# Copyright (c) 2025, NVIDIA CORPORATION. All rights reserved. """Export a GPTModel.""" import functools import os import sys import warnings sys.path.append(os.path.abspath(os.path.join(os.path.dirname(__file__), "../../../"))) import modelopt.torch.export as mtex import torch from megatron.post_training.arguments import add_modelopt_args from megatron.post_training.checkpointing import load_modelopt_checkpoint from megatron.post_training.model_provider import model_provider from megatron.training import get_args, get_model from megatron.training.initialize import initialize_megatron from megatron.training.utils import unwrap_model warnings.filterwarnings('ignore') def add_modelopt_export_args(parser): """Add additional arguments for ModelOpt hf-like export.""" group = parser.add_argument_group(title='ModelOpt hf-like export') group.add_argument( "--export-extra-modules", action="store_true", help="Export extra modules such as Medusa, EAGLE, or MTP.", ) group.add_argument( "--pretrained-model-name", type=str, help="A pretrained model hosted inside a model repo on huggingface.co.", ) group.add_argument("--export-dir", type=str, help="The target export path.") add_modelopt_args(parser) return parser if __name__ == "__main__": initialize_megatron( extra_args_provider=add_modelopt_export_args, args_defaults={ 'tokenizer_type': 'HuggingFaceTokenizer', 'no_load_rng': True, 'no_load_optim': True, }, ) args = get_args() model = get_model(functools.partial(model_provider, parallel_output=True), wrap_with_ddp=False) if args.load is not None: _ = load_modelopt_checkpoint(model) unwrapped_model = unwrap_model(model)[0] mtex.export_mcore_gpt_to_hf( unwrapped_model, args.pretrained_model_name, export_extra_modules=args.export_extra_modules, dtype=torch.bfloat16, export_dir=args.export_dir, )