZeroRetriever
from opencompass.openicl.icl_inferencer import GenInferencer
from opencompass.openicl.icl_evaluator import EMEvaluator
from opencompass.datasets import CMRCDataset, cmrc_postprocess
CMRC_reader_cfg = dict(
input_columns=['question', 'context'], output_column='answers')
CMRC_infer_cfg = dict(
prompt_template=dict(
type=PromptTemplate,
template=dict(round=[
dict(
role='HUMAN',
prompt='根据文章回答问题。你的答案应该尽可能简练,请以 ‘答案是’ 开头的句式作答。\n文章:{context}\n问:{question}\n答:'),
])),
retriever=dict(type=ZeroRetriever),
inferencer=dict(type=GenInferencer))
CMRC_eval_cfg = dict(
evaluator=dict(type=EMEvaluator),
pred_role='BOT',
pred_postprocessor=dict(type=cmrc_postprocess),
)
CMRC_datasets = [
dict(
type=CMRCDataset,
abbr='CMRC_dev',
path='opencompass/cmrc_dev',
reader_cfg=CMRC_reader_cfg,
infer_cfg=CMRC_infer_cfg,
eval_cfg=CMRC_eval_cfg),
]
from opencompass.openicl.icl_prompt_template import PromptTemplate
from opencompass.openicl.icl_retriever import ZeroRetriever
from opencompass.openicl.icl_inferencer import GenInferencer
from opencompass.openicl.icl_evaluator import EMEvaluator
from opencompass.datasets import CMRCDataset
CMRC_reader_cfg = dict(
input_columns=['question', 'context'], output_column='answers')
CMRC_infer_cfg = dict(
prompt_template=dict(
type=PromptTemplate,
template=dict(round=[
dict(role='HUMAN', prompt='文章:{context}\n根据上文,回答如下问题:{question}'),
dict(role='BOT', prompt='答:'),
])),
retriever=dict(type=ZeroRetriever),
inferencer=dict(type=GenInferencer))
CMRC_eval_cfg = dict(
evaluator=dict(type=EMEvaluator),
pred_role='BOT',
)
CMRC_datasets = [
dict(
type=CMRCDataset,
abbr='CMRC_dev',
path='opencompass/cmrc_dev',
reader_cfg=CMRC_reader_cfg,
infer_cfg=CMRC_infer_cfg,
eval_cfg=CMRC_eval_cfg),
]
from opencompass.openicl.icl_prompt_template import PromptTemplate
from opencompass.openicl.icl_retriever import ZeroRetriever
from opencompass.openicl.icl_inferencer import GenInferencer
from opencompass.openicl.icl_evaluator import EMEvaluator
from opencompass.datasets import CMRCDataset
CMRC_reader_cfg = dict(
input_columns=['question', 'context'], output_column='answers')
CMRC_infer_cfg = dict(
prompt_template=dict(
type=PromptTemplate,
template='文章:{context}\n根据上文,回答如下问题: {question}\n答:'),
retriever=dict(type=ZeroRetriever),
inferencer=dict(type=GenInferencer))
CMRC_eval_cfg = dict(evaluator=dict(type=EMEvaluator), )
CMRC_datasets = [
dict(
type=CMRCDataset,
abbr='CMRC_dev',
path='opencompass/cmrc_dev',
reader_cfg=CMRC_reader_cfg,
infer_cfg=CMRC_infer_cfg,
eval_cfg=CMRC_eval_cfg),
]
from opencompass.openicl.icl_prompt_template import PromptTemplate
from opencompass.openicl.icl_retriever import ZeroRetriever
from opencompass.openicl.icl_inferencer import GenInferencer
from opencompass.openicl.icl_evaluator import EMEvaluator
from opencompass.datasets import CMRCDataset
CMRC_reader_cfg = dict(
input_columns=['question', 'context'], output_column='answers')
CMRC_infer_cfg = dict(
prompt_template=dict(
type=PromptTemplate,
template=dict(round=[
dict(
role='HUMAN',
prompt='文章:{context}\n根据上文,回答如下问题:\n{question}\n答:'),
])),
retriever=dict(type=ZeroRetriever),
inferencer=dict(type=GenInferencer))
CMRC_eval_cfg = dict(
evaluator=dict(type=EMEvaluator),
pred_role='BOT',
)
CMRC_datasets = [
dict(
type=CMRCDataset,
abbr='CMRC_dev',
path='opencompass/cmrc_dev',
reader_cfg=CMRC_reader_cfg,
infer_cfg=CMRC_infer_cfg,
eval_cfg=CMRC_eval_cfg),
]
from mmengine.config import read_base
with read_base():
from .CLUE_DRCD_gen_1bd3c8 import DRCD_datasets # noqa: F401, F403
from opencompass.openicl.icl_prompt_template import PromptTemplate
from opencompass.openicl.icl_retriever import ZeroRetriever
from opencompass.openicl.icl_inferencer import GenInferencer
from opencompass.openicl.icl_evaluator import EMEvaluator
from opencompass.datasets import DRCDDataset, drcd_postprocess
DRCD_reader_cfg = dict(
input_columns=['question', 'context'], output_column='answers')
DRCD_infer_cfg = dict(
prompt_template=dict(
type=PromptTemplate,
template=dict(round=[
dict(
role='HUMAN',
prompt='根据文章回答问题。你的答案应该尽可能简练,请以 ‘答案是’ 开头的句式作答。\n文章:{context}\n问:{question}\n答:'),
])),
retriever=dict(type=ZeroRetriever),
inferencer=dict(type=GenInferencer))
DRCD_eval_cfg = dict(
evaluator=dict(type=EMEvaluator),
pred_role='BOT',
pred_postprocessor=dict(type=drcd_postprocess),
)
DRCD_datasets = [
dict(
type=DRCDDataset,
abbr='DRCD_dev',
path='opencompass/drcd_dev',
reader_cfg=DRCD_reader_cfg,
infer_cfg=DRCD_infer_cfg,
eval_cfg=DRCD_eval_cfg),
]
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment