Commit 8d4db4be authored by jerrrrry's avatar jerrrrry
Browse files

Initial commit

parents
# 使用官方光源基础镜像
FROM image.sourcefind.cn:5000/dcu/admin/base/custom:vllm0.8.5-ubuntu22.04-dtk25.04-rc7-das1.5-py3.10-20250521-fixpy-rocblas0521-beta2
# 安装基础工具
RUN apt-get update && \
apt-get install -y --no-install-recommends \
iproute2 \
dmidecode \
ipmitool \
git \
curl \
jq \
lshw \
iputils-ping \
pciutils \
&& rm -rf /var/lib/apt/lists/*
# 创建目录结构
RUN mkdir -p /workspace/scripts && \
mkdir -p /workspace/test/env_check_outputs
# 复制脚本并设置权限
COPY ./scripts/run_envcheck.sh /workspace/scripts/
# 验证脚本可执行性
RUN ls -l /workspace/scripts/ && \
file /workspace/scripts/run_envcheck.sh && \
head -n 1 /workspace/scripts/run_envcheck.sh # 检查shebang
# 设置工作目录(建议直接设为脚本目录)
WORKDIR /workspace/scripts/
# 直接执行脚本(无需cd)
CMD bash -c "\
bash run_envcheck.sh"
\ No newline at end of file
#!/bin/bash
set -eo pipefail # 严格错误处理
log_dir="/workspace/test/env_check_outputs"
mkdir -p "$log_dir"
echo "==================== 开始系统环境检查 ===================="
# 基础检查函数
run_test() {
local name=$1
shift
echo "[RUN] $name"
"$@" 2>&1 | tee "$log_dir/${name}.log" || {
echo "[WARN] $name 检查失败" | tee -a "$log_dir/${name}.log"
return 1
}
}
run_pipe_test() {
local name=$1
local cmd=$2
echo "[RUN] $name"
bash -c "$cmd" 2>&1 | tee "$log_dir/${name}.log" || {
echo "[WARN] $name 检查失败" | tee -a "$log_dir/${name}.log"
return 1
}
}
# 系统基础检查
run_test rocm_bandwidth_test rocm-bandwidth-test
run_test hy_smi hy-smi
run_test hy_smi_config hy-smi -c
run_test pip_list pip list
run_test cpu_info lscpu
run_test cpu_cores nproc
run_test memory_usage free -h
run_test disk_usage df -h
run_test hardware_info lshw -short || true
run_test network_interfaces ip a
run_test ibstat ibstat
run_test ibdev2netdev ibdev2netdev
run_pipe_test ACS_stat "lspci -vvv | grep -i acsct"
run_test rocm_info rocminfo || true
echo "==================== RCCL-TEST ===================="
cd /workspace/test/env_check_outputs
if command -v git &>/dev/null && command -v make &>/dev/null; then
if [ ! -d rccl-tests ]; then
git clone https://www.ghproxy.cn/github.com/ROCm/rccl-tests.git --depth 1 -b master || exit 1
fi
cd rccl-tests || exit 1
source /opt/dtk/env.sh
if make MPI=1 MPI_HOME=/opt/mpi ROCM_HOME=/opt/dtk NCCL_HOME=/opt/dtk/rccl \
CUSTOM_RCCL_LIB=/opt/dtk/rccl/lib/librccl.so -j32; then
./build/all_reduce_perf -b 8 -e 1G -f 2 -g 8 2>&1 | tee "$log_dir/all_reduce_perf_8.log"
./build/all_reduce_perf -b 4 -e 1G -f 2 -g 4 2>&1 | tee "$log_dir/all_reduce_perf_4.log"
else
echo "[ERROR] RCCL编译失败" | tee "$log_dir/rccl_build_fail.log"
fi
cd ..
else
echo "[WARN] 缺少git或make,跳过RCCL测试" | tee "$log_dir/rccl_skip.log"
fi
echo "==================== DCU-ENV-CHECK ===================="
if [ ! -d dcu_env_check ]; then
git clone http://developer.sourcefind.cn/codes/OpenDAS/dcu_env_check.git || {
echo "[ERROR] DCU环境检查代码克隆失败" | tee "$log_dir/dcu_clone_fail.log"
exit 1
}
fi
cd dcu_env_check && {
bash system_check.sh 2>&1 | tee "$log_dir/dcu_env_check.log"
cd ..
} || {
echo "[ERROR] DCU环境检查执行失败" | tee "$log_dir/dcu_check_fail.log"
exit 1
}
echo "==================== 检查完成 ===================="
echo "所有日志已保存至: $log_dir"
ls -lh "$log_dir"
\ No newline at end of file
docker build -t env_check . && \
docker run \
-v /usr/local/hyhal:/usr/local/hyhal:ro \
-v /opt/hyhal:/opt/hyhal:ro \
-v $PWD/outputs/env_check_outputs:/workspace/test/env_check_outputs/ \
--ipc=host \
--cap-add=SYS_PTRACE \
--group-add video \
--ulimit memlock=-1:-1 \
--privileged \
--device=/dev/kfd \
--device=/dev/mkfd \
--device=/dev/dri \
--shm-size=500G \
-u root \
--security-opt seccomp=unconfined \
env_check \
\ No newline at end of file
# 使用官方光源基础镜像
FROM image.sourcefind.cn:5000/dcu/admin/base/custom:vllm0.8.5-ubuntu22.04-dtk25.04-rc7-das1.5-py3.10-20250521-fixpy-rocblas0521-beta2
# 安装基础工具
RUN apt-get update && \
apt-get install -y --no-install-recommends \
iproute2 \
dmidecode \
ipmitool \
git \
curl \
jq \
lshw \
iputils-ping \
pciutils \
&& rm -rf /var/lib/apt/lists/*
# 创建目录结构
RUN mkdir -p /workspace/scripts && \
mkdir -p /workspace/configs && \
mkdir -p /workspace/test/env_check_outputs && \
mkdir -p /workspace/test/inference_outputs && \
mkdir -p /workspace/test/models
# 复制脚本
COPY ./scripts/* /workspace/scripts/
COPY ./configs/* /workspace/configs/
RUN chmod +x /workspace/scripts/*
RUN chmod +x /workspace/configs*
# 设置工作目录(建议直接设为脚本目录)
WORKDIR /workspace/scripts/
# 直接执行脚本(无需cd)
CMD bash -c "\
bash entrypoint.sh"
\ No newline at end of file
# 格式: 模型ID;本地保存路径
#模型ID为modelscope官网指定的id
Qwen/Qwen3-0.6B;/workspace/test/models/Qwen/Qwen3-0.6B
\ No newline at end of file
# 格式说明:
# 模型名称;模型路径;tp;batch;prompt_tokens;completion_tokens;dtype;max_model_len;gpu_memory_utilization
#模型路径为docker容器内的路径
# 多个值用逗号分隔
Qwen3-0.6B;/workspace/test/models/Qwen/Qwen3-0.6B;1;1;512;512;float16;32768;0.95
# SPDX-License-Identifier: Apache-2.0
"""Benchmark offline inference throughput."""
import argparse
import dataclasses
import json
import random
import time
from functools import cache
from typing import Dict, List, Optional, Tuple
import numpy as np
import torch
import uvloop
from PIL import Image
from tqdm import tqdm
from transformers import (AutoModelForCausalLM, AutoTokenizer,
PreTrainedTokenizerBase)
from vllm.inputs import PromptType
from vllm.engine.arg_utils import AsyncEngineArgs, EngineArgs
from vllm.entrypoints.openai.api_server import (
build_async_engine_client_from_engine_args)
from vllm.inputs import TextPrompt
from vllm.lora.request import LoRARequest
from vllm.lora.utils import get_adapter_absolute_path
from vllm.multimodal import MultiModalDataDict
from vllm.sampling_params import BeamSearchParams
from vllm.transformers_utils.tokenizer import AnyTokenizer, get_lora_tokenizer
from vllm.utils import FlexibleArgumentParser, merge_async_iterators
@dataclasses.dataclass
class SampleRequest:
"""A class representing a single inference request for benchmarking.
Attributes:
prompt: The input text prompt for the model.
prompt_len: The length of the prompt in tokens.
expected_output_len: The expected length of the output in tokens.
multi_modal_data: Optional dictionary containing multi-modal data (e.g.
images).
lora_request: Optional LoRARequest specifying the LoRA to use.
"""
prompt: str
prompt_len: int
expected_output_len: int
multi_modal_data: Optional[MultiModalDataDict] = None
lora_request: Optional[LoRARequest] = None
def _get_prompt_for_image_model(question: str, *, model: str) -> str:
"""Prepend and append special tokens around the question to form a prompt.
Args:
question: The input question text to wrap with special tokens
model: The name of the model being used, to determine which special
tokens to add
Returns:
The formatted prompt string with appropriate special tokens for the
model
Raises:
ValueError: If an unsupported model name is provided
"""
model = model.lower()
if "pixtral" in model:
return f"<s>[INST]{question}\n[IMG][/INST]"
raise ValueError(f"Unsupported model {model}")
@cache
def lora_path_on_disk(lora_path: str) -> str:
return get_adapter_absolute_path(lora_path)
lora_tokenizer_cache: Dict[int, AnyTokenizer] = {}
def get_random_lora_request(
args: argparse.Namespace
) -> Tuple[LoRARequest, Optional[AnyTokenizer]]:
global lora_tokenizer_cache
lora_id = random.randint(1, args.max_loras)
lora_request = LoRARequest(lora_name=str(lora_id),
lora_int_id=lora_id,
lora_path=lora_path_on_disk(args.lora_path))
if lora_id not in lora_tokenizer_cache:
lora_tokenizer_cache[lora_id] = get_lora_tokenizer(lora_request)
return lora_request, lora_tokenizer_cache[lora_id]
def sample_requests(tokenizer: PreTrainedTokenizerBase,
args: argparse.Namespace) -> List[SampleRequest]:
dataset_path: str = args.dataset
num_requests: int = args.num_prompts
fixed_output_len: Optional[int] = args.output_len
model: str = args.model
if fixed_output_len is not None and fixed_output_len < 4:
raise ValueError("output_len too small")
# Load the dataset.
with open(dataset_path) as f:
dataset = json.load(f)
# Filter out the conversations with less than 2 turns.
dataset = [data for data in dataset if len(data["conversations"]) >= 2]
# Shuffle the dataset.
random.shuffle(dataset)
# Filter out sequences that are too long or too short
filtered_dataset: List[SampleRequest] = []
for data in tqdm(dataset,
total=len(filtered_dataset),
desc="sampling requests"):
if len(filtered_dataset) == num_requests:
break
# Only keep the first two turns of each conversation.
prompt = data["conversations"][0]["value"]
completion = data["conversations"][1]["value"]
multi_modal_data: Optional[MultiModalDataDict] = None
if "image" in data:
multi_modal_data = multi_modal_data or {}
image_path = data["image"]
# TODO(vllm-project/vllm/issues/9778): Support multiple images.
assert isinstance(image_path,
str), "Only support single image input"
try:
multi_modal_data["image"] = Image.open(image_path).convert(
"RGB")
except FileNotFoundError:
# Ignore datapoint where asset is missing
continue
prompt = _get_prompt_for_image_model(question=prompt, model=model)
request_tokenizer = tokenizer
lora_request: Optional[LoRARequest] = None
if args.enable_lora:
lora_request, lora_tokenizer = get_random_lora_request(args)
if lora_tokenizer:
request_tokenizer = lora_tokenizer
# Tokenize the prompts and completions.
prompt_token_ids = request_tokenizer(prompt).input_ids
completion_token_ids = request_tokenizer(completion).input_ids
prompt_len = len(prompt_token_ids)
output_len = len(completion_token_ids
) if fixed_output_len is None else fixed_output_len
if prompt_len < 4 or output_len < 4:
# Prune too short sequences.
continue
if prompt_len > 1024 or prompt_len + output_len > 2048:
# Prune too long sequences.
continue
filtered_dataset.append(
SampleRequest(prompt=prompt,
prompt_len=prompt_len,
expected_output_len=output_len,
multi_modal_data=multi_modal_data,
lora_request=lora_request))
return filtered_dataset
def run_vllm(
requests_json: List[SampleRequest],
n: int,
num_iters_warmup: int,
engine_args: EngineArgs,
) -> float:
from vllm import LLM, SamplingParams
llm = LLM(**dataclasses.asdict(engine_args))
# warmup
warmup_sampling_params = SamplingParams(
n=args.n,
temperature=1.0,
top_p=1.0,
ignore_eos=True,
max_tokens=10,
)
dummy_prompt_token_ids = np.random.randint(10000, size=(1,10))
dummy_prompts: List[PromptType] = [{
"prompt_token_ids": batch
} for batch in dummy_prompt_token_ids.tolist()]
print("Warming up...")
for _ in tqdm(range(num_iters_warmup), desc="Warmup iterations"):
llm.generate(dummy_prompts,
sampling_params=warmup_sampling_params,
use_tqdm=False)
info_json={}
for ELEprompt in args.num_prompts:
for ELEinput,ELEoutput in zip(args.input_len,args.output_len):
info={}
requests=requests_json["{}_{}_{}".format(ELEprompt,ELEinput,ELEoutput)]
# Add the requests to the engine.
prompts: List[TextPrompt] = []
sampling_params: List[SamplingParams] = []
for request in requests:
prompts.append(
TextPrompt(prompt=request.prompt,
multi_modal_data=request.multi_modal_data))
sampling_params.append(
SamplingParams(
n=n,
temperature=1.0,
top_p=1.0,
ignore_eos=True,
max_tokens=request.expected_output_len,
))
lora_requests: Optional[List[LoRARequest]] = None
if engine_args.enable_lora:
lora_requests = [request.lora_request for request in requests]
use_beam_search = False
if not use_beam_search:
start = time.perf_counter()
real_output=llm.generate(prompts,
sampling_params,
lora_request=lora_requests,
use_tqdm=True)
end = time.perf_counter()
else:
assert lora_requests is None, "BeamSearch API does not support LoRA"
prompts = [request.prompt for request in requests]
# output_len should be the same for all requests.
output_len = requests[0][2]
for request in requests:
assert request.expected_output_len == output_len
start = time.perf_counter()
real_output = llm.beam_search(
prompts,
BeamSearchParams(
beam_width=n,
max_tokens=output_len,
ignore_eos=True,
))
end = time.perf_counter()
total_ttfts = []
total_tpops = []
total_output_token_throughput = []
total_inout_token_throughput = []
for output in real_output:
ttft_ = output.metrics.first_token_time - output.metrics.arrival_time
tpop_ = (output.metrics.finished_time - output.metrics.arrival_time - ttft_) / (ELEoutput-1)
output_token_throughput = (ELEoutput) / (output.metrics.finished_time - output.metrics.arrival_time)
inout_token_throughput = (ELEoutput + ELEinput) / (output.metrics.finished_time - output.metrics.arrival_time)
total_ttfts.append(ttft_)
total_tpops.append(tpop_)
total_output_token_throughput.append(output_token_throughput)
total_inout_token_throughput.append(inout_token_throughput)
total_num_tokens = sum(request.prompt_len + request.expected_output_len
for request in requests)
total_output_tokens = sum(request.expected_output_len
for request in requests)
# ttft_mean = np.mean(total_ttfts)
# ttft_median = np.median(total_ttfts or 0)
# ttft_p99 = np.percentile(total_ttfts or 0, 99)
# tpop_mean = np.mean(total_tpops)
# tpop_median = np.median(total_tpops or 0)
# tpop_p99 = np.percentile(total_tpops or 0, 99)
# output_token_throughput_mean = np.mean(total_output_token_throughput)
# output_token_throughput_median = np.median(total_output_token_throughput or 0)
# output_token_throughput_p99 = np.percentile(total_output_token_throughput or 0, 99)
# inout_token_throughput_mean = np.mean(total_inout_token_throughput)
# inout_token_throughput_median = np.median(total_inout_token_throughput or 0)
# inout_token_throughput_p99 = np.percentile(total_inout_token_throughput or 0, 99)
info["elapsed_time"] = np.around(end - start,2)
info["Throughput"] = np.around(len(requests) / info['elapsed_time'],2)
info["total_tokens"] = np.around(total_num_tokens / info['elapsed_time'],2)
info["output_tokens"] = np.around(total_output_tokens / info['elapsed_time'],2)
info["ttft_mean"] = np.around(np.mean(total_ttfts),5)
info["ttft_median"] = np.around(np.median(total_ttfts or 0),5)
info["ttft_p99"] = np.around(np.percentile(total_ttfts or 0, 99),5)
info["tpop_mean"] = np.around(np.mean(total_tpops),4)
info["tpop_median"] = np.around(np.median(total_tpops or 0),5)
info["tpop_p99"] = np.around(np.percentile(total_tpops or 0, 99),5)
info["output_token_throughput_mean"] = np.around(np.mean(total_output_token_throughput),2)
info["output_token_throughput_median"] = np.around(np.median(total_output_token_throughput or 0),2)
info["output_token_throughput_p99"] = np.around(np.percentile(total_output_token_throughput or 0, 99),2)
info["inout_token_throughput_mean"] = np.around(np.mean(total_inout_token_throughput),2)
info["inout_token_throughput_median"] = np.around(np.median(total_inout_token_throughput or 0),2)
info["inout_token_throughput_p99"] = np.around(np.percentile(total_inout_token_throughput or 0, 99),2)
info_json["{}_{}_{}".format(ELEprompt,ELEinput,ELEoutput)] = info
print("promt:{},input:{},output:{}".format(ELEprompt,ELEinput,ELEoutput))
print(f"Latency: {info['elapsed_time']:.2f} s")
print(f"Throughput: {len(requests) / info['elapsed_time']:.2f} requests/s, "
f"{total_num_tokens / info['elapsed_time']:.2f} total tokens/s, "
f"{total_output_tokens / info['elapsed_time']:.2f} output tokens/s")
print("==============================================")
print(f"total_out_tokens: {total_output_tokens: .2f} tokens")
print(f"elapsed_time: {info['elapsed_time']: .2f} s") # 总耗时
print(f"TTFT_mean: {info['ttft_mean']*1000: .2f} ms") # 首字延时
print(f"ttft_p99: {info['ttft_p99']*1000: .2f} ms")
print(f"ttft_median: {info['ttft_median']*1000: .2f} ms")
print(f"TPOP_mean: {info['tpop_mean']*1000: .2f} ms") # 单字decode时间
print(f"tpop_median: {info['tpop_median']*1000: .2f} ms")
print(f"tpop_p99: {info['tpop_p99']*1000: .2f} ms")
print(f"output_token_throughput_mean: {info['output_token_throughput_mean']:.2f} tokens/s") # 单路生成吞吐
print(f"output_token_throughput_median: {info['output_token_throughput_median']:.2f} tokens/s")
print(f"output_token_throughput_p99: {info['output_token_throughput_p99']:.2f} tokens/s")
print(f"inout_token_throughput_mean: {info['inout_token_throughput_mean']:.2f} tokens/s") # 单路总吞吐
print(f"tinout_token_throughput_median: {info['inout_token_throughput_median']:.2f} tokens/s")
print(f"inout_token_throughput_p99: {info['inout_token_throughput_p99']:.2f} tokens/s")
print("==============================================")
print("\n")
return info_json
async def run_vllm_async(
requests: List[SampleRequest],
n: int,
engine_args: AsyncEngineArgs,
disable_frontend_multiprocessing: bool = False,
) -> float:
from vllm import SamplingParams
async with build_async_engine_client_from_engine_args(
engine_args, disable_frontend_multiprocessing) as llm:
