# Copyright (c) 2024, NVIDIA CORPORATION. All rights reserved. import argparse import os import torch def convert_radio_h(output_path, tensor_parallel_size, use_te, version): device = "cuda" version = version if version is not None else 'radio_v2.5-h' model = torch.hub.load('NVlabs/RADIO', 'radio_model', version=version, progress=True) state_dict = model.state_dict() new_state_dicts = [{"model": dict()} for _ in range(tensor_parallel_size)] # Indices from mapping pytorch multihead attention to megatron. kv_channels = 80 hidden_dim = 1280 num_heads = 16 indices = [] for i in range(num_heads): lb = i * kv_channels ub = (i + 1) * kv_channels indices.append(torch.arange(lb, ub, dtype=torch.int)) indices.append(torch.arange(hidden_dim + lb, hidden_dim + ub, dtype=torch.int)) indices.append(torch.arange(2 * hidden_dim + lb, 2 * hidden_dim + ub, dtype=torch.int)) indices = torch.cat(indices) for name, tensor in state_dict.items(): # Map parameter names to ones used in megatron. new_name = "" new_tensor = tensor if new_tensor.dtype == torch.float16: new_tensor = new_tensor.to(torch.float32) # This is used for chunking some tensors to target tensor parallel size. chunk_dim = None if "summary_idxs" in name: continue elif "patch_generator" in name: if "embedder" in name: new_name = "embedder.weight" chunk_dim = 0 elif "cls_token" in name: new_name = "class_token" elif "pos_embed" in name: new_name = "position_embeddings" elif "input_conditioner" in name: continue elif "blocks" in name: layer_idx = name.split(".")[2] base = f"decoder.layers.{layer_idx}" if "attn.qkv.weight" in name: new_name = f"{base}.self_attention.linear_qkv.weight" new_tensor = new_tensor[indices] chunk_dim = 0 elif "attn.qkv.bias" in name: new_name = f"{base}.self_attention.linear_qkv.bias" new_tensor = new_tensor[indices] chunk_dim = 0 elif "attn.proj.weight" in name: new_name = f"{base}.self_attention.linear_proj.weight" chunk_dim = 1 elif "attn.proj.bias" in name: new_name = f"{base}.self_attention.linear_proj.bias" elif "norm1.weight" in name: new_name = f"{base}.input_layernorm.weight" if use_te: new_name = f"{base}.self_attention.linear_qkv.layer_norm_weight" elif "norm1.bias" in name: new_name = f"{base}.input_layernorm.bias" if use_te: new_name = f"{base}.self_attention.linear_qkv.layer_norm_bias" elif "mlp.fc1.weight" in name: new_name = f"{base}.mlp.linear_fc1.weight" chunk_dim = 0 elif "mlp.fc1.bias" in name: new_name = f"{base}.mlp.linear_fc1.bias" chunk_dim = 0 elif "mlp.fc2.weight" in name: new_name = f"{base}.mlp.linear_fc2.weight" chunk_dim = 1 elif "mlp.fc2.bias" in name: new_name = f"{base}.mlp.linear_fc2.bias" elif "norm2.weight" in name: new_name = f"{base}.pre_mlp_layernorm.weight" if use_te: new_name = f"{base}.mlp.linear_fc1.layer_norm_weight" elif "norm2.bias" in name: new_name = f"{base}.pre_mlp_layernorm.bias" if use_te: new_name = f"{base}.mlp.linear_fc1.layer_norm_bias" assert new_name != "", f"unexpected layer name {name}" if chunk_dim is None: new_tensors = [new_tensor for _ in range(tensor_parallel_size)] else: new_tensors = torch.chunk(new_tensor, tensor_parallel_size, dim=chunk_dim) for i in range(tensor_parallel_size): # chunk() creates a view of a bigger tensor. clone() is used here to avoid excessive storage. new_state_dicts[i]["model"][new_name] = new_tensors[i].clone() # TE sets _extra_state (for FP8 purposes), so set an empty one here for compatibility. extra_state_layers = ("linear_qkv", "linear_proj", "linear_fc1", "linear_fc2") is_extra_state_layer = any([l in new_name for l in extra_state_layers]) if use_te and is_extra_state_layer: layer = new_name.split(".")[-2] if layer in extra_state_layers: extra_state_name = ( new_name[: new_name.rfind(".") + 1] + "_extra_state" ) # Replace the weight name. new_state_dicts[i]["model"][extra_state_name] = None for i in range(tensor_parallel_size): output_dir_tp = os.path.join(output_path, "iter_0000001", f"mp_rank_0{i}") os.makedirs(output_dir_tp) output_path_tp = os.path.join(output_dir_tp, "model_optim_rng.pt") torch.save(new_state_dicts[i], output_path_tp) with open(os.path.join(output_path, "latest_checkpointed_iteration.txt"), "w") as f: f.write("1") def convert_radio_g(output_path, tensor_parallel_size, use_te, version): device = "cuda" version = version if version is not None else 'radio_v2.5-g' model = torch.hub.load('NVlabs/RADIO', 'radio_model', version=version, progress=True) state_dict = model.state_dict() new_state_dicts = [{"model": dict()} for _ in range(tensor_parallel_size)] # Indices from mapping pytorch multihead attention to megatron. kv_channels = 64 hidden_dim = 1536 num_heads = 24 ffn_hidden_dim = 4096 indices = [] for i in range(num_heads): lb = i * kv_channels ub = (i + 1) * kv_channels indices.append(torch.arange(lb, ub, dtype=torch.int)) indices.append(torch.arange(hidden_dim + lb, hidden_dim + ub, dtype=torch.int)) indices.append(torch.arange(2 * hidden_dim + lb, 2 * hidden_dim + ub, dtype=torch.int)) indices = torch.cat(indices) mlp_indices = [] step = ffn_hidden_dim // tensor_parallel_size for i in range(tensor_parallel_size): mlp_indices.append(torch.arange(i * step, (i + 1) * step, dtype=torch.int)) mlp_indices.append(torch.arange(ffn_hidden_dim + i * step, ffn_hidden_dim + (i + 1) * step, dtype=torch.int)) mlp_indices = torch.cat(mlp_indices) for name, tensor in state_dict.items(): # Map parameter names to ones used in megatron. new_names = [] new_tensor = tensor if new_tensor.dtype == torch.float16: new_tensor = new_tensor.to(torch.float32) new_tensors = [new_tensor] # This is used for chunking some tensors to target tensor parallel size. chunk_dim = None if "model" not in name: continue; elif "patch_generator" in name: if "embedder.weight" in name: new_names.append("embedder.weight") chunk_dim = 0 elif "embedder.bias" in name: new_names.append("embedder.bias") chunk_dim = 0 elif "cls_token" in name: new_names.append("class_token") elif "pos_embed" in name: new_names.append("position_embeddings") elif "input_conditioner" in name: continue; elif "mask_token" in name: new_names.append("mask_token") elif "inner.norm" in name: if "norm.weight" in name: new_names.append("ln_post.weight") elif "norm.bias" in name: new_names.append("ln_post.bias") elif "blocks" in name: layer_idx = name.split(".")[3] base = f"decoder.layers.{layer_idx}" if "attn.qkv.weight" in name: new_names.append(f"{base}.self_attention.linear_qkv.weight") new_tensors[0] = new_tensors[0][indices] chunk_dim = 0 elif "attn.qkv.bias" in name: new_names.append(f"{base}.self_attention.linear_qkv.bias") new_tensors[0] = new_tensors[0][indices] chunk_dim = 0 elif "attn.proj.weight" in name: new_names.append(f"{base}.self_attention.linear_proj.weight") chunk_dim = 1 elif "attn.proj.bias" in name: new_names.append(f"{base}.self_attention.linear_proj.bias") elif "norm1.weight" in name: new_name = f"{base}.input_layernorm.weight" if use_te: new_name = f"{base}.self_attention.linear_qkv.layer_norm_weight" new_names.append(new_name) elif "norm1.bias" in name: new_name = f"{base}.input_layernorm.bias" if use_te: new_name = f"{base}.self_attention.linear_qkv.layer_norm_bias" new_names.append(new_name) elif "mlp.w12.weight" in name: new_names.append(f"{base}.mlp.linear_fc1.weight") new_tensors[0] = new_tensors[0][mlp_indices] chunk_dim = 0 elif "mlp.w12.bias" in name: new_names.append(f"{base}.mlp.linear_fc1.bias") new_tensors[0] = new_tensors[0][mlp_indices] chunk_dim = 0 elif "mlp.w3.weight" in name: new_names.append(f"{base}.mlp.linear_fc2.weight") chunk_dim = 1 elif "mlp.w3.bias" in name: new_names.append(f"{base}.mlp.linear_fc2.bias") elif "norm2.weight" in name: new_name = f"{base}.pre_mlp_layernorm.weight" if use_te: new_name = f"{base}.mlp.linear_fc1.layer_norm_weight" new_names.append(new_name) elif "norm2.bias" in name: new_name = f"{base}.pre_mlp_layernorm.bias" if use_te: new_name = f"{base}.mlp.linear_fc1.layer_norm_bias" new_names.append(new_name) elif "ls1.grandma" in name: new_names.append(f"{base}.ls1") elif "ls2.grandma" in name: new_names.append(f"{base}.ls2") assert len(new_names) == len(new_tensors), f"{new_names} {new_tensors}" for new_name, new_tensor in zip(new_names, new_tensors): if chunk_dim is None: tp_new_tensors = [new_tensor for _ in range(tensor_parallel_size)] else: tp_new_tensors = torch.chunk(new_tensor, tensor_parallel_size, dim=chunk_dim) for i in range(tensor_parallel_size): # chunk() creates a view of a bigger tensor. clone() is used here to avoid excessive storage. new_state_dicts[i]["model"][new_name] = tp_new_tensors[i].clone() # TE sets _extra_state (for FP8 purposes), so set an empty one here for compatibility. extra_state_layers = ("linear_qkv", "linear_proj", "linear_fc1", "linear_fc2") is_extra_state_layer = any([l in new_name for l in extra_state_layers]) if use_te and is_extra_state_layer: layer = new_name.split(".")[-2] if layer in extra_state_layers: extra_state_name = ( new_name[: new_name.rfind(".") + 1] + "_extra_state" ) # Replace the weight name. new_state_dicts[i]["model"][extra_state_name] = None for i in range(tensor_parallel_size): output_dir_tp = os.path.join(output_path, "iter_0000001", f"mp_rank_0{i}") os.makedirs(output_dir_tp) output_path_tp = os.path.join(output_dir_tp, "model_optim_rng.pt") torch.save(new_state_dicts[i], output_path_tp) with open(os.path.join(output_path, "latest_checkpointed_iteration.txt"), "w") as f: f.write("1") def convert(output_path, tensor_parallel_size, use_te, model_type, version): if model_type == "radio_v2.5-h": convert_radio_h(output_path, tensor_parallel_size, use_te, version) elif model_type == "radio_v2.5-g": convert_radio_g(output_path, tensor_parallel_size, use_te, version) else: raise NotImplementedError(f"Converter doesn't support model type {model_type}") if __name__ == "__main__": parser = argparse.ArgumentParser( description=""" Convert RADIO weights to megatron format. Example usage: python radio_converter.py --output /some/output/folder --tensor-parallel-size 4 """, formatter_class=argparse.RawDescriptionHelpFormatter, ) parser.add_argument( "--output", type=str, required=True, help="output directory for megatron state dict file(s)" ) parser.add_argument( "--tensor-parallel-size", type=int, default=1, help="model tensor parallel size" ) parser.add_argument("--use-te", action="store_true", help="Use Transformer Engine") parser.add_argument("--model-type", required=True, type=str, choices=['radio_v2.5-h', 'radio_v2.5-g'], help="Type of radio to load for conversion") parser.add_argument("--version", type=str, default=None, help="Version to pass to torch.hub.load. Can be a local path or a version RADIO on torch hub. By default use the version from the model type.") args = parser.parse_args() convert(args.output, args.tensor_parallel_size, args.use_te, args.model_type, args.version) print("done.")