# Copyright (c) 2024, NVIDIA CORPORATION. All rights reserved. """" NOTE: NVLM uses InternViT with tensor parallel (TP) size = 8. Since InternViT has 25 attention heads and Megatron currently requires the number of attention heads to be divisible by the TP size, we add 7 dummy zero attention heads to have 32 attention heads. This workaround requires some changes to how we compute RMSNorm, Attention etc. Additionally, InternViT introduces some unique features like Layer Scaling. Those code changes are gathered here. """ from functools import partial import torch from megatron.core.utils import divide from megatron.core.extensions.transformer_engine import ( TEColumnParallelLinear, TEDotProductAttention, TERowParallelLinear, ) from megatron.core.parallel_state import ( get_tensor_model_parallel_group, get_tensor_model_parallel_rank, get_tensor_model_parallel_world_size, ) from megatron.core.tensor_parallel.layers import ColumnParallelLinear, RowParallelLinear from megatron.core.transformer.attention import SelfAttention, SelfAttentionSubmodules from megatron.core.transformer.dot_product_attention import DotProductAttention from megatron.core.transformer.enums import AttnMaskType from megatron.core.transformer.mlp import MLP, MLPSubmodules from megatron.core.transformer.module import MegatronModule from megatron.core.transformer.spec_utils import ModuleSpec, build_module from megatron.core.transformer.transformer_config import TransformerConfig from megatron.core.transformer.transformer_layer import TransformerLayer, TransformerLayerSubmodules from megatron.core.transformer.utils import make_sharded_tensors_for_checkpoint from examples.multimodal.layer_scaling import LayerScalingTransformerLayer, get_bias_dropout_add_layer_scaling try: import apex from megatron.core.fusions.fused_layer_norm import FusedLayerNorm from megatron.core.transformer.torch_norm import WrappedTorchNorm HAVE_APEX = True LNImpl = FusedLayerNorm except ImportError: import warnings from megatron.core.transformer.torch_norm import WrappedTorchNorm warnings.warn(f'Apex is not installed. Falling back to Torch Norm') LNImpl = WrappedTorchNorm class InternViTRMSNorm(MegatronModule): def __init__( self, config, hidden_size: int, eps: float = 1e-6, sequence_parallel: bool = False, compute_var: bool = False, ): """Custom RMSNorm for InternViT. Args: config (TransformerConfig): Config. hidden_size (int): Input hidden size. eps (float): epsilon to use for the norm, default to 1e-6 sequence_parallel (bool): Set to true if sequence parallelism is being used, this marks the weights as needing to be allreduced. compute_var (bool): Indicator to compute statistic manually. """ super().__init__(config=config) self.config = config self.eps = eps self.weight = torch.nn.Parameter(torch.ones(hidden_size)) self._compute_var = compute_var assert not sequence_parallel, "Sequence parallelism is not supported with InternViT." setattr(self.weight, 'sequence_parallel', sequence_parallel) def _norm(self, x, var): if var is None: var = x.pow(2).mean(-1, keepdim=True) return x * torch.rsqrt(var + self.eps) def forward(self, x): """Run RMSNorm with an option to compute custom statistic.""" var = None if self._compute_var: unpadded_hidden_size = self.config.hidden_size # 3200 max_dim = x.shape[-1] # 128 x = x.reshape(x.size(0), x.size(1), -1) var = self._gather_var(x.float().pow(2), max_dim) / unpadded_hidden_size output = self._norm(x.float(), var).type_as(x) output = output * self.weight if self._compute_var: output = output.reshape(output.size(0), output.size(1), -1, max_dim) return output def _gather_var(self, input_, max_dim): """Compute statistic across the non-dummy heads.""" world_size = get_tensor_model_parallel_world_size() # Size and dimension. last_dim = input_.dim() - 1 rank = get_tensor_model_parallel_rank() num_attention_heads_per_partition = divide(self.config.num_attention_heads, world_size) valid_ranks = 24 // num_attention_heads_per_partition residual_heads = 25 % num_attention_heads_per_partition if residual_heads == 0: residual_heads = num_attention_heads_per_partition max_dim = max_dim * residual_heads if rank < valid_ranks: # Ranks without any dummy attention heads. var = input_.sum(-1, keepdim=True) elif rank == valid_ranks: # The only rank which may contain 'residual_heads' dummy attention heads. var = input_[..., :max_dim].sum(-1, keepdim=True) else: var = input_.sum(-1, keepdim=True) * 0.0 # All heads in these ranks are dummy heads: Zero-out. tensor_list = [torch.empty_like(var) for _ in range(world_size)] tensor_list[rank] = var torch.distributed.all_gather(tensor_list, var, group=get_tensor_model_parallel_group()) output = torch.cat(tensor_list, dim=last_dim).contiguous() return output.sum(-1, keepdim=True) def sharded_state_dict(self, prefix='', sharded_offsets=(), metadata={}): # in InternVitSelfAttention the q_layernorm and k_layernorm weights # are tensor-parallel so must be converted to sharded tensors if 'q_layernorm' in prefix or 'k_layernorm' in prefix: state_dict = self.state_dict(prefix='', keep_vars=True) return make_sharded_tensors_for_checkpoint( state_dict, prefix, {'weight': 0}, sharded_offsets ) else: return super().sharded_state_dict(prefix, sharded_offsets, metadata) def get_mlp_module_spec(use_te: bool = True) -> ModuleSpec: # Dense MLP w/ or w/o TE modules. return ModuleSpec( module=MLP, submodules=MLPSubmodules( linear_fc1=TEColumnParallelLinear if use_te else ColumnParallelLinear, linear_fc2=TERowParallelLinear if use_te else RowParallelLinear, ), ) # Override a few things that are special in InternViT and not supported by the SelfAttention class. class InternViTSelfAttention(SelfAttention): def __init__( self, config: TransformerConfig, submodules: SelfAttentionSubmodules, *args, **kwargs ): super().__init__(config=config, submodules=submodules, *args, **kwargs) # Need to override linear_qkv, q_layernorm and k_layernorm. qkv_bias = False self.linear_qkv = build_module( submodules.linear_qkv, self.config.hidden_size, self.query_projection_size + 2 * self.kv_projection_size, config=self.config, init_method=self.config.init_method, gather_output=False, bias=qkv_bias, skip_bias_add=False, is_expert=False, tp_comm_buffer_name='qkv', ) qk_layernorm_hidden_size = ( self.hidden_size_per_attention_head * self.num_attention_heads_per_partition ) # 512 for internvit self.q_layernorm = build_module( submodules.q_layernorm, hidden_size=qk_layernorm_hidden_size, config=self.config, eps=self.config.layernorm_epsilon, compute_var=True, ) self.k_layernorm = build_module( submodules.k_layernorm, hidden_size=qk_layernorm_hidden_size, config=self.config, eps=self.config.layernorm_epsilon, compute_var=True, ) class InternViTTEDotProductAttention(TEDotProductAttention): """Adjusted Attention for InternViT""" def forward(self, *args, **kwargs): """Regular TEDotProductAttention + zero-out dummy attention heads.""" out = super().forward(*args, **kwargs) # This makes sure the dummy attention heads are zeroed out. mask = torch.ones_like(out, dtype=out.dtype, device=out.device) rank = get_tensor_model_parallel_rank() max_dim = out.shape[-1] # 128 valid_ranks = 6 if rank == valid_ranks: mask[..., max_dim:] *= 0.0 elif rank > valid_ranks: mask *= 0.0 out *= mask return out def get_internvit_layer_spec(use_te) -> ModuleSpec: mlp = get_mlp_module_spec(use_te) # no norm return ModuleSpec( module=LayerScalingTransformerLayer, submodules=TransformerLayerSubmodules( input_layernorm=InternViTRMSNorm, self_attention=ModuleSpec( module=InternViTSelfAttention, params={"attn_mask_type": AttnMaskType.no_mask}, submodules=SelfAttentionSubmodules( linear_qkv=TEColumnParallelLinear if use_te else ColumnParallelLinear, core_attention=TEDotProductAttention if use_te else DotProductAttention, linear_proj=TERowParallelLinear if use_te else RowParallelLinear, q_layernorm=InternViTRMSNorm, k_layernorm=InternViTRMSNorm, ), ), self_attn_bda=get_bias_dropout_add_layer_scaling, pre_mlp_layernorm=InternViTRMSNorm, mlp=mlp, mlp_bda=get_bias_dropout_add_layer_scaling, ), ) def get_internvit300M_layer_spec(use_te) -> ModuleSpec: mlp = get_mlp_module_spec(use_te) # no norm return ModuleSpec( module=LayerScalingTransformerLayer, submodules=TransformerLayerSubmodules( input_layernorm=LNImpl, self_attention=ModuleSpec( module=SelfAttention, params={"attn_mask_type": AttnMaskType.no_mask}, submodules=SelfAttentionSubmodules( linear_qkv=TEColumnParallelLinear if use_te else ColumnParallelLinear, core_attention=TEDotProductAttention if use_te else DotProductAttention, linear_proj=TERowParallelLinear if use_te else RowParallelLinear, q_layernorm=None, k_layernorm=None, ), ), self_attn_bda=get_bias_dropout_add_layer_scaling, pre_mlp_layernorm=LNImpl, mlp=mlp, mlp_bda=get_bias_dropout_add_layer_scaling, ), )