# Add the requests to the engine.
prompts: List[TextPrompt] = []
sampling_params: List[SamplingParams] = []
lora_requests: List[Optional[LoRARequest]] = []
for request in requests:
prompts.append(
TextPrompt(prompt=request.prompt,
multi_modal_data=request.multi_modal_data))
sampling_params.append(
SamplingParams(
n=n,
temperature=1.0,
top_p=1.0,
ignore_eos=True,
max_tokens=request.expected_output_len,
))
lora_requests.append(request.lora_request)
generators = []
start = time.perf_counter()
for i, (prompt, sp,
lr) in enumerate(zip(prompts, sampling_params, lora_requests)):
generator = llm.generate(prompt,
sp,
lora_request=lr,
request_id=f"test{i}")
generators.append(generator)
all_gens = merge_async_iterators(*generators)
async for i, res in all_gens:
pass
end = time.perf_counter()
return end - start
def run_hf(
requests: List[SampleRequest],
model: str,
tokenizer: PreTrainedTokenizerBase,
n: int,
max_batch_size: int,
trust_remote_code: bool,
) -> float:
llm = AutoModelForCausalLM.from_pretrained(
model, torch_dtype=torch.float16, trust_remote_code=trust_remote_code)
if llm.config.model_type == "llama":
# To enable padding in the HF backend.
tokenizer.pad_token = tokenizer.eos_token
llm = llm.cuda()
pbar = tqdm(total=len(requests))
start = time.perf_counter()
batch: List[str] = []
max_prompt_len = 0
max_output_len = 0
for i in range(len(requests)):
prompt, prompt_len, output_len = requests[i]
# Add the prompt to the batch.
batch.append(prompt)
max_prompt_len = max(max_prompt_len, prompt_len)
max_output_len = max(max_output_len, output_len)
if len(batch) < max_batch_size and i != len(requests) - 1:
# Check if we can add more requests to the batch.
_, next_prompt_len, next_output_len = requests[i + 1]
if (max(max_prompt_len, next_prompt_len) +
max(max_output_len, next_output_len)) <= 2048:
# We can add more requests to the batch.
continue
# Generate the sequences.
input_ids = tokenizer(batch, return_tensors="pt",
padding=True).input_ids
llm_outputs = llm.generate(
input_ids=input_ids.cuda(),
do_sample=True,
num_return_sequences=n,
temperature=1.0,
top_p=1.0,
use_cache=True,
max_new_tokens=max_output_len,
)
# Include the decoding time.
tokenizer.batch_decode(llm_outputs, skip_special_tokens=True)
pbar.update(len(batch))
# Clear the batch.
batch = []
max_prompt_len = 0
max_output_len = 0
end = time.perf_counter()
return end - start
def run_mii(
requests: List[SampleRequest],
model: str,
tensor_parallel_size: int,
output_len: int,
) -> float:
from mii import client, serve
llm = serve(model, tensor_parallel=tensor_parallel_size)
prompts = [request.prompt for request in requests]
start = time.perf_counter()
llm.generate(prompts, max_new_tokens=output_len)
end = time.perf_counter()
client = client(model)
client.terminate_server()
return end - start
def main(args: argparse.Namespace):
print(args)
random.seed(args.seed)
# Sample the requests.
tokenizer = AutoTokenizer.from_pretrained(
args.tokenizer, trust_remote_code=args.trust_remote_code)
if args.dataset is None:
vocab_size = tokenizer.vocab_size
requests_json={}
for ELEprompt in args.num_prompts:
for ELEinput,ELEoutput in zip(args.input_len,args.output_len):
requests = []
for _ in range(ELEprompt):
request_tokenizer = tokenizer
lora_request: Optional[LoRARequest] = None
if args.enable_lora:
lora_request, lora_tokenizer = get_random_lora_request(args)
if lora_tokenizer:
request_tokenizer = lora_tokenizer
# Synthesize a prompt with the given input length.
candidate_ids = [
random.randint(0, vocab_size - 1)
for _ in range(ELEinput)
]
# As tokenizer may add additional tokens like BOS, we need to try
# different lengths to get the desired input length.
for _ in range(5): # Max attempts to correct
candidate_prompt = request_tokenizer.decode(candidate_ids)
tokenized_len = len(request_tokenizer.encode(candidate_prompt))
if tokenized_len == ELEinput:
break
# Adjust length based on difference
diff = ELEinput - tokenized_len
if diff > 0:
candidate_ids.extend([
random.randint(100, vocab_size - 100)
for _ in range(diff)
])
else:
candidate_ids = candidate_ids[:diff]
requests.append(
SampleRequest(prompt=candidate_prompt,
prompt_len=ELEinput,
expected_output_len=ELEoutput,
lora_request=lora_request))
requests_json["{}_{}_{}".format(ELEprompt,ELEinput,ELEoutput)]=requests
else:
requests = sample_requests(tokenizer, args)
is_multi_modal = any(request.multi_modal_data is not None
for request in requests)
if args.backend == "vllm":
if args.async_engine:
elapsed_time = uvloop.run(
run_vllm_async(
requests,
args.n,
AsyncEngineArgs.from_cli_args(args),
args.disable_frontend_multiprocessing,
))
else:
info_json = run_vllm(requests_json, args.n, args.num_iters_warmup,
EngineArgs.from_cli_args(args))
elif args.backend == "hf":
assert args.tensor_parallel_size == 1
elapsed_time = run_hf(requests, args.model, tokenizer, args.n,
args.hf_max_batch_size, args.trust_remote_code)
elif args.backend == "mii":
elapsed_time = run_mii(requests, args.model, args.tensor_parallel_size,
args.output_len)
else:
raise ValueError(f"Unknown backend: {args.backend}")
# file_name=args.model.rsplit("/")[-1]+"-tp"+str(args.tensor_parallel_size)+".txt"
if is_multi_modal:
print("\033[91mWARNING\033[0m: Multi-modal request detected. The "
"following metrics are not accurate because image tokens are not"
" counted. See vllm-project/vllm/issues/9778 for details.")
with open(args.output_json,"w") as f:
title="bs_in_out"
data_keys=info_json[list(info_json.keys())[0]].keys()
keys_string = ','.join(data_keys)
title=title+","+keys_string
f.write(title)
f.write("\n")
for key, value in info_json.items():
values_as_strings = [str(value) for value in info_json[key].values()]
values_string = ','.join(values_as_strings)
key=key+","+values_string
f.writelines(key)
f.write("\n")
# json.dump(info_json, f, indent=4)
# Output JSON results if specified
# if args.output_json:
# results = {
# "elapsed_time": elapsed_time,
# "num_requests": len(requests),
# "total_num_tokens": total_num_tokens,
# "requests_per_second": len(requests) / elapsed_time,
# "tokens_per_second": total_num_tokens / elapsed_time,
# }
# with open(args.output_json, "w") as f:
# json.dump(results, f, indent=4)
if __name__ == "__main__":
parser = FlexibleArgumentParser(description="Benchmark the throughput.")
parser.add_argument("--backend",
type=str,
choices=["vllm", "hf", "mii"],
default="vllm")
parser.add_argument("--dataset",
type=str,
default=None,
help="Path to the dataset. The dataset is expected to "
"be a json in form of List[Dict[..., conversations: "
"List[Dict[..., value: <prompt_or_response>]]]]")
parser.add_argument("--input-len",
type=int,
nargs="*",
default=None,
help="Input prompt length for each request")
parser.add_argument("--output-len",
type=int,
nargs="*",
default=None,
help="Output length for each request. Overrides the "
"output length from the dataset.")
parser.add_argument("--n",
type=int,
default=1,
help="Number of generated sequences per prompt.")
parser.add_argument('--num-iters-warmup',
type=int,
default=1,
help='Number of iterations to run for warmup.')
parser.add_argument("--num-prompts",
type=int,
nargs="*",
default=1000,
help="Number of prompts to process.")
parser.add_argument("--hf-max-batch-size",
type=int,
default=None,
help="Maximum batch size for HF backend.")
parser.add_argument(
'--output-json',
type=str,
default=None,
help='Path to save the throughput results in JSON format.')
parser.add_argument("--async-engine",
action='store_true',
default=False,
help="Use vLLM async engine rather than LLM class.")
parser.add_argument("--disable-frontend-multiprocessing",
action='store_true',
default=False,
help="Disable decoupled async engine frontend.")
# LoRA
parser.add_argument(
"--lora-path",
type=str,
default=None,
help="Path to the lora adapters to use. This can be an absolute path, "
"a relative path, or a Hugging Face model identifier.")
parser = AsyncEngineArgs.add_cli_args(parser)
args = parser.parse_args()
if args.tokenizer is None:
args.tokenizer = args.model
if args.dataset is None:
assert args.input_len is not None
assert args.output_len is not None
else:
assert args.input_len is None
if args.enable_lora:
assert args.lora_path is not None
if args.backend == "vllm":
if args.hf_max_batch_size is not None:
raise ValueError("HF max batch size is only for HF backend.")
elif args.backend == "hf":
if args.hf_max_batch_size is None:
raise ValueError("HF max batch size is required for HF backend.")
if args.quantization is not None:
raise ValueError("Quantization is only for vLLM backend.")
if args.enable_lora is not None:
raise ValueError("LoRA benchmarking is only supported for vLLM"
" backend")
elif args.backend == "mii":
if args.dtype != "auto":
raise ValueError("dtype must be auto for MII backend.")
if args.n != 1:
raise ValueError("n must be 1 for MII backend.")
if args.quantization is not None:
raise ValueError("Quantization is only for vLLM backend.")
if args.hf_max_batch_size is not None:
raise ValueError("HF max batch size is only for HF backend.")
if args.tokenizer != args.model:
raise ValueError("Tokenizer must be the same as the model for MII "
"backend.")
if args.enable_lora is not None:
raise ValueError("LoRA benchmarking is only supported for vLLM"
" backend")
main(args)
#!/bin/bash
# ModelScope CLI批量下载脚本
# 使用说明: ./ms_download.sh -f 模型列表.cfg [-F 强制重新下载]
pip install modelscope -i https://mirrors.tuna.tsinghua.edu.cn/pypi/web/simple
# 参数解析
CONFIG_FILE=""
FORCE_DOWNLOAD=false
MODELSCOPE_CMD="modelscope download"
while getopts "f:F" opt; do
case $opt in
f) CONFIG_FILE="$OPTARG" ;;
F) FORCE_DOWNLOAD=true ;;
*) echo "Usage: $0 -f config.cfg [-F]" >&2
exit 1
esac
done
# 检查配置文件
if [ ! -f "$CONFIG_FILE" ]; then
echo "Error: Config file $CONFIG_FILE not found!" >&2
exit 1
fi
# 检查modelscope是否安装
if ! command -v modelscope &> /dev/null; then
echo "Error: modelscope CLI not installed. Please install with: pip install modelscope" >&2
exit 1
fi
# 读取配置文件
TOTAL=0
SUCCESS=0
FAILED=0
echo "=== Starting batch download ==="
while IFS=';' read -r model_id local_dir || [[ -n "$model_id" ]]; do
# 跳过空行和注释
[[ -z "$model_id" || "$model_id" =~ ^# ]] && continue
((TOTAL++))
# 清理变量
model_id=$(echo "$model_id" | xargs)
local_dir=$(echo "$local_dir" | xargs)
echo -e "\n[Progress] $TOTAL. Downloading $model_id"
echo "[Location] $local_dir"
# 检查目录是否存在
if [ "$FORCE_DOWNLOAD" = false ] && [ -d "$local_dir" ]; then
echo "[Status] Skipped (already exists)"
((SUCCESS++))
continue
fi
# 创建目录
mkdir -p "$local_dir" || {
echo "[Error] Failed to create directory $local_dir" >&2
((FAILED++))
continue
}
# 执行下载命令
if $MODELSCOPE_CMD --model "$model_id" --local_dir "$local_dir"; then
echo "[Status] Download successful"
((SUCCESS++))
else
echo "[Error] Download failed" >&2
((FAILED++))
# 删除空目录防止残留
rmdir "$local_dir" 2>/dev/null
fi
done < "$CONFIG_FILE"
# 结果统计
echo -e "\n=== Download summary ==="
echo "Total: $TOTAL"
echo "Success: $SUCCESS"
echo "Failed: $FAILED"
# 退出状态
if [ "$FAILED" -gt 0 ]; then
exit 1
else
exit 0
fi
\ No newline at end of file
#!/bin/bash
# 执行环境检查
echo "==================== 开始系统环境检查 ===================="
/workspace/scripts/run_envcheck.sh
# 下载模型
echo "==================== 开始模型下载 ===================="
/workspace/scripts/download_model.sh -f /workspace/configs/download-list.cfg
# 运行性能测试
echo "==================== 开始性能测试 ===================="
/workspace/scripts/run_benchmark.sh
echo "==================== 所有测试完成 ===================="
\ No newline at end of file
export HIP_VISIBLE_DEVICES=0,1,2,3,4,5,6,7
export ROCBLAS_COMPUTETYPE_FP16R=0
export HSA_FORCE_FINE_GRAIN_PCIE=1
export NCCL_LAUNCH_MODE=GROUP
export NCCL_NCHANNELS_PER_PEER=16
export NCCL_MAX_NCHANNELS=16
export NCCL_MIN_NCHANNELS=16
export CUDA_DEVICE_MAX_CONNECTIONS=1
export NCCL_P2P_LEVEL=SYS
export NCCL_NET_GDR_LEVEL=7
export NCCL_NET_GDR_READ=1
export RCCL_SDMA_COPY_ENABLE=0
export SENDRECV_STREAM_WITH_COMPUTE=1
export LD_LIBRARY_PATH=/usr/local/lib/python3.10/site-packages/torch/lib/:$LD_LIBRARY_PATH
export ALLREDUCE_STREAM_WITH_COMPUTE=1
export ALLREDUCE_STREAM_WITH_COMPUTE=1
export NCCL_MIN_NCHANNELS=16
export NCCL_MAX_NCHANNELS=16
export VLLM_PCIE_USE_CUSTOM_ALLREDUCE=1
export VLLM_RPC_TIMEOUT=100000
#!/bin/bash
# 模型配置文件路径
MODELS_CONFIG="/workspace/configs/model_to_test.cfg"
# 结果目录
RESULTS_DIR="/workspace/test/inference_outputs"
# 读取配置文件,跳过注释和空行
while IFS= read -r line || [[ -n "$line" ]]; do
# 跳过注释行和空行
if [[ "$line" =~ ^# ]] || [[ -z "$line" ]]; then
continue
fi
# 解析配置行
IFS=';' read -ra CONFIG <<< "$line"
model_name="${CONFIG[0]}"
model_path="${CONFIG[1]}"
tp="${CONFIG[2]}"
batch="${CONFIG[3]//,/ }" # 将逗号替换为空格
prompt_tokens="${CONFIG[4]//,/ }"
completion_tokens="${CONFIG[5]//,/ }"
dtype="${CONFIG[6]}"
max_model_len="${CONFIG[7]}"
gpu_memory_utilization="${CONFIG[8]}"
echo "开始测试模型: $model_name"
echo "模型路径: $model_path"
echo "参数配置:"
echo " tensor_parallel_size: $tp"
echo " batch_sizes: $batch"
echo " prompt_tokens: $prompt_tokens"
echo " completion_tokens: $completion_tokens"
echo " dtype: $dtype"
echo " max_model_len: $max_model_len"
echo " gpu_memory_utilization: $gpu_memory_utilization"
# 创建模型专属结果目录
model_result_dir="${RESULTS_DIR}/${model_name}"
mkdir -p "$model_result_dir"
# 运行基准测试
python /workspace/scripts/benchmark_throughput.py \
--model "$model_path" \
--tensor-parallel-size "$tp" \
--num-prompts $batch \
--input-len $prompt_tokens \
--output-len $completion_tokens \
--dtype "$dtype" \
--trust-remote-code \
--max-model-len "$max_model_len" \
--gpu-memory-utilization "$gpu_memory_utilization" \
--output-json "${model_result_dir}/${model_name}_tp${tp}.txt" \
2>&1 | tee "${model_result_dir}/${model_name}_tp${tp}.log"
echo "完成测试模型: $model_name"
echo "结果保存在: $model_result_dir"
echo "----------------------------------------"
done < "$MODELS_CONFIG"
\ No newline at end of file
#!/bin/bash
set -eo pipefail # 严格错误处理
log_dir="/workspace/test/env_check_outputs"
mkdir -p "$log_dir"
echo "==================== 开始系统环境检查 ===================="
# 基础检查函数
run_test() {
local name=$1
shift
echo "[RUN] $name"
"$@" 2>&1 | tee "$log_dir/${name}.log" || {
echo "[WARN] $name 检查失败" | tee -a "$log_dir/${name}.log"
return 1
}
}
run_pipe_test() {
local name=$1
local cmd=$2
echo "[RUN] $name"
bash -c "$cmd" 2>&1 | tee "$log_dir/${name}.log" || {
echo "[WARN] $name 检查失败" | tee -a "$log_dir/${name}.log"
return 1
}
}
# 系统基础检查
run_test rocm_bandwidth_test rocm-bandwidth-test
run_test hy_smi hy-smi
run_test hy_smi_config hy-smi -c
run_test pip_list pip list
run_test cpu_info lscpu
run_test cpu_cores nproc
run_test memory_usage free -h
run_test disk_usage df -h
run_test hardware_info lshw -short || true
run_test network_interfaces ip a
run_test ibstat ibstat
run_test ibdev2netdev ibdev2netdev
run_pipe_test ACS_stat "lspci -vvv | grep -i acsct"
run_test rocm_info rocminfo || true
echo "==================== RCCL-TEST ===================="
cd /workspace/test/env_check_outputs
if command -v git &>/dev/null && command -v make &>/dev/null; then
if [ ! -d rccl-tests ]; then
git clone https://www.ghproxy.cn/github.com/ROCm/rccl-tests.git --depth 1 -b master || exit 1
fi
cd rccl-tests || exit 1
source /opt/dtk/env.sh
if make MPI=1 MPI_HOME=/opt/mpi ROCM_HOME=/opt/dtk NCCL_HOME=/opt/dtk/rccl \
CUSTOM_RCCL_LIB=/opt/dtk/rccl/lib/librccl.so -j32; then
./build/all_reduce_perf -b 8 -e 1G -f 2 -g 8 2>&1 | tee "$log_dir/all_reduce_perf_8.log"
./build/all_reduce_perf -b 4 -e 1G -f 2 -g 4 2>&1 | tee "$log_dir/all_reduce_perf_4.log"
else
echo "[ERROR] RCCL编译失败" | tee "$log_dir/rccl_build_fail.log"
fi
cd ..
else
echo "[WARN] 缺少git或make,跳过RCCL测试" | tee "$log_dir/rccl_skip.log"
fi
echo "==================== DCU-ENV-CHECK ===================="
if [ ! -d dcu_env_check ]; then
git clone http://developer.sourcefind.cn/codes/OpenDAS/dcu_env_check.git || {
echo "[ERROR] DCU环境检查代码克隆失败" | tee "$log_dir/dcu_clone_fail.log"
exit 1
}
fi
cd dcu_env_check && {
bash system_check.sh 2>&1 | tee "$log_dir/dcu_env_check.log"
cd ..
} || {
echo "[ERROR] DCU环境检查执行失败" | tee "$log_dir/dcu_check_fail.log"
exit 1
}
echo "==================== 检查完成 ===================="
echo "所有日志已保存至: $log_dir"
ls -lh "$log_dir"
\ No newline at end of file
docker build -t vllm-test1 . && \
docker run \
-v /usr/local/hyhal:/usr/local/hyhal:ro \
-v /opt/hyhal:/opt/hyhal:ro \
-v $PWD/outputs/env_check_outputs:/workspace/test/env_check_outputs/ \
-v $PWD/outputs/models:/workspace/test/models/ \
-v $PWD/outputs/inference_outputs:/workspace/test/inference_outputs/ \
--ipc=host \
--cap-add=SYS_PTRACE \
--group-add video \
--ulimit memlock=-1:-1 \
--privileged \
--device=/dev/kfd \
--device=/dev/mkfd \
--device=/dev/dri \
--shm-size=500G \
-u root \
--security-opt seccomp=unconfined \
vllm-test1 \
\ No newline at end of file
# 使用官方光源基础镜像
FROM image.sourcefind.cn:5000/dcu/admin/base/custom:vllm0.8.5-ubuntu22.04-dtk25.04-rc7-das1.5-py3.10-20250521-fixpy-rocblas0521-beta2
# 安装基础工具
RUN apt-get update && \
apt-get install -y --no-install-recommends \
iproute2 \
dmidecode \
ipmitool \
git \
curl \
jq \
lshw \
iputils-ping \
pciutils \
&& rm -rf /var/lib/apt/lists/*
# 创建目录结构
RUN mkdir -p /workspace/scripts && \
mkdir -p /workspace/configs && \
mkdir -p /workspace/test/env_check_outputs && \
mkdir -p /workspace/test/inference_outputs
# 复制脚本
COPY ./scripts/* /workspace/scripts/
COPY ./configs/* /workspace/configs/
RUN chmod +x /workspace/scripts/*
RUN chmod +x /workspace/configs*
# 设置工作目录(建议直接设为脚本目录)
WORKDIR /workspace/scripts/
# 直接执行脚本(无需cd)
CMD bash -c "\
bash entrypoint.sh"
\ No newline at end of file
# 格式说明:
# 模型名称;模型路径;tp;batch;prompt_tokens;completion_tokens;dtype;max_model_len;gpu_memory_utilization
#模型路径为docker容器内的路径
# 多个值用逗号分隔
Qwen3-4B;/workspace/test/models/Qwen/Qwen3-4B;1;1;512;512;float16;32768;0.95
Qwen3-0.6B;/workspace/test/models/Qwen/Qwen3-0.6B;1;1;512;512;float16;32768;0.95
Qwen3-1.7B;/workspace/test/models/Qwen/Qwen3-1.7B;1;1;512;512;float16;32768;0.95
\ No newline at end of file
# SPDX-License-Identifier: Apache-2.0
"""Benchmark offline inference throughput."""
import argparse
import dataclasses
import json
import random
import time
from functools import cache
from typing import Dict, List, Optional, Tuple
import numpy as np
import torch
import uvloop
from PIL import Image
from tqdm import tqdm
from transformers import (AutoModelForCausalLM, AutoTokenizer,
PreTrainedTokenizerBase)
from vllm.inputs import PromptType
from vllm.engine.arg_utils import AsyncEngineArgs, EngineArgs
from vllm.entrypoints.openai.api_server import (
build_async_engine_client_from_engine_args)
from vllm.inputs import TextPrompt
from vllm.lora.request import LoRARequest
from vllm.lora.utils import get_adapter_absolute_path
from vllm.multimodal import MultiModalDataDict
from vllm.sampling_params import BeamSearchParams
from vllm.transformers_utils.tokenizer import AnyTokenizer, get_lora_tokenizer
from vllm.utils import FlexibleArgumentParser, merge_async_iterators
@dataclasses.dataclass
class SampleRequest:
"""A class representing a single inference request for benchmarking.
Attributes:
prompt: The input text prompt for the model.
prompt_len: The length of the prompt in tokens.
expected_output_len: The expected length of the output in tokens.
multi_modal_data: Optional dictionary containing multi-modal data (e.g.
images).
lora_request: Optional LoRARequest specifying the LoRA to use.
"""
prompt: str
prompt_len: int
expected_output_len: int
multi_modal_data: Optional[MultiModalDataDict] = None
lora_request: Optional[LoRARequest] = None
def _get_prompt_for_image_model(question: str, *, model: str) -> str:
"""Prepend and append special tokens around the question to form a prompt.
Args:
question: The input question text to wrap with special tokens
model: The name of the model being used, to determine which special
tokens to add
Returns:
The formatted prompt string with appropriate special tokens for the
model
Raises:
ValueError: If an unsupported model name is provided
"""
model = model.lower()
if "pixtral" in model:
return f"<s>[INST]{question}\n[IMG][/INST]"
raise ValueError(f"Unsupported model {model}")
@cache
def lora_path_on_disk(lora_path: str) -> str:
return get_adapter_absolute_path(lora_path)
lora_tokenizer_cache: Dict[int, AnyTokenizer] = {}
def get_random_lora_request(
args: argparse.Namespace
) -> Tuple[LoRARequest, Optional[AnyTokenizer]]:
global lora_tokenizer_cache
lora_id = random.randint(1, args.max_loras)
lora_request = LoRARequest(lora_name=str(lora_id),
lora_int_id=lora_id,
lora_path=lora_path_on_disk(args.lora_path))
if lora_id not in lora_tokenizer_cache:
lora_tokenizer_cache[lora_id] = get_lora_tokenizer(lora_request)
return lora_request, lora_tokenizer_cache[lora_id]
def sample_requests(tokenizer: PreTrainedTokenizerBase,
args: argparse.Namespace) -> List[SampleRequest]:
dataset_path: str = args.dataset
num_requests: int = args.num_prompts
fixed_output_len: Optional[int] = args.output_len
model: str = args.model
if fixed_output_len is not None and fixed_output_len < 4:
raise ValueError("output_len too small")
# Load the dataset.
with open(dataset_path) as f:
dataset = json.load(f)
# Filter out the conversations with less than 2 turns.
dataset = [data for data in dataset if len(data["conversations"]) >= 2]
# Shuffle the dataset.
random.shuffle(dataset)
# Filter out sequences that are too long or too short
filtered_dataset: List[SampleRequest] = []
for data in tqdm(dataset,
total=len(filtered_dataset),
desc="sampling requests"):
if len(filtered_dataset) == num_requests:
break
# Only keep the first two turns of each conversation.
prompt = data["conversations"][0]["value"]
completion = data["conversations"][1]["value"]
multi_modal_data: Optional[MultiModalDataDict] = None
if "image" in data:
multi_modal_data = multi_modal_data or {}
image_path = data["image"]
# TODO(vllm-project/vllm/issues/9778): Support multiple images.
assert isinstance(image_path,
str), "Only support single image input"
try:
multi_modal_data["image"] = Image.open(image_path).convert(
"RGB")
except FileNotFoundError:
# Ignore datapoint where asset is missing
continue
prompt = _get_prompt_for_image_model(question=prompt, model=model)
request_tokenizer = tokenizer
lora_request: Optional[LoRARequest] = None
if args.enable_lora:
lora_request, lora_tokenizer = get_random_lora_request(args)
if lora_tokenizer:
request_tokenizer = lora_tokenizer
# Tokenize the prompts and completions.
prompt_token_ids = request_tokenizer(prompt).input_ids
completion_token_ids = request_tokenizer(completion).input_ids
prompt_len = len(prompt_token_ids)
output_len = len(completion_token_ids
) if fixed_output_len is None else fixed_output_len
if prompt_len < 4 or output_len < 4:
# Prune too short sequences.
continue
if prompt_len > 1024 or prompt_len + output_len > 2048:
# Prune too long sequences.
continue
filtered_dataset.append(
SampleRequest(prompt=prompt,
prompt_len=prompt_len,
expected_output_len=output_len,
multi_modal_data=multi_modal_data,
lora_request=lora_request))
return filtered_dataset
def run_vllm(
requests_json: List[SampleRequest],
n: int,
num_iters_warmup: int,
engine_args: EngineArgs,
) -> float:
from vllm import LLM, SamplingParams
llm = LLM(**dataclasses.asdict(engine_args))
# warmup
warmup_sampling_params = SamplingParams(
n=args.n,
temperature=1.0,
top_p=1.0,
ignore_eos=True,
max_tokens=10,
)
dummy_prompt_token_ids = np.random.randint(10000, size=(1,10))
dummy_prompts: List[PromptType] = [{
"prompt_token_ids": batch
} for batch in dummy_prompt_token_ids.tolist()]
print("Warming up...")
for _ in tqdm(range(num_iters_warmup), desc="Warmup iterations"):
llm.generate(dummy_prompts,
sampling_params=warmup_sampling_params,
use_tqdm=False)
info_json={}
for ELEprompt in args.num_prompts:
for ELEinput,ELEoutput in zip(args.input_len,args.output_len):
info={}
requests=requests_json["{}_{}_{}".format(ELEprompt,ELEinput,ELEoutput)]
# Add the requests to the engine.
prompts: List[TextPrompt] = []
sampling_params: List[SamplingParams] = []
for request in requests:
prompts.append(
TextPrompt(prompt=request.prompt,
multi_modal_data=request.multi_modal_data))
sampling_params.append(
SamplingParams(
n=n,
temperature=1.0,
top_p=1.0,
ignore_eos=True,
max_tokens=request.expected_output_len,
))
lora_requests: Optional[List[LoRARequest]] = None
if engine_args.enable_lora:
lora_requests = [request.lora_request for request in requests]
use_beam_search = False
if not use_beam_search:
start = time.perf_counter()
real_output=llm.generate(prompts,
sampling_params,
lora_request=lora_requests,
use_tqdm=True)
end = time.perf_counter()
else:
assert lora_requests is None, "BeamSearch API does not support LoRA"
prompts = [request.prompt for request in requests]
# output_len should be the same for all requests.
output_len = requests[0][2]
for request in requests:
assert request.expected_output_len == output_len
start = time.perf_counter()
real_output = llm.beam_search(
prompts,
BeamSearchParams(
beam_width=n,
max_tokens=output_len,
ignore_eos=True,
))
end = time.perf_counter()
total_ttfts = []
total_tpops = []
total_output_token_throughput = []
total_inout_token_throughput = []
for output in real_output:
ttft_ = output.metrics.first_token_time - output.metrics.arrival_time
tpop_ = (output.metrics.finished_time - output.metrics.arrival_time - ttft_) / (ELEoutput-1)
output_token_throughput = (ELEoutput) / (output.metrics.finished_time - output.metrics.arrival_time)
inout_token_throughput = (ELEoutput + ELEinput) / (output.metrics.finished_time - output.metrics.arrival_time)
total_ttfts.append(ttft_)
total_tpops.append(tpop_)
total_output_token_throughput.append(output_token_throughput)
total_inout_token_throughput.append(inout_token_throughput)
total_num_tokens = sum(request.prompt_len + request.expected_output_len
for request in requests)
total_output_tokens = sum(request.expected_output_len
for request in requests)
# ttft_mean = np.mean(total_ttfts)
# ttft_median = np.median(total_ttfts or 0)
# ttft_p99 = np.percentile(total_ttfts or 0, 99)
# tpop_mean = np.mean(total_tpops)
# tpop_median = np.median(total_tpops or 0)
# tpop_p99 = np.percentile(total_tpops or 0, 99)
# output_token_throughput_mean = np.mean(total_output_token_throughput)
# output_token_throughput_median = np.median(total_output_token_throughput or 0)
# output_token_throughput_p99 = np.percentile(total_output_token_throughput or 0, 99)
# inout_token_throughput_mean = np.mean(total_inout_token_throughput)
# inout_token_throughput_median = np.median(total_inout_token_throughput or 0)
# inout_token_throughput_p99 = np.percentile(total_inout_token_throughput or 0, 99)
info["elapsed_time"] = np.around(end - start,2)
info["Throughput"] = np.around(len(requests) / info['elapsed_time'],2)
info["total_tokens"] = np.around(total_num_tokens / info['elapsed_time'],2)
info["output_tokens"] = np.around(total_output_tokens / info['elapsed_time'],2)
info["ttft_mean"] = np.around(np.mean(total_ttfts),5)
info["ttft_median"] = np.around(np.median(total_ttfts or 0),5)
info["ttft_p99"] = np.around(np.percentile(total_ttfts or 0, 99),5)
info["tpop_mean"] = np.around(np.mean(total_tpops),4)
info["tpop_median"] = np.around(np.median(total_tpops or 0),5)
info["tpop_p99"] = np.around(np.percentile(total_tpops or 0, 99),5)
info["output_token_throughput_mean"] = np.around(np.mean(total_output_token_throughput),2)
info["output_token_throughput_median"] = np.around(np.median(total_output_token_throughput or 0),2)
info["output_token_throughput_p99"] = np.around(np.percentile(total_output_token_throughput or 0, 99),2)
info["inout_token_throughput_mean"] = np.around(np.mean(total_inout_token_throughput),2)
info["inout_token_throughput_median"] = np.around(np.median(total_inout_token_throughput or 0),2)
info["inout_token_throughput_p99"] = np.around(np.percentile(total_inout_token_throughput or 0, 99),2)
info_json["{}_{}_{}".format(ELEprompt,ELEinput,ELEoutput)] = info
print("promt:{},input:{},output:{}".format(ELEprompt,ELEinput,ELEoutput))
print(f"Latency: {info['elapsed_time']:.2f} s")
print(f"Throughput: {len(requests) / info['elapsed_time']:.2f} requests/s, "
f"{total_num_tokens / info['elapsed_time']:.2f} total tokens/s, "
f"{total_output_tokens / info['elapsed_time']:.2f} output tokens/s")
print("==============================================")
print(f"total_out_tokens: {total_output_tokens: .2f} tokens")
print(f"elapsed_time: {info['elapsed_time']: .2f} s") # 总耗时
print(f"TTFT_mean: {info['ttft_mean']*1000: .2f} ms") # 首字延时
print(f"ttft_p99: {info['ttft_p99']*1000: .2f} ms")
print(f"ttft_median: {info['ttft_median']*1000: .2f} ms")
print(f"TPOP_mean: {info['tpop_mean']*1000: .2f} ms") # 单字decode时间
print(f"tpop_median: {info['tpop_median']*1000: .2f} ms")
print(f"tpop_p99: {info['tpop_p99']*1000: .2f} ms")
print(f"output_token_throughput_mean: {info['output_token_throughput_mean']:.2f} tokens/s") # 单路生成吞吐
print(f"output_token_throughput_median: {info['output_token_throughput_median']:.2f} tokens/s")
print(f"output_token_throughput_p99: {info['output_token_throughput_p99']:.2f} tokens/s")
print(f"inout_token_throughput_mean: {info['inout_token_throughput_mean']:.2f} tokens/s") # 单路总吞吐
print(f"tinout_token_throughput_median: {info['inout_token_throughput_median']:.2f} tokens/s")
print(f"inout_token_throughput_p99: {info['inout_token_throughput_p99']:.2f} tokens/s")
print("==============================================")
print("\n")
return info_json
async def run_vllm_async(
requests: List[SampleRequest],
n: int,
engine_args: AsyncEngineArgs,
disable_frontend_multiprocessing: bool = False,
) -> float:
from vllm import SamplingParams
async with build_async_engine_client_from_engine_args(
engine_args, disable_frontend_multiprocessing) as llm:
# Add the requests to the engine.
prompts: List[TextPrompt] = []
sampling_params: List[SamplingParams] = []
lora_requests: List[Optional[LoRARequest]] = []
for request in requests:
prompts.append(
TextPrompt(prompt=request.prompt,
multi_modal_data=request.multi_modal_data))
sampling_params.append(
SamplingParams(
n=n,
temperature=1.0,
top_p=1.0,
ignore_eos=True,
max_tokens=request.expected_output_len,
))
lora_requests.append(request.lora_request)
generators = []
start = time.perf_counter()
for i, (prompt, sp,
lr) in enumerate(zip(prompts, sampling_params, lora_requests)):
generator = llm.generate(prompt,
sp,
lora_request=lr,
request_id=f"test{i}")
generators.append(generator)
all_gens = merge_async_iterators(*generators)
async for i, res in all_gens:
pass
end = time.perf_counter()
return end - start
def run_hf(
requests: List[SampleRequest],
model: str,
tokenizer: PreTrainedTokenizerBase,
n: int,
max_batch_size: int,
trust_remote_code: bool,
) -> float:
llm = AutoModelForCausalLM.from_pretrained(
model, torch_dtype=torch.float16, trust_remote_code=trust_remote_code)
if llm.config.model_type == "llama":
# To enable padding in the HF backend.
tokenizer.pad_token = tokenizer.eos_token
llm = llm.cuda()
pbar = tqdm(total=len(requests))
start = time.perf_counter()
batch: List[str] = []
max_prompt_len = 0
max_output_len = 0
for i in range(len(requests)):
prompt, prompt_len, output_len = requests[i]
# Add the prompt to the batch.
batch.append(prompt)
max_prompt_len = max(max_prompt_len, prompt_len)
max_output_len = max(max_output_len, output_len)
if len(batch) < max_batch_size and i != len(requests) - 1:
# Check if we can add more requests to the batch.
_, next_prompt_len, next_output_len = requests[i + 1]
if (max(max_prompt_len, next_prompt_len) +
max(max_output_len, next_output_len)) <= 2048:
# We can add more requests to the batch.
continue
# Generate the sequences.
input_ids = tokenizer(batch, return_tensors="pt",
padding=True).input_ids
llm_outputs = llm.generate(
input_ids=input_ids.cuda(),
do_sample=True,
num_return_sequences=n,
temperature=1.0,
top_p=1.0,
use_cache=True,
max_new_tokens=max_output_len,
)
# Include the decoding time.
tokenizer.batch_decode(llm_outputs, skip_special_tokens=True)
pbar.update(len(batch))
# Clear the batch.
batch = []
max_prompt_len = 0
max_output_len = 0
end = time.perf_counter()
return end - start
def run_mii(
requests: List[SampleRequest],
model: str,
tensor_parallel_size: int,
output_len: int,
) -> float:
from mii import client, serve
llm = serve(model, tensor_parallel=tensor_parallel_size)
prompts = [request.prompt for request in requests]
start = time.perf_counter()
llm.generate(prompts, max_new_tokens=output_len)
end = time.perf_counter()
client = client(model)
client.terminate_server()
return end - start
def main(args: argparse.Namespace):
print(args)
random.seed(args.seed)
# Sample the requests.
tokenizer = AutoTokenizer.from_pretrained(
args.tokenizer, trust_remote_code=args.trust_remote_code)
if args.dataset is None:
vocab_size = tokenizer.vocab_size
requests_json={}
for ELEprompt in args.num_prompts:
for ELEinput,ELEoutput in zip(args.input_len,args.output_len):
requests = []
for _ in range(ELEprompt):
request_tokenizer = tokenizer
lora_request: Optional[LoRARequest] = None
if args.enable_lora:
lora_request, lora_tokenizer = get_random_lora_request(args)
if lora_tokenizer:
request_tokenizer = lora_tokenizer
# Synthesize a prompt with the given input length.
candidate_ids = [
random.randint(0, vocab_size - 1)
for _ in range(ELEinput)
]
# As tokenizer may add additional tokens like BOS, we need to try
# different lengths to get the desired input length.
for _ in range(5): # Max attempts to correct
candidate_prompt = request_tokenizer.decode(candidate_ids)
tokenized_len = len(request_tokenizer.encode(candidate_prompt))
if tokenized_len == ELEinput:
break
# Adjust length based on difference
diff = ELEinput - tokenized_len
if diff > 0:
candidate_ids.extend([
random.randint(100, vocab_size - 100)
for _ in range(diff)
])
else:
candidate_ids = candidate_ids[:diff]
requests.append(
SampleRequest(prompt=candidate_prompt,
prompt_len=ELEinput,
expected_output_len=ELEoutput,
lora_request=lora_request))
requests_json["{}_{}_{}".format(ELEprompt,ELEinput,ELEoutput)]=requests
else:
requests = sample_requests(tokenizer, args)
is_multi_modal = any(request.multi_modal_data is not None
for request in requests)
if args.backend == "vllm":
if args.async_engine:
elapsed_time = uvloop.run(
run_vllm_async(
requests,
args.n,
AsyncEngineArgs.from_cli_args(args),
args.disable_frontend_multiprocessing,
))
else:
info_json = run_vllm(requests_json, args.n, args.num_iters_warmup,
EngineArgs.from_cli_args(args))
elif args.backend == "hf":
assert args.tensor_parallel_size == 1
elapsed_time = run_hf(requests, args.model, tokenizer, args.n,
args.hf_max_batch_size, args.trust_remote_code)
elif args.backend == "mii":
elapsed_time = run_mii(requests, args.model, args.tensor_parallel_size,
args.output_len)
else:
raise ValueError(f"Unknown backend: {args.backend}")
# file_name=args.model.rsplit("/")[-1]+"-tp"+str(args.tensor_parallel_size)+".txt"
if is_multi_modal:
print("\033[91mWARNING\033[0m: Multi-modal request detected. The "
"following metrics are not accurate because image tokens are not"
" counted. See vllm-project/vllm/issues/9778 for details.")
with open(args.output_json,"w") as f:
title="bs_in_out"
data_keys=info_json[list(info_json.keys())[0]].keys()
keys_string = ','.join(data_keys)
title=title+","+keys_string
f.write(title)
f.write("\n")
for key, value in info_json.items():
values_as_strings = [str(value) for value in info_json[key].values()]
values_string = ','.join(values_as_strings)
key=key+","+values_string
f.writelines(key)
f.write("\n")
# json.dump(info_json, f, indent=4)
# Output JSON results if specified
# if args.output_json:
# results = {
# "elapsed_time": elapsed_time,
# "num_requests": len(requests),
# "total_num_tokens": total_num_tokens,
# "requests_per_second": len(requests) / elapsed_time,
# "tokens_per_second": total_num_tokens / elapsed_time,
# }
# with open(args.output_json, "w") as f:
# json.dump(results, f, indent=4)
if __name__ == "__main__":
parser = FlexibleArgumentParser(description="Benchmark the throughput.")
parser.add_argument("--backend",
type=str,
choices=["vllm", "hf", "mii"],
default="vllm")
parser.add_argument("--dataset",
type=str,
default=None,
help="Path to the dataset. The dataset is expected to "
"be a json in form of List[Dict[..., conversations: "
"List[Dict[..., value: <prompt_or_response>]]]]")
parser.add_argument("--input-len",
type=int,
nargs="*",
default=None,
help="Input prompt length for each request")
parser.add_argument("--output-len",
type=int,
nargs="*",
default=None,
help="Output length for each request. Overrides the "
"output length from the dataset.")
parser.add_argument("--n",
type=int,
default=1,
help="Number of generated sequences per prompt.")
parser.add_argument('--num-iters-warmup',
type=int,
default=1,
help='Number of iterations to run for warmup.')
parser.add_argument("--num-prompts",
type=int,
nargs="*",
default=1000,
help="Number of prompts to process.")
parser.add_argument("--hf-max-batch-size",
type=int,
default=None,
help="Maximum batch size for HF backend.")
parser.add_argument(
'--output-json',
type=str,
default=None,
help='Path to save the throughput results in JSON format.')
parser.add_argument("--async-engine",
action='store_true',
default=False,
help="Use vLLM async engine rather than LLM class.")
parser.add_argument("--disable-frontend-multiprocessing",
action='store_true',
default=False,
help="Disable decoupled async engine frontend.")
# LoRA
parser.add_argument(
"--lora-path",
type=str,
default=None,
help="Path to the lora adapters to use. This can be an absolute path, "
"a relative path, or a Hugging Face model identifier.")
parser = AsyncEngineArgs.add_cli_args(parser)
args = parser.parse_args()
if args.tokenizer is None:
args.tokenizer = args.model
if args.dataset is None:
assert args.input_len is not None
assert args.output_len is not None
else:
assert args.input_len is None
if args.enable_lora:
assert args.lora_path is not None
if args.backend == "vllm":
if args.hf_max_batch_size is not None:
raise ValueError("HF max batch size is only for HF backend.")
elif args.backend == "hf":
if args.hf_max_batch_size is None:
raise ValueError("HF max batch size is required for HF backend.")
if args.quantization is not None:
raise ValueError("Quantization is only for vLLM backend.")
if args.enable_lora is not None:
raise ValueError("LoRA benchmarking is only supported for vLLM"
" backend")
elif args.backend == "mii":
if args.dtype != "auto":
raise ValueError("dtype must be auto for MII backend.")
if args.n != 1:
raise ValueError("n must be 1 for MII backend.")
if args.quantization is not None:
raise ValueError("Quantization is only for vLLM backend.")
if args.hf_max_batch_size is not None:
raise ValueError("HF max batch size is only for HF backend.")
if args.tokenizer != args.model:
raise ValueError("Tokenizer must be the same as the model for MII "
"backend.")
if args.enable_lora is not None:
raise ValueError("LoRA benchmarking is only supported for vLLM"
" backend")
main(args)
#!/bin/bash
# 执行环境检查
echo "==================== 开始系统环境检查 ===================="
/workspace/scripts/run_envcheck.sh
# 运行性能测试
echo "==================== 开始性能测试 ===================="
/workspace/scripts/run_benchmark.sh
echo "==================== 所有测试完成 ===================="
\ No newline at end of file
export HIP_VISIBLE_DEVICES=0,1,2,3,4,5,6,7
export ROCBLAS_COMPUTETYPE_FP16R=0
export HSA_FORCE_FINE_GRAIN_PCIE=1
export NCCL_LAUNCH_MODE=GROUP
export NCCL_NCHANNELS_PER_PEER=16
export NCCL_MAX_NCHANNELS=16
export NCCL_MIN_NCHANNELS=16
export CUDA_DEVICE_MAX_CONNECTIONS=1
export NCCL_P2P_LEVEL=SYS
export NCCL_NET_GDR_LEVEL=7
export NCCL_NET_GDR_READ=1
export RCCL_SDMA_COPY_ENABLE=0
export SENDRECV_STREAM_WITH_COMPUTE=1
export LD_LIBRARY_PATH=/usr/local/lib/python3.10/site-packages/torch/lib/:$LD_LIBRARY_PATH
export ALLREDUCE_STREAM_WITH_COMPUTE=1
export ALLREDUCE_STREAM_WITH_COMPUTE=1
export NCCL_MIN_NCHANNELS=16
export NCCL_MAX_NCHANNELS=16
export VLLM_PCIE_USE_CUSTOM_ALLREDUCE=1
export VLLM_RPC_TIMEOUT=100000
#!/bin/bash
# 模型配置文件路径
MODELS_CONFIG="/workspace/configs/model_to_test.cfg"
# 结果目录
RESULTS_DIR="/workspace/test/inference_outputs"
# 读取配置文件,跳过注释和空行
while IFS= read -r line || [[ -n "$line" ]]; do
# 跳过注释行和空行
if [[ "$line" =~ ^# ]] || [[ -z "$line" ]]; then
continue
fi
# 解析配置行
IFS=';' read -ra CONFIG <<< "$line"
model_name="${CONFIG[0]}"
model_path="${CONFIG[1]}"
tp="${CONFIG[2]}"
batch="${CONFIG[3]//,/ }" # 将逗号替换为空格
prompt_tokens="${CONFIG[4]//,/ }"
completion_tokens="${CONFIG[5]//,/ }"
dtype="${CONFIG[6]}"
max_model_len="${CONFIG[7]}"
gpu_memory_utilization="${CONFIG[8]}"
echo "开始测试模型: $model_name"
echo "模型路径: $model_path"
echo "参数配置:"
echo " tensor_parallel_size: $tp"
echo " batch_sizes: $batch"
echo " prompt_tokens: $prompt_tokens"
echo " completion_tokens: $completion_tokens"
echo " dtype: $dtype"
echo " max_model_len: $max_model_len"
echo " gpu_memory_utilization: $gpu_memory_utilization"
# 创建模型专属结果目录
model_result_dir="${RESULTS_DIR}/${model_name}"
mkdir -p "$model_result_dir"
# 运行基准测试
python /workspace/scripts/benchmark_throughput.py \
--model "$model_path" \
--tensor-parallel-size "$tp" \
--num-prompts $batch \
--input-len $prompt_tokens \
--output-len $completion_tokens \
--dtype "$dtype" \
--trust-remote-code \
--max-model-len "$max_model_len" \
--gpu-memory-utilization "$gpu_memory_utilization" \
--output-json "${model_result_dir}/${model_name}_tp${tp}.txt" \
2>&1 | tee "${model_result_dir}/${model_name}_tp${tp}.log"
echo "完成测试模型: $model_name"
echo "结果保存在: $model_result_dir"
echo "----------------------------------------"
done < "$MODELS_CONFIG"
\ No newline at end of file
#!/bin/bash
set -eo pipefail # 严格错误处理
log_dir="/workspace/test/env_check_outputs"
mkdir -p "$log_dir"
echo "==================== 开始系统环境检查 ===================="
# 基础检查函数
run_test() {
local name=$1
shift
echo "[RUN] $name"
"$@" 2>&1 | tee "$log_dir/${name}.log" || {
echo "[WARN] $name 检查失败" | tee -a "$log_dir/${name}.log"
return 1
}
}
run_pipe_test() {
local name=$1
local cmd=$2
echo "[RUN] $name"
bash -c "$cmd" 2>&1 | tee "$log_dir/${name}.log" || {
echo "[WARN] $name 检查失败" | tee -a "$log_dir/${name}.log"
return 1
}
}
# 系统基础检查
run_test rocm_bandwidth_test rocm-bandwidth-test
run_test hy_smi hy-smi
run_test hy_smi_config hy-smi -c
run_test pip_list pip list
run_test cpu_info lscpu
run_test cpu_cores nproc
run_test memory_usage free -h
run_test disk_usage df -h
run_test hardware_info lshw -short || true
run_test network_interfaces ip a
run_test ibstat ibstat
run_test ibdev2netdev ibdev2netdev
run_pipe_test ACS_stat "lspci -vvv | grep -i acsct"
run_test rocm_info rocminfo || true
echo "==================== RCCL-TEST ===================="
cd /workspace/test/env_check_outputs
if command -v git &>/dev/null && command -v make &>/dev/null; then
if [ ! -d rccl-tests ]; then
git clone https://www.ghproxy.cn/github.com/ROCm/rccl-tests.git --depth 1 -b master || exit 1
fi
cd rccl-tests || exit 1
source /opt/dtk/env.sh
if make MPI=1 MPI_HOME=/opt/mpi ROCM_HOME=/opt/dtk NCCL_HOME=/opt/dtk/rccl \
CUSTOM_RCCL_LIB=/opt/dtk/rccl/lib/librccl.so -j32; then
./build/all_reduce_perf -b 8 -e 1G -f 2 -g 8 2>&1 | tee "$log_dir/all_reduce_perf_8.log"
./build/all_reduce_perf -b 4 -e 1G -f 2 -g 4 2>&1 | tee "$log_dir/all_reduce_perf_4.log"
else
echo "[ERROR] RCCL编译失败" | tee "$log_dir/rccl_build_fail.log"
fi
cd ..
else
echo "[WARN] 缺少git或make,跳过RCCL测试" | tee "$log_dir/rccl_skip.log"
fi
echo "==================== DCU-ENV-CHECK ===================="
if [ ! -d dcu_env_check ]; then
git clone http://developer.sourcefind.cn/codes/OpenDAS/dcu_env_check.git || {
echo "[ERROR] DCU环境检查代码克隆失败" | tee "$log_dir/dcu_clone_fail.log"
exit 1
}
fi
cd dcu_env_check && {
bash system_check.sh 2>&1 | tee "$log_dir/dcu_env_check.log"
cd ..
} || {
echo "[ERROR] DCU环境检查执行失败" | tee "$log_dir/dcu_check_fail.log"
exit 1
}
echo "==================== 检查完成 ===================="
echo "所有日志已保存至: $log_dir"
ls -lh "$log_dir"
\ No newline at end of file
docker build -t vllm-test1 . && \
docker run \
-v /usr/local/hyhal:/usr/local/hyhal:ro \
-v /opt/hyhal:/opt/hyhal:ro \
-v $PWD/outputs/env_check_outputs:/workspace/test/env_check_outputs/ \
-v /public/models:/workspace/test/models/ \
-v $PWD/outputs/inference_outputs:/workspace/test/inference_outputs/ \
--ipc=host \
--cap-add=SYS_PTRACE \
--group-add video \
--ulimit memlock=-1:-1 \
--privileged \
--device=/dev/kfd \
--device=/dev/mkfd \
--device=/dev/dri \
--shm-size=500G \
-u root \
--security-opt seccomp=unconfined \
vllm-test1 \
\ No newline at end of file
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment