Commit 4e867b3c authored by jerrrrry's avatar jerrrrry
Browse files

Initial commit

parents
# Copyright (c) 2022-2023, NVIDIA CORPORATION. All rights reserved.
""" 2-stage checkpoint loading. """
import time
from collections import defaultdict
from dataclasses import dataclass
from functools import partial, wraps
from itertools import chain
from logging import getLogger
from operator import attrgetter, itemgetter
from pathlib import Path
from typing import List, Optional, Tuple, Union
import torch
from ..dict_utils import dict_list_map_inplace, map_reduce, nested_values
from ..mapping import ShardedStateDict, ShardedTensor
from .base import LoadShardedStrategy
from .tensorstore import _load_from_array, open_ts_array
from .zarr import flatten_range, load_zarr_based_sharded_metadata
_import_trigger = None
timers = defaultdict(list)
logger = getLogger(__name__)
logger.warning(
'megatron.core.dist_checkpointing.two_stage module is deprecated'
' and will be removed in Megatron-Core v0.12. Please use'
' FullyParallelLoadStrategyWrapper to accomplish a parallelized checkpoint load.'
)
def timed(verbose=True):
"""Timing decorator."""
def timed_dec(fn):
name = fn.__name__
@wraps(fn)
def wrapped(*args, **kwargs):
if verbose:
logger.debug(f'{name} init')
start = time.time()
ret = fn(*args, **kwargs)
took = time.time() - start
if verbose:
logger.debug(f'{name} took {took}s')
timers[name].append(took)
return ret
return wrapped
return timed_dec
@dataclass
class _ShardedTensorMetadata:
global_rank: int
sharded_tensor_no_data: ShardedTensor
dist_group_rank: Tuple[int] # id of distributed group
dist_group_ranks: Tuple[int] # id of distributed group
data_size: Optional[int] = None # bytes
def sharded_tensor_chunk_id(sharded_tensor: ShardedTensor):
"""Id of a sharded tensor."""
return (sharded_tensor.key, sharded_tensor.global_offset)
class TwoStageDataParallelLoadShardedStrategy(LoadShardedStrategy):
"""Loads one checkpoint replica from storage and broadcasts to other nodes.
This strategy loads checkpoint from storage on minimal set of nodes
and distributes the checkpoint to other nodes with torch.distributed.
Loading is performed with tensorstore.
Steps:
0. (optional) create Gloo distributed groups
1. Exchange ShardedTensors metadata between all nodes
2. Align needed tensors within DP groups
3. For each globally unique tensor:
3.a) on one of the ranks load it from storage to CPU and move to CUDA
3.b) allocate CUDA tensor on other ranks
3.c) broadcast within DP group
3.d) copy tensor content to the model param location
3.e) free tensor buffers from a) and b)
Notes:
1. Loading and broadcasting is done sequentially to avoid both host and device OOMs
2. There is a lot of overlap potential between all three steps done for each tensor:
2.a) loading from storage to numpy
2.b) moving CPU tensors to CUDA
2.c) broadcast
"""
def __init__(self, data_parallel_group, cpu_transfer=True):
super().__init__()
self.cpu_transfer = cpu_transfer
self.data_parallel_group_orig = data_parallel_group
self.data_parallel_group = None if cpu_transfer else data_parallel_group
self.dp_group_ranks = tuple(
sorted(torch.distributed.get_process_group_ranks(data_parallel_group))
)
self.dp_group_rank = torch.distributed.get_rank(self.data_parallel_group_orig)
self.global_rank = torch.distributed.get_rank()
def load(self, sharded_state_dict: ShardedStateDict, checkpoint_dir: Path):
"""Main load method."""
self.maybe_init_gloo_group()
all_tensors_sorted = self._build_load_plan(sharded_state_dict)
self._exchange_loaded_tensors(all_tensors_sorted, sharded_state_dict, checkpoint_dir)
# TODO: fix hang in summarize_load_times
# self.summarize_load_times()
return sharded_state_dict
def summarize_load_times(self):
"""Summarize load times."""
torch.distributed.barrier()
logger.info('Checkpoint loading finished. Summary:')
# TODO: `timers` keys are not guaranteed to be the same across ranks which causes hangs
for key, times in sorted(timers.items()):
times_sum = sum(times)
max_times = torch.tensor([times_sum], device='cuda')
avg_times = torch.tensor([times_sum], device='cuda')
torch.distributed.all_reduce(max_times, op=torch.distributed.ReduceOp.MAX)
torch.distributed.all_reduce(avg_times, op=torch.distributed.ReduceOp.SUM)
avg_times /= torch.distributed.get_world_size()
if torch.distributed.get_rank() == 0:
logger.info(f'{key}: max {max_times[0]}, avg {avg_times[0]}')
@timed(verbose=False)
def load_tensor_from_storage(self, checkpoint_dir, ten_meta: _ShardedTensorMetadata):
"""Load tensor from storage."""
logger.debug(f'_load_from_array({ten_meta.sharded_tensor_no_data.key}) init')
ret = _load_from_array(
ten_meta.sharded_tensor_no_data,
checkpoint_dir,
load_directly_on_device=False,
apply_flattened_range=False,
)
logger.debug(f'_load_from_array({ten_meta.sharded_tensor_no_data.key}) DONE')
return ret
@timed()
def maybe_init_gloo_group(self):
"""Create Gloo groups."""
if not self.cpu_transfer:
return
all_groups = [None] * torch.distributed.get_world_size()
torch.distributed.all_gather_object(all_groups, self.dp_group_ranks)
all_groups = set(tuple(sorted(gr)) for gr in all_groups)
for group_ranks in sorted(all_groups):
# "two_stage" module will be deprecated, so not replace new_group()
# with ...parallel_state.create_group() func setting group_desc here.
gloo_pg = torch.distributed.new_group(ranks=group_ranks, backend='gloo')
if self.global_rank in group_ranks:
self.data_parallel_group = gloo_pg
assert self.dp_group_rank == torch.distributed.get_rank(self.data_parallel_group)
def check_backend_compatibility(self, loaded_version):
pass # TODO
def check_version_compatibility(self, loaded_version):
pass # TODO
@timed()
def _build_load_plan(
self, sharded_state_dict: ShardedStateDict
) -> List[_ShardedTensorMetadata]:
local_meta = [
_ShardedTensorMetadata(
self.global_rank,
sharded_ten.without_data(),
self.dp_group_rank,
self.dp_group_ranks,
)
for sharded_ten in nested_values(sharded_state_dict)
]
all_meta = [None] * torch.distributed.get_world_size(group=self.data_parallel_group)
torch.distributed.all_gather_object(all_meta, local_meta, group=self.data_parallel_group)
all_meta = list(chain.from_iterable(all_meta))
all_tensors_sorted = self.deduplicate_chunks(all_meta)
return all_tensors_sorted
@timed()
def deduplicate_chunks(self, ten_metas: List[_ShardedTensorMetadata]):
"""Group tensors by chunk and then pick the tensor with the lowest rank.
NOTE: with proper loading overlap, loading from randomized ranks
(instead of the smallest one) could be beneficial here.
"""
ten_metas = map_reduce(
ten_metas,
key_fn=lambda meta: sharded_tensor_chunk_id(meta.sharded_tensor_no_data),
reduce_fn=partial(min, key=attrgetter('dist_group_rank')),
)
all_metas_sorted = list(map(itemgetter(1), sorted(ten_metas.items())))
return all_metas_sorted
@timed()
def _exchange_loaded_tensors(
self, ten_metas: List[_ShardedTensorMetadata], sharded_state_dict, checkpoint_dir
):
logger.debug(f'_exchange_loaded_tensors, num ten_metas: {len(ten_metas)}')
for ten_meta in ten_metas:
src_rank = torch.distributed.get_global_rank(
self.data_parallel_group, ten_meta.dist_group_rank
)
if self.dp_group_rank == ten_meta.dist_group_rank:
exchange_tensor = self.load_tensor_from_storage(checkpoint_dir, ten_meta)
if not self.cpu_transfer:
exchange_tensor = exchange_tensor.cuda()
else:
# TODO: for non-flattened ranges we could reuse the buffer from the start here
exchange_tensor = torch.empty(
ten_meta.sharded_tensor_no_data.local_shape,
device='cpu' if self.cpu_transfer else 'cuda',
dtype=ten_meta.sharded_tensor_no_data.dtype,
)
logger.debug(
f'exchange {ten_meta.sharded_tensor_no_data.key}, {exchange_tensor.shape}\
({exchange_tensor.numel()}), broadcast({src_rank} -> {self.dp_group_ranks})'
)
torch.distributed.broadcast(
exchange_tensor, group=self.data_parallel_group, src=src_rank
)
self._distribute_data_to_state_dict(ten_meta, exchange_tensor, sharded_state_dict)
logger.debug(f'exchange {ten_meta.sharded_tensor_no_data.key} done')
# free buffer memory
exchange_tensor = None
@timed(verbose=False)
def _distribute_data_to_state_dict(
self,
ten_meta: _ShardedTensorMetadata,
loaded_ten: torch.Tensor,
sharded_state_dict: ShardedStateDict,
):
tensor_key = sharded_tensor_chunk_id(ten_meta.sharded_tensor_no_data)
def _fill_in_data(t: Union[ShardedTensor, torch.Tensor]):
if not isinstance(t, ShardedTensor) or sharded_tensor_chunk_id(t) != tensor_key:
# already filled-in or key not matching
return t
sharded_tensor: ShardedTensor = t
x = loaded_ten
if sharded_tensor.flattened_range is not None:
x = flatten_range(sharded_tensor, x)
# Reuse existing buffer
sharded_tensor.data.data.copy_(x)
return sharded_tensor.data
dict_list_map_inplace(_fill_in_data, sharded_state_dict)
def load_tensors_metadata(self, checkpoint_dir: Path):
def get_ts_shape_dtype(path):
arr = open_ts_array(path)
return arr.shape, arr.dtype.numpy_dtype
return load_zarr_based_sharded_metadata(checkpoint_dir, get_ts_shape_dtype)
# Copyright (c) 2022-2023, NVIDIA CORPORATION. All rights reserved.
""" Strategies using Zarr as an underlying format. """
import logging
import os
from functools import partial
from logging import getLogger
from pathlib import Path
from typing import Callable, List, Optional, Tuple
import numpy as np
import torch
import zarr
from ..core import CheckpointingException
from ..dict_utils import dict_list_map_inplace, nested_values
from ..mapping import ShardedStateDict, ShardedTensor, is_main_replica
from .base import (
LoadShardedStrategy,
SaveShardedStrategy,
StrategyAction,
register_default_strategy,
)
logger = logging.getLogger(__name__)
numpy_to_torch_dtype_dict = {
np.dtype('bool'): torch.bool,
np.dtype('uint8'): torch.uint8,
np.dtype('int8'): torch.int8,
np.dtype('int16'): torch.int16,
np.dtype('int32'): torch.int32,
np.dtype('int64'): torch.int64,
np.dtype('float16'): torch.float16,
np.dtype('float32'): torch.float32,
np.dtype('float64'): torch.float64,
np.dtype('complex64'): torch.complex64,
np.dtype('complex128'): torch.complex128,
}
torch_to_numpy_dtype_dict = {v: k for k, v in numpy_to_torch_dtype_dict.items()}
try:
# Register a bfloat16 type with this import
import tensorstore # pylint: disable=unused-import
HAS_BFLOAT16 = True
numpy_to_torch_dtype_dict[np.dtype('bfloat16')] = torch.bfloat16
torch_to_numpy_dtype_dict[torch.bfloat16] = np.dtype('bfloat16')
except ImportError:
HAS_BFLOAT16 = False
logger = getLogger(__name__)
def register_default_zarr_strategies():
"""Register default strategies related to Zarr backend."""
register_default_strategy(
StrategyAction.SAVE_SHARDED, 'zarr', 1, ZarrSaveShardedStrategy('zarr', 1)
)
class ZarrSaveShardedStrategy(SaveShardedStrategy):
"""Save strategy for Zarr backend."""
def __init__(self, backend: str, version: int):
super().__init__(backend, version)
logger.warning(
f'`zarr` distributed checkpoint backend is deprecated.'
' Please switch to PyTorch Distributed format (`torch_dist`).'
)
def save(self, sharded_state_dict: ShardedStateDict, checkpoint_dir: Path):
sharded_tensors = list(nested_values(sharded_state_dict))
arrays = _create_or_open_zarr_arrays(sharded_tensors, checkpoint_dir)
for ten, arr in zip(sharded_tensors, arrays):
_save_to_existing_array(ten, arr)
torch.distributed.barrier()
def _create_or_open_zarr_arrays(
sharded_tensors: List[ShardedTensor], checkpoint_dir: Path
) -> List[Optional[zarr.Array]]:
"""Returns list of zarr arrays corresponding to given tensors.
For a sharded tensors that:
a) is main replica and represents the first chunk (all offsets 0), creates the Zarr array
b) is main replica but not the first chunk,
opens the arrays created in (a) (possibly by other process)
c) otherwise, sets the corresponding array to None since it won't be used
Args:
sharded_tensors (List[ShardedTensor]): sharded tensors from a given rank
that will be saved to checkpoint
checkpoint_dir (Path): checkpoint in which the arrays will be created
"""
arrays = []
for ten in sharded_tensors:
arr = _create_zarr_array(ten, checkpoint_dir) if _should_create_array(ten) else None
arrays.append(arr)
torch.distributed.barrier()
# Open arrays created above by other processes
for arr_idx, ten in enumerate(sharded_tensors):
if arrays[arr_idx] is not None:
# array created by this process
assert _should_create_array(ten), ten
continue
if not is_main_replica(ten.replica_id):
# this array won't be needed for saving and can stay None
continue
open_kwargs = {}
if ten.flattened_range is not None:
open_kwargs['synchronizer'] = zarr.ProcessSynchronizer(
str(checkpoint_dir / f'{ten.key}.sync')
)
arrays[arr_idx] = _open_zarr_array_verbose(checkpoint_dir / ten.key, 'r+', **open_kwargs)
return arrays
def _should_create_array(ten: ShardedTensor):
return (
is_main_replica(ten.replica_id)
and set(ten.global_offset) == {0}
and (ten.flattened_range is None or ten.flattened_range.start == 0)
)
def _save_to_existing_array(sharded_tensor: ShardedTensor, arr: Optional[zarr.Array]):
if not is_main_replica(sharded_tensor.replica_id):
return
assert arr is not None
x = sharded_tensor.data
x = x.detach().cpu()
torch.cuda.synchronize()
if x.dtype == torch.bfloat16:
x = x.float()
x = x.numpy()
x = x.astype('bfloat16')
else:
x = x.numpy()
if sharded_tensor.flattened_range is None:
arr[sharded_tensor.global_slice()] = x
else:
arr.set_coordinate_selection(sharded_tensor.global_coordinates(), x)
def _create_zarr_array(sharded_tensor: ShardedTensor, checkpoint_dir: Path):
np_dtype = torch_to_numpy_dtype_dict[sharded_tensor.dtype]
try:
arr = zarr.create(
sharded_tensor.global_shape,
dtype=np_dtype,
store=checkpoint_dir / sharded_tensor.key,
chunks=sharded_tensor.max_allowed_chunks(),
compressor=None,
fill_value=None,
write_empty_chunks=True,
)
logger.debug(f'Created a new Zarr array at {checkpoint_dir / sharded_tensor.key}')
except zarr.errors.ContainsArrayError as e:
raise CheckpointingException(
f'Array {checkpoint_dir / sharded_tensor.key} already exists'
) from e
if HAS_BFLOAT16 and np_dtype == np.dtype('bfloat16'):
arr._dtype = np_dtype
zarray = arr.store['.zarray']
arr.store['.zarray'] = zarray.replace(b'<V2', b'bfloat16')
return arr
class ZarrLoadShardedStrategy(LoadShardedStrategy):
"""Load strategy for the Zarr backend."""
def load(self, sharded_state_dict: ShardedStateDict, checkpoint_dir: Path):
dict_list_map_inplace(
partial(_load_from_array, checkpoint_dir=checkpoint_dir), sharded_state_dict
)
return sharded_state_dict
def load_tensors_metadata(self, checkpoint_dir: Path):
def get_zarr_shape_dtype(path):
arr = zarr.open(path, 'r')
return arr.shape, arr.dtype
return load_zarr_based_sharded_metadata(checkpoint_dir, get_zarr_shape_dtype)
def check_backend_compatibility(self, loaded_version):
pass # TODO
def check_version_compatibility(self, loaded_version):
pass # TODO
def _load_from_array(sharded_tensor: ShardedTensor, checkpoint_dir: Path):
assert isinstance(sharded_tensor, ShardedTensor), type(sharded_tensor)
arr = _open_zarr_array_verbose(checkpoint_dir / sharded_tensor.key, 'r')
if not sharded_tensor.allow_shape_mismatch and sharded_tensor.global_shape != arr.shape:
_msg = (
f'Global shape mismatch for loaded ({arr.shape})'
f' and expected ({sharded_tensor.global_shape}) tensor'
f' for key {sharded_tensor.key}'
)
raise CheckpointingException(_msg)
x = arr[sharded_tensor.global_slice()] # flattened tensors loading is delayed
return postprocess_numpy_array(x, sharded_tensor)
def _open_zarr_array_verbose(path: Path, mode: str, **open_kwargs):
try:
return zarr.open(str(path), mode, **open_kwargs)
except zarr.errors.PathNotFoundError as e:
ckpt_dir = path.parent
err_msg = f'Array {path} not found'
if ckpt_dir.exists():
ckpt_files = [f.name for f in ckpt_dir.iterdir()]
logger.debug(f'{err_msg}. Checkpoint directory {ckpt_dir} content: {ckpt_files}')
else:
err_msg += f'. Checkpoint directory {ckpt_dir} does not exist.'
raise CheckpointingException(err_msg) from e
def postprocess_numpy_array(loaded_array, sharded_tensor, apply_flattened_range=True):
"""Turn numpy array to torch tensor."""
x = loaded_array
if HAS_BFLOAT16 and x.dtype == np.dtype('bfloat16'):
x = x.astype(np.dtype('float32'))
x = torch.from_numpy(x)
x = x.bfloat16()
else:
x = torch.from_numpy(x)
# TODO: consider some other consistency checks
if x.shape != sharded_tensor.local_shape:
if sharded_tensor.allow_shape_mismatch:
x = pad_to_expected_shape(x, sharded_tensor)
else:
_msg = (
f'Local shape mismatch for loaded ({x.shape})'
f' and expected ({sharded_tensor.local_shape}) tensor'
f' for key {sharded_tensor.key}'
)
raise CheckpointingException(_msg)
if apply_flattened_range and sharded_tensor.flattened_range is not None:
x = flatten_range(sharded_tensor, x)
# TODO: consider cuda() tensors support
return x
def flatten_range(sharded_tensor, x):
"""Apply flattened range to a tensor."""
return x.flatten()[sharded_tensor.flattened_range]
def pad_to_expected_shape(x: torch.Tensor, expected_sharded_ten: ShardedTensor):
"""Pad tensor to the expected shape."""
pad_args = []
assert len(x.shape) == len(expected_sharded_ten.local_shape)
# Reversed iteration order because F.pad expects so
for x_sh, exp_sh, axis_fragm in reversed(
list(
zip(x.shape, expected_sharded_ten.local_shape, expected_sharded_ten.axis_fragmentations)
)
):
if x_sh == exp_sh:
pad_args.extend((0, 0))
elif x_sh > exp_sh:
assert False, (
f'Expected shape ({exp_sh}) smaller than actual ({x_sh})'
f' for {repr(expected_sharded_ten)}'
)
else:
pad_args.extend((0, exp_sh - x_sh))
# TODO: behavior control with envvar is for testing purposes only, remove it
if not int(os.environ.get('DIST_CKPT_PAD_REPLICATE', 0)):
return torch.nn.functional.pad(x, pad_args)
# unsqueeze and squeeze to get shapes supported by cudnn
print(f'Replicating last row for {expected_sharded_ten.key}')
if x.dtype == torch.bfloat16:
return (
torch.nn.functional.pad(x.float().unsqueeze(0), pad_args, mode='replicate')
.squeeze(0)
.bfloat16()
)
return torch.nn.functional.pad(x.unsqueeze(0), pad_args, mode='replicate').squeeze(0)
def load_zarr_based_sharded_metadata(
checkpoint_dir: Path, get_shape_dtype_fn: Callable[[str], Tuple[Tuple[int], np.dtype]]
) -> ShardedStateDict:
"""Load metadata of Zarr arrays.
Args:
checkpoint_dir (str): checkpoint root directory
get_shape_dtype_fn (str -> ((int, ...), np.dtype)): a function returning
an array shape and dtype for a given Zarr array path
"""
sharded_state_dict = {}
for subdir in checkpoint_dir.iterdir():
if not subdir.is_dir() or not (subdir / '.zarray').exists():
continue
key = subdir.name
arr_shape, arr_dtype = get_shape_dtype_fn(str(subdir))
sharded_state_dict[key] = ShardedTensor(
key,
None,
numpy_to_torch_dtype_dict[arr_dtype],
arr_shape,
arr_shape,
tuple(0 for _ in arr_shape),
tuple(1 for _ in arr_shape),
)
return sharded_state_dict
# Copyright (c) 2022-2023, NVIDIA CORPORATION. All rights reserved.
""" Utilities for transforming state_dict, including a tensor-aware implementation."""
import logging
from dataclasses import dataclass
from typing import Any, Dict, Iterable, Iterator, List, Optional, Tuple
import torch
from nvidia_resiliency_ext.checkpointing.local.base_state_dict import TensorAwareStateDict
from .dict_utils import dict_list_map_inplace, dict_list_map_outplace, merge, nested_values
from .exchange_utils import (
ShardDistribution,
determine_main_replica_uniform_distribution,
exchange_by_distribution,
)
from .mapping import ShardedObject, ShardedStateDict, ShardedTensor, StateDict, apply_factory_merges
from .state_dict_utils import load_preprocess, save_preprocess
from .utils import (
_sharded_object_id,
_sharded_tensor_shard_id,
debug_time,
extract_sharded_base,
zip_strict,
)
from .validation import determine_global_metadata, validate_sharding_integrity
logger = logging.getLogger(__name__)
@dataclass
class MCoreTensorAwareStateDict(TensorAwareStateDict):
"""
MCore-specific class defining the interface between the MCore state dict and checkpoint manager.
This class distinguishes between raw objects, the common state dict, and sharded state dicts
(tensor parts). It also handles optional metadata needed for fully parallel save/load.
"""
common: StateDict
sharded_state_dict: ShardedStateDict
_is_hollow: bool = False
@staticmethod
def _validate_params(algo):
if algo != 'atomic' and algo != 'fully_parallel':
raise NotImplementedError(
'Only "atomic" and "fully_parallel" sharding algorithms are supported.'
)
@staticmethod
def _get_distribution(
fully_parallel, sharded_part, parallelization_group, cached_distribution=None
):
if fully_parallel:
if cached_distribution is None:
distribution = determine_main_replica_uniform_distribution(
sharded_part, parallelization_group, True
)
logger.debug(f'MCore_TASD._get_distribution calculated distribution')
else:
distribution = cached_distribution
logger.debug(f'MCore_TASD._get_distribution used cache')
else:
distribution = (None, None, None, None)
logger.debug(f'MCore_TASD._get_distribution returned empty distribution')
return distribution
@staticmethod
def _remove_redundant_data(
fully_parallel, sharded_part, shard_to_saving_rank, parallelization_group
):
if fully_parallel:
for sh_base in nested_values(sharded_part):
# TODO remove redundant objects as well
if isinstance(sh_base, ShardedTensor):
shard_id = _sharded_tensor_shard_id(sh_base)
if shard_to_saving_rank[shard_id] != torch.distributed.get_rank(
group=parallelization_group
):
sh_base.data = None
@classmethod
@debug_time("from_state_dict", logger)
def from_state_dict(
cls,
sharded_state_dict: ShardedStateDict,
algo: str = 'fully_parallel',
parallelization_group: Optional[torch.distributed.ProcessGroup] = None,
cached_metadata: ShardDistribution = None,
) -> Tuple[TensorAwareStateDict, ShardDistribution]:
"""
Constructs a TensorAwareStateDict from a sharded state dictionary.
This method preprocesses the input `sharded_state_dict`, validates parameters,
and extracts the necessary data to create an instance of `MCoreTensorAwareStateDict`.
Args:
sharded_state_dict: The input sharded state dictionary to be converted.
algo (str, optional): Initialization algorithm. Defaults to 'fully_parallel'.
- 'fully_parallel' enables fully parallel initialization.
parallelization_group (Optional): A distributed process group for parallelization.
cached_metadata (Optional): Precomputed metadata from previous saves.
- Reuses data that doesn't need recalculation, optimizing the creation process.
Returns:
TensorAwareStateDict: An instance initialized with the provided sharded state dictionary
and optional cached metadata.
- The metadata is stored in memory to speed up future saves.
"""
with debug_time("_get_distribution", logger):
cls._validate_params(algo)
fully_parallel = algo == 'fully_parallel'
sharded_part, common_state_dict = save_preprocess(
sharded_state_dict, cached_metadata is None
)
cacheable_distribution = cls._get_distribution(
fully_parallel, sharded_part, parallelization_group, cached_metadata
)
if cacheable_distribution is not None:
shard_to_saving_rank, _, _, _ = cacheable_distribution
cls._remove_redundant_data(
fully_parallel, sharded_part, shard_to_saving_rank, parallelization_group
)
return (
MCoreTensorAwareStateDict(common=common_state_dict, sharded_state_dict=sharded_part),
cacheable_distribution,
)
@property
def is_hollow(self):
"""
True iff tensors had been extracted and have not been inserted back yet.
"""
return self._is_hollow
@property
def _sharded_tensors(self):
# Three possible states for sharded_tensor:
# 1. sharded_tensor with data (.data = tensor)
# 2. sharded_tensor hollow (.data = None, .orig_device = orig_device)
# 3. removed sharded_tensor (.data = None, no device information)
# TODO: Consider simplifying by removing the entire sharded_tensor instead of just the data
if self.is_hollow:
for sh_base in nested_values(self.sharded_state_dict):
# FIXME: Hacky way to store the original device of the popped tensor
if isinstance(sh_base, ShardedTensor) and hasattr(sh_base, 'orig_device'):
yield sh_base
else:
for sh_base in nested_values(self.sharded_state_dict):
if isinstance(sh_base, ShardedTensor) and sh_base.data is not None:
yield sh_base
@property
def tensors(self) -> Iterator[torch.Tensor]:
"""
Get the tensor data from the state dict.
"""
assert not self.is_hollow # TODO raise exception
return map(lambda sh_ten: sh_ten.data, self._sharded_tensors)
@property
def common_state_dict(self) -> Dict:
"""
Get the common state dict from the state dict.
"""
return self.common
def pop_tensors(self) -> List[torch.Tensor]:
"""
Extracts the tensor data from the wrapped state dict, preserving metadata.
Replaces the tensor data in sharded_tensors with device type of extracted tensors.
After this operation, the state dictionary is "hollow", containing no tensor data.
Further calls to `pop_tensor` will raise an error.
@return List of extracted tensors
"""
assert not self.is_hollow # TODO raise exception
result = []
for sh_ten in self._sharded_tensors:
result.append(sh_ten.data)
# FIXME: Hacky way to store the original device, which is not included in the metadata
setattr(sh_ten, 'orig_device', sh_ten.data.device.type)
sh_ten.data = None
self._is_hollow = True
return result
def insert_tensors(self, tensor_data: Iterable[torch.Tensor]):
"""
Reverse of `pop_tensors`. Replaces device type in sharded_tensors with actual values
Value of `self` is considered to be the same after:
```
self.insert_tensors(self.pop_tensors())
```
"""
assert self.is_hollow # TODO raise exception
for sh_ten, ten in zip_strict(self._sharded_tensors, tensor_data):
# FIXME: Hacky way to store the original device
if sh_ten.orig_device == ten.device.type:
delattr(sh_ten, 'orig_device')
# Tensor might be on non-original device
sh_ten.data = ten
self._is_hollow = False
def init_tensors(self):
"""
Initializes empty tensors with the same properties as the original tensors.
This function should only be called after the original tensors have been popped.
It ensures that the newly created empty tensors match the shape,
dtype, and device of the originals, but contain no data.
"""
assert self.is_hollow # TODO raise exception
for sh_ten in self._sharded_tensors:
# Hacky way to retrieve the original device
sh_ten.init_data(sh_ten.orig_device)
delattr(sh_ten, 'orig_device')
self._is_hollow = False
def copy_tensors_to_cpu(self, non_blocking=False):
"""
Stores CPU copies of tensors in the state_dict, replacing the originals,
but without destroying them.
The original devices are remembered for restoration with restore_tensor_device().
Using non_blocking=True allows for asynchronous copying.
"""
assert not self.is_hollow # TODO raise exception
for sh_ten in self._sharded_tensors:
if sh_ten.data.device.type == 'cpu':
# Skip cloning if it's already confirmed to be a copy
if not hasattr(sh_ten, 'orig_device'):
sh_ten.data = sh_ten.data.clone()
else:
# FIXME: Hacky way to store the original device
if not hasattr(sh_ten, 'orig_device'):
setattr(sh_ten, 'orig_device', sh_ten.data.device.type)
sh_ten.data = sh_ten.data.detach().to("cpu", non_blocking=non_blocking)
def restore_tensor_device(self, non_blocking=True):
"""
Restores all tensors to their original devices, if a move is required.
Using non_blocking=True allows for asynchronous copying.
"""
assert not self.is_hollow # TODO raise exception
for sh_ten in self._sharded_tensors:
# FIXME: Hacky way to store the original device
if hasattr(sh_ten, 'orig_device'):
sh_ten.data = sh_ten.data.to(sh_ten.orig_device, non_blocking=non_blocking)
delattr(sh_ten, 'orig_device')
def _insert_sharded_data(
self, fully_parallel, sharded_part, parallelization_group, exchange_algo
):
loaded_tensors = {}
for sh_ten in self._sharded_tensors:
loaded_tensors[_sharded_tensor_shard_id(sh_ten)] = sh_ten.data
if fully_parallel:
with debug_time("_get_distribution", logger):
distribution = self._get_distribution(
fully_parallel, sharded_part, parallelization_group
)
if distribution is not None:
unloaded_shards = {}
for sh_base in nested_values(sharded_part):
# TODO retrieve redundant ShardedObjects once removed in _remove_redundant_data
if isinstance(sh_base, ShardedTensor):
shard_id = _sharded_tensor_shard_id(sh_base)
if shard_id not in loaded_tensors:
unloaded_shards[shard_id] = sh_base
with debug_time("exchange_by_distribution", logger):
loaded_tensors = exchange_by_distribution(
loaded_tensors,
unloaded_shards,
distribution,
parallelization_group,
exchange_algo,
)
torch.cuda.synchronize()
loaded_objects = {}
for sh_base in nested_values(self.sharded_state_dict):
if not isinstance(sh_base, ShardedTensor):
assert isinstance(sh_base, ShardedObject)
loaded_objects[_sharded_object_id(sh_base)] = sh_base.data
def load_sharded_base(x: Any):
if isinstance(x, ShardedTensor):
shard_id = _sharded_tensor_shard_id(x)
assert shard_id in loaded_tensors, (x, shard_id, loaded_tensors.keys())
x = loaded_tensors[shard_id]
if isinstance(x, ShardedObject):
object_id = _sharded_object_id(x)
assert object_id in loaded_objects, (x, object_id, loaded_objects.keys())
x = loaded_objects[object_id]
return x
dict_list_map_inplace(load_sharded_base, sharded_part)
@debug_time("to_state_dict", logger)
def to_state_dict(
self,
sharded_state_dict: ShardedStateDict,
algo: str = 'atomic',
exchange_algo: str = 'broadcast',
validate_access_integrity: bool = True,
parallelization_group: Optional[torch.distributed.ProcessGroup] = None,
):
"""
Convert tensor-aware dict back to the original state_dict
"""
with debug_time("load_preprocess_and_state_dict_manipulations", logger):
assert not self.is_hollow # TODO raise exception
self._validate_params(algo)
fully_parallel = algo == 'fully_parallel'
# __adding__ common part
recreated_state_dict = dict_list_map_outplace(lambda x: x, self.common)
if not sharded_state_dict:
return recreated_state_dict
# TODO validate self.sharded_state_dict"] and sharded_state_dict are compatible
sharded_state_dict, nonpersistent_state_dict, sh_ten_factories = load_preprocess(
sharded_state_dict
)
# __adding__ nonpersistent part
merge(recreated_state_dict, nonpersistent_state_dict)
sharded_part, _ = extract_sharded_base(sharded_state_dict)
if validate_access_integrity:
with debug_time("validate_sharding_integrity", logger):
validate_sharding_integrity(determine_global_metadata(sharded_part)[1])
# load sharded tensors and sharded objects to sharded_part
with debug_time("_insert_sharded_data", logger):
self._insert_sharded_data(
fully_parallel, sharded_part, parallelization_group, exchange_algo
)
with debug_time("apply_factory_merges", logger):
sharded_part = apply_factory_merges(sharded_part, sh_ten_factories)
# __adding__ sharded_part
merge(recreated_state_dict, sharded_part)
return recreated_state_dict
# Copyright (c) 2022-2023, NVIDIA CORPORATION. All rights reserved.
""" Helpers for manipulating sharded tensors and sharded state dicts. """
import logging
from contextlib import contextmanager
from time import time
from typing import Dict, Optional, Tuple
from .dict_utils import dict_list_map_inplace, extract_matching_values
from .mapping import (
LocalNonpersistentObject,
ShardedBase,
ShardedObject,
ShardedStateDict,
ShardedTensor,
ShardedTensorFactory,
StateDict,
)
# _ShardId uniquely identifies a ShardedTensor. This is a subset of ShardedTensor
# attributes: key (str), global_offset (tuple) and flattened_range (optional tuple)
_ShardId = Tuple[str, tuple, Optional[tuple]]
def zip_strict(*args):
"""
Alternative to Python's builtin zip(..., strict=True) (available in 3.10+).
Apart from providing functionality in earlier versions of Python is also more verbose.
(Python's zip does not print lengths, only which iterable has finished earlier)
"""
args = [list(a) for a in args]
lens = [len(a) for a in args]
assert len(set(lens)) <= 1, f"Tried to zip iterables of unequal lengths: {lens}!"
return zip(*args)
def _sharded_tensor_shard_id(sharded_tensor: ShardedTensor) -> _ShardId:
"""Unique id of the sharded tensor data.
Should yield the same value for same data replicated on different ranks.
Args:
sharded_tensor (ShardedTensor): sharded tensor representing the data shard
Returns (tuple): unique id of a data shard
"""
f_range = sharded_tensor.flattened_range
return (
sharded_tensor.key,
sharded_tensor.global_offset,
None if f_range is None else (f_range.start, f_range.stop),
)
def _sharded_object_id(sharded_object: ShardedObject) -> _ShardId:
"""Unique id of the sharded object data.
Should yield the same value for same data replicated on different ranks.
Args:
sharded_object (ShardedObject): sharded object representing the data shard
Returns (tuple): unique id of a data shard
"""
return (sharded_object.key, sharded_object.global_offset, sharded_object.global_shape)
def extract_sharded_tensors(
sharded_state_dict: ShardedStateDict,
) -> Tuple[ShardedStateDict, StateDict]:
"""Extract a dict consisting of only ShardedTensor objects
from a given state dict with any objects.
Args:
sharded_state_dict: state dict possibly containing ShardedTensor objects
Returns:
Tuple[ShardedStateDict, StateDict]: tuple of:
- state dict with all ShardedTensor (keeping the original state dict structure)
- state dict with all objects other than ShardedTensor
(keeping the original state dict structure)
"""
return extract_matching_values(sharded_state_dict, lambda v: isinstance(v, ShardedTensor))
def extract_sharded_tensors_and_factories(
sharded_state_dict: ShardedStateDict,
) -> Tuple[ShardedStateDict, StateDict]:
"""Extract a dict consisting of only ShardedTensor and ShardedTensorFactory objects
from a given state dict with any objects.
Args:
sharded_state_dict:
state dict possibly containing ShardedTensor and ShardedTensorFactory objects
Returns:
Tuple[ShardedStateDict, StateDict]: tuple of:
- state dict with all ShardedTensor and ShardedTensorFactory
(keeping the original state dict structure)
- state dict with all other objects (keeping the original state dict structure)
"""
return extract_matching_values(
sharded_state_dict, lambda v: isinstance(v, (ShardedTensor, ShardedTensorFactory))
)
def extract_sharded_tensors_or_nonpersistent(
sharded_state_dict: ShardedStateDict,
) -> Tuple[ShardedStateDict, StateDict]:
"""Extract a dict consisting of only ShardedTensor, ShardedTensorFactory
and LocalNonpersistentObject objects from a given state dict with any objects.
Args:
sharded_state_dict: state dict possibly containing ShardedTensor, ShardedTensorFactory
and LocalNonpersistentObject objects
Returns:
Tuple[ShardedStateDict, StateDict]: tuple of:
- state dict with all ShardedTensor, ShardedTensorFactory and LocalNonpersistentObject
(keeping the original state dict structure)
- state dict with all other objects (keeping the original state dict structure)
"""
return extract_matching_values(
sharded_state_dict,
lambda v: isinstance(v, (ShardedTensor, LocalNonpersistentObject, ShardedTensorFactory)),
)
def extract_sharded_base(
sharded_state_dict: ShardedStateDict,
) -> Tuple[ShardedStateDict, StateDict]:
"""Extract a dict consisting of only ShardedBase from a given state dict with any objects.
Args:
sharded_state_dict: state dict possibly containing ShardedBase objects
Returns:
Tuple[ShardedStateDict, StateDict]: tuple of:
- state dict with all ShardedBase objects (keeping the original state dict structure)
- state dict with all other objects (keeping the original state dict structure)
"""
return extract_matching_values(sharded_state_dict, lambda v: isinstance(v, ShardedBase))
def extract_nonpersistent(
sharded_state_dict: ShardedStateDict,
) -> Tuple[ShardedStateDict, StateDict]:
"""Extract a dict consisting of only LocalNonpersistentObjects from a given state dict.
Args:
sharded_state_dict: state dict possibly containing LocalNonpersistentObjects
Returns:
Tuple[ShardedStateDict, StateDict]: tuple of:
- state dict with all LocalNonpersistentObjects
(keeping the original state dict structure)
- state dict with all other objects (keeping the original state dict structure)
"""
return extract_matching_values(
sharded_state_dict, lambda v: isinstance(v, LocalNonpersistentObject)
)
def add_prefix_for_sharding(sharded_state_dict: ShardedStateDict, prefix: str):
"""Prepend a given prefix to all ShardedBase objects in a given state dict *in-place*.
Args:
sharded_state_dict (ShardedStateDict): sharded state dict
prefix (str): prefix to be prepended
Returns:
None: state dict is modified in-place
"""
def add_prefix(t):
if isinstance(t, ShardedBase):
t.key = f'{prefix}{t.key}'
return t
dict_list_map_inplace(add_prefix, sharded_state_dict)
def replace_prefix_for_sharding(
sharded_state_dict: ShardedStateDict, old_prefix: str, new_prefix: str
):
"""Replaces the given prefix in *all* sharded keys in a given state dict.
Errors out if some key does not begin with a given prefix.
Args:
sharded_state_dict (ShardedStateDict): sharded state dict to replace keys in
old_prefix (str): prefix to be replaced in each key
new_prefix (str): new prefix
Returns:
None: state dict is modified in place
"""
def _replace_prefix(x):
if isinstance(x, (ShardedTensor, ShardedTensorFactory, ShardedObject)):
if not x.key.startswith(old_prefix):
raise ValueError(f'Expected {x.key} to begin with prefix {old_prefix}')
x.key = f'{new_prefix}{x.key[len(old_prefix):]}' # str.removeprefix in Python >= 3.9
return x
dict_list_map_inplace(_replace_prefix, sharded_state_dict)
def apply_prefix_mapping(sharded_state_dict: ShardedStateDict, prefix_map: Dict[str, str]):
"""Replaces prefixes *only in keys matching* with one of prefixes in the map.
Args:
sharded_state_dict (ShardedStateDict): sharded state dict to replace keys in
prefix_map (Dict[str, str]):
map of old->new prefixes. The first matching prefix for each key is used
Returns:
None: state dict is modified in place
"""
def _replace_prefixes(x):
if not isinstance(x, (ShardedTensor, ShardedTensorFactory, ShardedObject)):
return x
for old_prefix, new_prefix in prefix_map.items():
if x.key.startswith(old_prefix):
x.key = (
f'{new_prefix}{x.key[len(old_prefix):]}' # str.removeprefix in Python >= 3.9
)
break
return x
dict_list_map_inplace(_replace_prefixes, sharded_state_dict)
fallback_logger = logging.getLogger(__name__)
__LOGGER_NAME_STACK = []
__LOGGER_STACK = []
@contextmanager
def logger_stack(name: Optional[str] = None, current_logger: Optional[logging.Logger] = None):
"""Context manager for managing logger and name stack.
Temporarily pushes a logger and/or name onto their respective stacks, allowing hierarchical
logging and contextual logger usage. Ensures the logger stack is restored afterward.
Args:
name (str, optional): Name to add to the logger stack. Defaults to None.
current_logger (logging.Logger, optional): Logger to use. Defaults to the last logger in
the stack or a fallback if none exist.
Yields:
Tuple[str, logging.Logger]: A tuple with the concatenated logger name stack and
the current logger for the block.
Example:
with logger_stack("scope", logger):
logger.info("Log within 'scope'")
"""
if name:
__LOGGER_NAME_STACK.append(name)
if current_logger:
__LOGGER_STACK.append(current_logger)
last_logger = current_logger
elif __LOGGER_STACK:
last_logger = __LOGGER_STACK[-1]
else:
last_logger = fallback_logger
try:
yield ".".join(__LOGGER_NAME_STACK), last_logger
finally:
if name and __LOGGER_NAME_STACK:
__LOGGER_NAME_STACK.pop(-1)
if current_logger and __LOGGER_STACK:
__LOGGER_STACK.pop(-1)
@contextmanager
def debug_time(
name: str, logger: Optional[logging.Logger] = None, threshold: float = float("-inf"), level=None
):
"""Simple context manager for timing functions/code blocks.
Args:
name (str): Label describing the code being measured.
logger (logging.Logger, optional): Logger for output. Defaults to the lowest logger.
threshold (float, optional): Minimum time (seconds) to log. Skips logging if faster.
level (int, optional): Logging level. Defaults to DEBUG if `threshold` is unset;
WARNING otherwise.
"""
with logger_stack(name, logger) as (stacked_name, last_logger):
start = time()
try:
yield
finally:
result = time() - start
if result < threshold:
return
if level is None:
level = logging.DEBUG if threshold == float("-inf") else logging.WARNING
last_logger.log(level, f"{stacked_name} took {result:.4f}s")
def debug_msg(msg: str):
"""Logs a debug message using the current logger stack.
This function formats and logs a debug message with the current logger
and name stack, preserving context from the logger_stack context manager.
Args:
msg (str): The message to be logged at the debug level.
Example:
debug_msg("Checkpoint initialized")
# Logs: "scope_name Checkpoint initialized" if called within logger_stack("scope_name")
"""
with logger_stack(None, None) as (stacked_name, last_logger):
last_logger.debug(f"{stacked_name} {msg}")
# Copyright (c) 2024, NVIDIA CORPORATION. All rights reserved.
import logging
from collections import Counter, defaultdict
from enum import Enum
from pathlib import Path
from typing import TYPE_CHECKING, List, Optional, Set, Tuple, Union
import numpy as np
import torch
from megatron.core.dist_checkpointing import ShardedTensor
from megatron.core.dist_checkpointing.core import CheckpointingException, maybe_load_config
from megatron.core.dist_checkpointing.dict_utils import (
diff,
extract_matching_values,
map_reduce,
nested_values,
)
from megatron.core.dist_checkpointing.mapping import (
CommonStateDict,
ShardedBase,
ShardedObject,
ShardedStateDict,
is_main_replica,
)
from megatron.core.dist_checkpointing.strategies.base import (
LoadCommonStrategy,
LoadShardedStrategy,
SaveCommonStrategy,
SaveShardedStrategy,
StrategyAction,
get_default_strategy,
)
if TYPE_CHECKING:
from megatron.core.dist_checkpointing.serialization import CkptShardedMetadata
logger = logging.getLogger(__name__)
# pylint: disable=line-too-long
# list of local saved/loaded ShardedBase objects
_LocalMetadata = List[Union[ShardedTensor, ShardedObject]]
# list of lists of global saved/loaded ShardedBase objects (each element corresponds to global rank)
_GlobalMetadata = List[_LocalMetadata]
class StrictHandling(Enum):
"""Determines handling of load mismatch (non-empty "unexpected" or "missing" keys).
Different flags carry different implications on performance and behaviour and
are divided into two groups:
- *_UNEXPECTED
- *_ALL
The first group ignores missing keys (present in the checkpoint but missing
in the sharded state dict) which is created in order to avoid inter-rank
metadata exchange. Note that the metadata exchange will happen anyway
with `load(..., validate_access_integrity=True)` flag in which case using the
`*_ALL` option is recommended as it provides a more thorough check with no
performance penalty wrt. `*_UNEXPECTED` group.
All options except for the first one (`ASSUME_OK_UNEXPECTED`) require
extra disk access before the load in order to remove unexpected keys
from the sharded state dict requested to load.
"""
# Relies on the underlying strategy to raise error on unexpected keys
ASSUME_OK_UNEXPECTED = 'assume_ok_unexpected'
# Logs (with WARNING level) "unexpected" keys. Missing keys are ignored.
# This is treated as a reasonable default for a "non-strict" load
LOG_UNEXPECTED = 'log_unexpected'
# Logs (with WARNING level) all mismatched keys.
LOG_ALL = 'log_all'
# Raise error on unexpected keys before load attempt.
# Gives cleaner error message than `ASSUME_OK_UNEXPECTED` but requires
# extra disk access.
RAISE_UNEXPECTED = 'raise_unexpected'
# Raise error on any mismatch. Similar to `RAISE_UNEXPECTED` but requires
# metadata exchange.
RAISE_ALL = 'raise_all'
# "Unexpected" mismatches are not reported, but returned by the `load`
# function along with the loaded state dict. Missing keys are ignored.
RETURN_UNEXPECTED = 'return_unexpected'
# All mismatches are returned along with the loaded state dict.
RETURN_ALL = 'return_all'
# Simply ignores mismatches (not recommended)
IGNORE_ALL = 'ignore_all'
@staticmethod
def requires_explicit_ckpt_mismatch_check(val: 'StrictHandling') -> bool:
"""Whether a given strict flag involves mismatch check against the checkpoint."""
return val != StrictHandling.ASSUME_OK_UNEXPECTED
@staticmethod
def requires_global_app_metadata(val: 'StrictHandling') -> bool:
"""Whether a given strict option requires global metadata for validation."""
return val in (
StrictHandling.IGNORE_ALL,
StrictHandling.RAISE_ALL,
StrictHandling.RETURN_ALL,
StrictHandling.LOG_ALL,
)
@staticmethod
def requires_returning_mismatch_keys(val: 'StrictHandling') -> bool:
"""Whether a given strict option results in extra return value from the `load` function."""
return val in (StrictHandling.RETURN_UNEXPECTED, StrictHandling.RETURN_ALL)
def parse_strict_flag(strict: Union[str, StrictHandling]) -> StrictHandling:
"""Parse user passed strict flag from a string to StrictHandling instance.
Args:
strict (str, StrictHandling): strict flag to parse. If already an instance
of StrictHandling, this function is a noop.
Returns:
StrictHandling: enum instance
"""
if isinstance(strict, StrictHandling):
return strict
try:
return StrictHandling(strict)
except (ValueError, TypeError) as e:
raise ValueError(f'Invalid strict flag: {e}') from e
def validate_integrity_and_strict_load(
sharded_state_dict: ShardedStateDict,
strict: StrictHandling,
validate_access_integrity: bool,
local_metadata: Optional[_LocalMetadata] = None,
global_metadata: Optional[_GlobalMetadata] = None,
ckpt_sharded_metadata: Optional['CkptShardedMetadata'] = None,
) -> Tuple[ShardedStateDict, Set[str], Set[str]]:
"""Validates sharding integrity and potential mismatches with the checkpoint.
`validate_access_integrity` controls sharding integrity check (orthogonal
to strictness checking) which verifies `sharded_state_dict` runtime completeness
(in isolation from the actual checkpoint).
`strict` flag controls handling of mismatches between the requested
sharded state dict to load and the actual checkpoint. See `StrictHandling`
docs for details regarding flag behavior and performance implications
(disk interactions or inter-rank communication).
Args:
sharded_state_dict (ShardedStateDict): sharded state dict to verify.
strict (StrictHandling): flag determining how to handle sharded keys mismatch.
validate_access_integrity (bool): whether to perform sharding validation.
local_metadata (_LocalMetadata, optional): local sharded state dict metadata.
Defaults to None, in which case it's determined based on `sharded_state_dict`.
global_metadata (_GlobalMetadata, optional): global sharded state dict metadata
(exchanged between ranks). Defaults to None, in which case "missing"
keys are not determined.
ckpt_sharded_metadata (CkptShardedMetadata, optional): sharded metadata
from the checkpoint. Defaults to None, which only makes sense
for the `StrictHandling.ASSUME_OK_UNEXPECTED` strict value.
Returns:
Tuple[ShardedStateDict, Set[str], Set[str]]: tuple of: sharded state dict
without unexpected keys, missing and unexpected keys. Missing keys are equal
on all ranks, unexpected keys might differ across ranks. Additionally,
missing keys might be erroneously empty (depending on `strict` value).
"""
missing_keys, unexpected_keys = [], []
if StrictHandling.requires_explicit_ckpt_mismatch_check(strict):
if ckpt_sharded_metadata is None:
raise CheckpointingException(
'Cannot verify checkpoint mismatch with ckpt_sharded_metadata=None.'
)
if local_metadata is None:
local_metadata = [
sh_base.without_data() for sh_base in nested_values(sharded_state_dict)
]
# We don't want to check for missing keys even if we could
_skip_missing_keys = strict in (
StrictHandling.ASSUME_OK_UNEXPECTED,
StrictHandling.LOG_UNEXPECTED,
StrictHandling.RAISE_UNEXPECTED,
StrictHandling.RETURN_UNEXPECTED,
)
missing_keys, unexpected_keys = _determine_missing_and_unexpected_keys(
ckpt_sharded_metadata, local_metadata, None if _skip_missing_keys else global_metadata
)
sharded_state_dict = adjust_non_strict_load(sharded_state_dict, unexpected_keys)
if strict == StrictHandling.IGNORE_ALL:
missing_keys, unexpected_keys = [], []
elif strict in (StrictHandling.RAISE_UNEXPECTED, StrictHandling.RAISE_ALL):
maybe_report_missing_and_unexpected_keys(missing_keys, unexpected_keys, True)
elif strict in (StrictHandling.LOG_UNEXPECTED, StrictHandling.LOG_ALL):
maybe_report_missing_and_unexpected_keys(missing_keys, unexpected_keys, False)
if validate_access_integrity:
if global_metadata is None:
raise CheckpointingException(
'Cannot check sharding intergrity without global_metadata (None).'
)
validate_sharding_integrity(global_metadata)
return sharded_state_dict, missing_keys, unexpected_keys
def verify_checkpoint_and_load_strategy(
checkpoint_dir: str,
sharded_strategy: Union[LoadShardedStrategy, Tuple[str, int], None] = None,
common_strategy: Union[LoadCommonStrategy, Tuple[str, int], None] = None,
) -> Tuple[LoadShardedStrategy, LoadCommonStrategy]:
"""Verifies if checkpoint metadata exists and matches given strategies.
If no strategies are passed, they are determined based on the checkpoint metadata.
Args:
checkpoint_dir (str): checkpoint directory
sharded_strategy (LoadShardedStrategy, Tuple[str, int], optional): sharded load strategy to be verified
if compatible with the checkpoint content. If None, the default sharded load strategy
for the checkpoint backend will be returned.
common_strategy (LoadCommonStrategy, Tuple[str, int], optional): common load strategy to be verified
if compatible with the checkpoint content. If None, the default common load strategy
for the checkpoint backend will be returned.
"""
if not Path(checkpoint_dir).exists():
raise CheckpointingException(f'Checkpoint directory {checkpoint_dir} does not exist')
saved_config = maybe_load_config(checkpoint_dir)
if saved_config is None:
raise CheckpointingException(f'{checkpoint_dir} is not a distributed checkpoint')
if sharded_strategy is None:
sharded_strategy = get_default_strategy(
StrategyAction.LOAD_SHARDED,
saved_config.sharded_backend,
saved_config.sharded_backend_version,
)
elif isinstance(sharded_strategy, tuple):
sharded_strategy = get_default_strategy(StrategyAction.LOAD_SHARDED, *sharded_strategy)
if common_strategy is None:
common_strategy = get_default_strategy(
StrategyAction.LOAD_COMMON,
saved_config.common_backend,
saved_config.common_backend_version,
)
elif isinstance(common_strategy, tuple):
sharded_strategy = get_default_strategy(StrategyAction.LOAD_COMMON, *common_strategy)
sharded_strategy.check_backend_compatibility(saved_config.sharded_backend)
sharded_strategy.check_version_compatibility(saved_config.sharded_backend_version)
common_strategy.check_backend_compatibility(saved_config.common_backend)
common_strategy.check_version_compatibility(saved_config.common_backend_version)
return sharded_strategy, common_strategy
def adjust_non_strict_load(
sharded_state_dict: ShardedStateDict, sharded_keys_to_remove: Set[str]
) -> ShardedStateDict:
"""Adjusts sharded state dict removing keys not existing in the checkpoint.
Args:
sharded_state_dict (ShardedStateDict): sharded state dict to modify
sharded_keys_to_remove (Set[str]): keys to remove from the state dict
Returns:
ShardedStateDict: state dict without ShardedBase objects with specified keys
"""
def is_unexpected_key(x: ShardedBase):
assert isinstance(x, ShardedBase), f'Unexpected type {type(x)}'
return x.key in sharded_keys_to_remove
_, sharded_state_dict = extract_matching_values(sharded_state_dict, is_unexpected_key)
return sharded_state_dict
def _determine_missing_and_unexpected_keys(
ckpt_sharded_metadata: 'CkptShardedMetadata',
local_metadata: _LocalMetadata,
global_metadata: Optional[_GlobalMetadata] = None,
) -> Tuple[Set[str], Set[str]]:
"""Determines load mismatches based on metadata.
There is an asymmetry between "unexpected" and "missing" keys.
Unexpected keys can be determined based only on local metadata.
Missing keys must be based on global metadata, since other ranks might access
different keys than the current rank.
In consequence, the return value of this function is different on each rank:
"missing_keys" are equal, but "unexpected_keys" might differ across ranks.
Args:
ckpt_sharded_metadata (CkptShardedMetadata): sharded state dict (without data)
constructed based on the checkpoint content
local_metadata (_LocalMetadata): list of local ShardedBase objects
requested to be loaded by this rank
global_metadata (_GlobalMetadata, optional): list of global ShardedBase objects
requested to be loaded by all ranks. Defaults to None, in which case
returned "missing" keys are empty.
Returns:
Tuple[Set[str], Set[str]]: missing and unexpected keys. Missing keys are equal
on all ranks, unexpected keys might differ across ranks. If passed
`global_metadata` is empty, returned missing keys are empty as well.
"""
local_accessed_keys = set(sh_base.key for sh_base in local_metadata)
ckpt_keys = set(sh_base.key for sh_base in ckpt_sharded_metadata.values())
unexpected_keys = local_accessed_keys - ckpt_keys
if global_metadata is not None:
global_accessed_keys = set(
sh_base.key for rank_metadata in global_metadata for sh_base in rank_metadata
)
missing_keys = ckpt_keys - global_accessed_keys
else:
missing_keys = set()
if missing_keys:
logger.debug(f'Dist ckpt load missing keys: {missing_keys}')
if unexpected_keys:
logger.debug(f'Dist ckpt load unexpected keys: {unexpected_keys}')
return missing_keys, unexpected_keys
def maybe_report_missing_and_unexpected_keys(
missing_keys: Set[str], unexpected_keys: Set[str], raise_error: bool = True
) -> None:
"""Raises or logs an error in case missing or unexpected keys are non-empty.
Args:
missing_keys (Set[str]): missing keys in the state dict
unexpected_keys (Set[str]): unexpected keys in the state dict
raise_error: If True, raises error on mismatch. Otherwise, logs mismatch
with WARNING level.
Returns:
None
Raises:
CheckpointingException: if `raise_error` is True and at least one of
`missing_keys` or `unexpected_keys` are non-empty.
"""
if not missing_keys and not unexpected_keys:
return
missing_title_msg = (
f'Some keys found in the checkpoint are missing in the provided sharded state dict. '
)
missing_body_msg = f'Missing keys (for all ranks): {missing_keys}. '
unexpected_title_msg = f'Unexpected keys (not found in the checkpoint) encountered in the provided sharded state dict. '
unexpected_body_msg = f'Unexpected keys (for this rank): {unexpected_keys}. '
error_msg = ''
if missing_keys:
error_msg += missing_title_msg
if unexpected_keys:
error_msg += unexpected_title_msg
error_msg += '\n'
if missing_keys:
error_msg += missing_body_msg
if unexpected_keys:
error_msg += unexpected_body_msg
if raise_error:
raise CheckpointingException(error_msg)
else:
logger.warning(error_msg)
def _validate_common_state_dict(common_state_dict: CommonStateDict) -> None:
"""Validate consistancy across ranks for the common state dict
We save the common state dict only on rank 0. We validate to make sure that the common dict is consistant across ranks before saving.
Args:
common_state_dict: The common state dict present in all ransk
"""
# Gather the common state dict across ranks onto rank 0 for comparison
rank = torch.distributed.get_rank()
other_rank_state_dicts = [None] * torch.distributed.get_world_size() if rank == 0 else None
torch.distributed.gather_object(common_state_dict, other_rank_state_dicts)
common_state_dict_diff = {}
if rank == 0:
main_rank_state_dict = common_state_dict
for rank, rank_state_dict in enumerate(other_rank_state_dicts[1:], 1):
only_left, only_right, mismatch = diff(main_rank_state_dict, rank_state_dict)
if only_left or only_right or mismatch:
common_state_dict_diff[rank] = (only_left, only_right, mismatch)
if len(common_state_dict_diff) != 0:
logger.warning(
f'There is difference in the common state dict in different ranks. The differences are {common_state_dict_diff}'
)
def validate_sharding_integrity(
global_metadata: _GlobalMetadata, common_state_dict: CommonStateDict = None
) -> None:
"""Validate if the ShardedTensors and ShardedObjects from multiple processes define correct sharding.
Local ShardedTensors and ShardedObject metadata is exchanged with `torch.distributed.all_gather_object`
and then process with global rank 0 checks if main replicas of the shards:
- cover the whole global tensors
- don't overlap
Args:
global_metadata (_GlobalMetadata): ShardedTensor and ShardedObject objects from all ranks.
common_state_dict (CommonStateDict): The common state dict stored by rank 0
Returns:
None
Raises:
CheckpointingException for invalid access pattern
"""
if common_state_dict is not None:
_validate_common_state_dict(common_state_dict)
if torch.distributed.get_rank() != 0:
return
key_shardings = defaultdict(list)
for rank, rank_shardings in enumerate(global_metadata):
for sharding in rank_shardings:
key_shardings[sharding.key].append((rank, sharding))
for key, shardings in key_shardings.items():
if isinstance(shardings[0][1], ShardedObject):
_validate_objects_for_key(shardings)
else:
_validate_sharding_for_key(shardings)
def _validate_sharding_for_key(rank_sharding: List[Tuple[int, ShardedTensor]]):
some_rank_shard = rank_sharding[0][1]
global_shape = some_rank_shard.global_shape
local_shape = some_rank_shard.local_shape
dtype = some_rank_shard.dtype
has_flattened_range = some_rank_shard.flattened_range is not None
for rank, sharding in rank_sharding:
assert sharding.dtype == dtype, (sharding.dtype, dtype, some_rank_shard)
assert sharding.global_shape == global_shape, (
sharding.global_shape,
global_shape,
some_rank_shard,
)
assert sharding.local_shape == local_shape, (
sharding.local_shape,
local_shape,
some_rank_shard,
)
assert (sharding.flattened_range is not None) == has_flattened_range, (
(sharding.flattened_range is not None),
has_flattened_range,
some_rank_shard,
)
shard_access_cnt = _compute_shards_access(rank_sharding)
if has_flattened_range:
map_reduce(
rank_sharding,
lambda x: x[1].global_offset,
lambda x: x[1],
_validate_sharding_for_key_flattened,
)
# For each shard with at least 1 flattened tensor in it, the above
# `_validate_sharding_for_key_flattened` ensure a correct consistent pattern
# The only thing that can go wrong at this point is that some shard don't have
# *any* representatives which will be checked later by comparing `shard_access_cnt == 1`
shard_access_cnt = torch.minimum(shard_access_cnt, torch.tensor([1]))
if not torch.all(shard_access_cnt == 1):
raise CheckpointingException(
f'Invalid access pattern for {rank_sharding[0][1]}: {shard_access_cnt}'
)
def _compute_shards_access(rank_sharding):
shard_access_cnt = torch.zeros(
rank_sharding[0][1].axis_fragmentations, dtype=torch.int, device='cpu'
)
for rank, sharding in rank_sharding:
if is_main_replica(sharding.replica_id):
shard_access_cnt[sharding.local_chunk_offset_in_global()] += 1
return shard_access_cnt
def _validate_sharding_for_key_flattened(tensors_by_shard):
all_slices = []
local_shape = tensors_by_shard[0].local_shape
for sharding in tensors_by_shard:
assert sharding.local_shape == local_shape
sharding: ShardedTensor
if not is_main_replica(sharding.replica_id):
continue
all_slices.append((sharding.flattened_range.start, sharding.flattened_range.stop))
starts, stops = map(np.asarray, zip(*sorted(all_slices)))
expected_size = np.product(local_shape)
if starts[0] != 0 or stops[-1] != expected_size or not np.all(starts[1:] == stops[:-1]):
raise CheckpointingException(
f'Flattened ranges dont cover the whole shard {tensors_by_shard[0]} of size {expected_size}. Ranges: {(starts, stops)}'
)
def _validate_objects_for_key(sharded_objects: List[ShardedObject]):
"""Ensure uniqueness of saved objects."""
unique_keys = [
sh_obj.unique_key for _, sh_obj in sharded_objects if is_main_replica(sh_obj.replica_id)
]
if len(unique_keys) != len(set(unique_keys)):
duplicates = {k: cnt for k, cnt in Counter(unique_keys).items() if cnt > 1}
logger.error(f'Duplicate ShardedObject keys and counts: {duplicates}')
raise CheckpointingException(f'Duplicate ShardedObject keys: {list(duplicates.keys())}')
expected_shard_num = np.prod(sharded_objects[0][1].global_shape)
if len(unique_keys) != expected_shard_num:
err_msg = f'Invalid access pattern: {expected_shard_num - len(unique_keys)} ShardedObject are missing.'
logger.error(f'{err_msg} Existing shards: {unique_keys}')
raise CheckpointingException(err_msg)
def determine_global_metadata(
sharded_state_dict: ShardedStateDict,
) -> Tuple[_LocalMetadata, _GlobalMetadata]:
"""Exchanges local metadata with `all_gather_object` to determine global metadata.
Args:
sharded_state_dict (ShardedStateDict): local sharded state dict
Returns:
Tuple[_LocalMetadata, _GlobalMetadata]: local and global ShardedBase objects with stripped data
"""
local_metadata = [ten.without_data() for ten in nested_values(sharded_state_dict)]
global_metadata = [None] * torch.distributed.get_world_size()
torch.distributed.all_gather_object(global_metadata, local_metadata)
return local_metadata, global_metadata
def validate_sharded_objects_handling(
sharded_strategy: Union[SaveShardedStrategy, LoadShardedStrategy],
common_strategy: Union[SaveCommonStrategy, LoadCommonStrategy],
) -> None:
"""Checks if either of the passed strategies can handle sharded objects.
Args:
sharded_strategy (Union[SaveShardedStrategy, LoadShardedStrategy]): sharded strategy used for saving/loading
common_strategy (Union[SaveCommonStrategy, LoadCommonStrategy]): common strategy used for saving/loading
Returns:
None
Raises:
CheckpointingException: if both strategies can't handle ShardedObjects
"""
if (
not sharded_strategy.can_handle_sharded_objects
and not common_strategy.can_handle_sharded_objects
):
raise CheckpointingException(
f'Either sharded strategy or common strategy must implement ShardedObjects handling.'
f' Both {sharded_strategy} and {common_strategy} specify can_handle_sharded_objects=False'
)
## How to use pytorch FSDP2?
Add these flag to enable Torch FSDP2.
```
--use-torch-fsdp2
--no-gradient-accumulation-fusion
--ckpt-format torch_dist
```
It is worth noting that CUDA_MAX_CONNECTIONS=1 should not be enabled to ensure that the communication of FSDP and the computation on the primary stream can be fully parallelized.
# Copyright (c) 2024, NVIDIA CORPORATION. All rights reserved.
from packaging.version import Version
from .distributed_data_parallel import DistributedDataParallel
from .distributed_data_parallel_config import DistributedDataParallelConfig
from .finalize_model_grads import finalize_model_grads
from .torch_fully_sharded_data_parallel import TorchFullyShardedDataParallel
# Copyright (c) 2024, NVIDIA CORPORATION. All rights reserved.
from .fully_sharded_data_parallel import FullyShardedDataParallel
# Copyright (c) 2024, NVIDIA CORPORATION. All rights reserved.
import functools
import logging
from contextlib import contextmanager
from enum import Enum, auto
from typing import Any, Dict, List, Optional, Tuple
import torch
import torch.nn as nn
from torch.utils._pytree import tree_flatten, tree_unflatten
from megatron.core import parallel_state
from megatron.core.config_logger import has_config_logger_enabled, log_config_to_disk
from megatron.core.distributed.custom_fsdp.param_and_grad_buffer import (
AllGatherPipeline,
BucketingPolicy,
GradReducePipeline,
ParamAndGradBuffer,
PrefetchOrder,
)
from megatron.core.distributed.data_parallel_base import _BaseDataParallel
from megatron.core.distributed.distributed_data_parallel_config import DistributedDataParallelConfig
from megatron.core.fp8_utils import is_float8tensor
from megatron.core.transformer.transformer_config import TransformerConfig
from megatron.core.transformer.transformer_layer import TransformerLayer
from megatron.core.utils import is_submodule, log_single_rank
logger = logging.getLogger(__name__)
class TrainingState(Enum):
"""States of a FSDP parameter group, which are coupled with
the sharding activity of parameters and gradients during training."""
# From pre-forward before post-forward, where parameters should be unsharded
FORWARD = auto()
# Prior to backward computation, where parameters should be unsharded
PRE_BACKWARD = auto()
# After backward computation, where gradients should be re-sharded
POST_BACKWARD = auto()
# Before and after module forward computaton or before pre-backward and
# after post-backward states, where no un/sharding activity happens
IDLE = auto()
class FullyShardedDataParallel(_BaseDataParallel):
"""Fully Sharded Data Parallel training for MCore models.
A distributed training wrapper that shards model parameters, gradients and optimizer
states across data parallel workers. Integrates seamlessly with MCore's tensor
and expert parallelism features.
We supports following modes:
- no_shard: Traditional data parallel training without parameter sharding.
- optim: Shards optimizer states, this is conceptually close to "ZeRO-1", and
main weights for mixed precision training, meanwhile the following `optim_grads`
and `optim_grads_params` will also sharding main weights
during mixed-precision training, omitted without detailed notation.
- optim_grads: Shards gradients and optimizer states, this is conceptually close to "ZeRO-2".
- optim_grads_params: Shards parameters, gradients and optimizer states, this
is conceptually close to "ZeRO-3".
Key Features:
- Compatible with MCore's tensor, context and expert parallelism
- Automatic mixed precision training (BF16/FP8)
- Gradient accumulation and bucketing
- Optimized activation recompute with shard-aware communication: When recomputing
a whole Transformer layer, gather parameters once for both the recomputation
and backward computation
- Compatible with MCore's distributed checkpointing
Args:
config: Transformer config object.
ddp_config: FullyShardedDataParallel config object.
module: Underlying model.
fsdp_unit_modules: List of modules that should be treated as FSDP Unit,
i.e., the minimum releasable model unit. If not provided, defaults to
[TransformerLayer, LanguageModelEmbedding] for GPT-like models. In
addition to this, it affects the granularity of the communication
parameter grouping and triggers aggregate collective communication
in fp8 mixed precision training.
disable_bucketing: If true, force assign all parameters to a single bucket. If false,
use standard bucketing policy: assign parameters to smaller buckets and all-reduce
per bucket.
Examples:
>>> model = GPTModel(config)
>>> model = FullyShardedDataParallel(
... config,
... model,
... ddp_config,
... fsdp_unit_modules = [TransformerLayer, LanguageModelEmbedding],
... )
"""
# TODO: add hybrid FSDP (shard model states in a partial DP domain)
def __init__(
self,
config: TransformerConfig,
ddp_config: DistributedDataParallelConfig,
module: torch.nn.Module,
fsdp_unit_modules: Optional[List[torch.nn.Module]] = None,
disable_bucketing: bool = False,
device: Optional[torch.device] = None,
):
super().__init__(config=config, module=module)
if has_config_logger_enabled(config):
log_config_to_disk(config, locals(), prefix=type(self).__name__)
self.module = module
self.ddp_config = ddp_config
log_single_rank(
logger,
logging.INFO,
f'Setting up DistributedDataParallel with config {self.ddp_config}',
)
self.bucket_size = self.ddp_config.bucket_size
if disable_bucketing:
self.bucket_size = None
self.device = device if device else torch.cuda.current_device()
self.param_to_bucket_group = {}
if fsdp_unit_modules is not None:
self.fsdp_unit_modules = fsdp_unit_modules
else:
if self.ddp_config.data_parallel_sharding_strategy == "optim_grads_params":
self.fsdp_unit_modules = [TransformerLayer]
else:
self.fsdp_unit_modules = []
self.main_weights = True
self.data_parallel_group = parallel_state.get_data_parallel_group(
with_context_parallel=True
)
self.expert_data_parallel_group = parallel_state.get_expert_data_parallel_group()
# Determine if we should delay the gradient reduction.
self.is_delay_grad_reduce = self.ddp_config.data_parallel_sharding_strategy in [
"no_shard",
"optim",
]
if self.ddp_config.data_parallel_sharding_strategy == "optim_grads_params":
assert self.ddp_config.overlap_param_gather
if not self.is_delay_grad_reduce:
assert self.ddp_config.overlap_grad_reduce
self._init_fsdp_param_and_grad_buffer()
self._register_fsdp_hooks(self.module)
# Delete references to weight_tensor if they exist since we don't want two parameter copies
# if we re-mapped parameters (which happens when we use the distributed optimizer).
# This is a temporary workaround around a TE bug that is fixed with
# https://github.com/NVIDIA/TransformerEngine/pull/719.
@torch.no_grad()
def unmap_weight_tensor(m):
if hasattr(m, 'weight_tensor'):
m.weight_tensor = None
self.module.apply(unmap_weight_tensor)
def _init_fsdp_param_and_grad_buffer(self):
if self.config.calculate_per_token_loss:
# We don't need to scale the gradients in this case.
gradient_scaling_factor = None
expert_gradient_scaling_factor = None
else:
if self.ddp_config.average_in_collective:
# FIXME(@jianbinc): Will fix this issue based on Parallel Folding's EDP patch MR.
raise Exception("Not supported")
else:
data_parallel_world_size = parallel_state.get_data_parallel_world_size(
with_context_parallel=True
)
gradient_scaling_factor = 1.0 / data_parallel_world_size
expert_gradient_scaling_factor = 1.0 / data_parallel_world_size
# Initialize the param and grad buffer.
self.data_parallel_sharding_strategy = self.ddp_config.data_parallel_sharding_strategy
self.param_to_name = {p: name for name, p in self.module.named_parameters()}
self.param_and_grad_buffer = ParamAndGradBuffer(
self.ddp_config,
self.module,
bucketing_policy=BucketingPolicy(
suggested_bucket_size=self.bucket_size,
fsdp_unit_modules=self.fsdp_unit_modules,
data_parallel_sharding_strategy=self.data_parallel_sharding_strategy,
),
data_parallel_group=self.data_parallel_group,
expert_data_parallel_group=self.expert_data_parallel_group,
preserve_fp32_weights=self.ddp_config.preserve_fp32_weights,
grad_reduce_in_fp32=self.ddp_config.grad_reduce_in_fp32,
gradient_scaling_factor=gradient_scaling_factor,
expert_gradient_scaling_factor=expert_gradient_scaling_factor,
device=self.device,
reset_parameters_for_meta_device_init_module=self.config.init_model_with_meta_device,
)
self.param_and_grad_buffer
self.side_stream_for_buffer_copy_and_grad_accum = torch.cuda.Stream()
# Initialize the reduce-scatter pipeline.
self.grad_reduce_pipeline = GradReducePipeline(
self.param_and_grad_buffer, cuda_stream=self.side_stream_for_buffer_copy_and_grad_accum
)
# Initialize the all-gather pipeline.
self.all_gather_pipeline = AllGatherPipeline(self.param_and_grad_buffer)
suggested_communication_unit_size = self.ddp_config.suggested_communication_unit_size
if suggested_communication_unit_size is None:
if self.data_parallel_sharding_strategy == "optim_grads_params":
total_param_elements = 0
total_fsdp_module = 0
for module in self.module.modules():
if isinstance(module, tuple(self.fsdp_unit_modules)):
total_fsdp_module += 1
total_param_elements += sum(p.numel() for p in module.parameters())
# The suggested size is twice the number of elements in the FSDP modules.
# This ensures we process the current FSDP module and attempt to prefetch
# the next FSDP module, making the flow of communication better.
suggested_communication_unit_size = total_param_elements // total_fsdp_module * 2
elif self.bucket_size is not None:
suggested_communication_unit_size = self.bucket_size * 2
self.suggested_RS_queue_capacity = suggested_communication_unit_size
self.suggested_AG_prefetch_size = suggested_communication_unit_size
def _register_fsdp_hooks(self, root_module):
"""Register necessary hooks for Fully Sharded Data Parallel (FSDP) execution on the model.
This function sets up various hooks required for FSDP operations, including parameter
resharding/unsharding and gradient handling. The registered hooks are:
- Pre-forward hook: Unshards parameters before forward pass
- Post-forward hook: Reshards parameters after forward pass
- Pre-backward hook: Unshards parameters before backward pass
- Post-backward hook: Reshards parameters and reduces gradients after backward pass
Args:
root_module: The PyTorch module to register FSDP hooks on
Note:
These hooks are essential for FSDP's memory efficiency as they manage:
1. Dynamic parameter sharding/unsharding to reduce memory footprint
2. Proper gradient synchronization across distributed processes
3. Gradient accumulation for large batch training
Returns:
None
"""
# Initialize module training state.
for m in root_module.modules():
setattr(m, "_training_state", TrainingState.IDLE)
self.forward_pre_hooks = {}
self.forward_hooks = {}
self.backward_pre_hooks = {}
"""
An FSDP unit is a module designed to manage the lifecycle of model parameters
in Fully Sharded Data Parallel (FSDP) training. It ensures that parameters
are only used within the module and are released immediately after
the forward and backward computations are completed.
This approach is crucial for efficient memory management, as releasing
parameters too early can lead to issues if other computations depend on them.
`optim` and `optim_grads` do not require FSDP units because they do not
shard model parameters.
"""
fsdp_unit_modules = self.fsdp_unit_modules
def release_module_parameters(module, *unused):
for param in module.parameters():
bucket_id = self.param_and_grad_buffer.param_to_param_group[param]
self.all_gather_pipeline.release_bucket(bucket_id)
if not self.ddp_config.keep_fp8_transpose_cache_when_using_custom_fsdp:
release_params_fp8_transpose_cache(module.parameters())
def release_params_fp8_transpose_cache(params):
for param in params:
if is_float8tensor(param):
param._transpose_invalid = True
param._transpose = None
def all_gather_module_parameters(
module,
*unused,
prefetch=True,
prefetch_order=PrefetchOrder.FORWARD_PASS_ORDER,
wait_bucket_ready=True,
):
ag_pipeline = self.all_gather_pipeline
ag_pipeline.all_gather_params(
params=list(module.parameters()),
prefetch=prefetch,
prefetch_order=prefetch_order,
suggested_AG_prefetch_size=self.suggested_AG_prefetch_size,
)
if wait_bucket_ready:
for param in module.parameters():
bucket_id = self.param_and_grad_buffer.param_to_param_group[param]
ag_pipeline.wait_bucket_ready(bucket_id)
def _grad_acc(param):
"""
Accumulate the gradient in the main_grad buffer.
"""
group_id = self.param_and_grad_buffer.param_to_param_group[param]
group = self.param_and_grad_buffer.parameter_groups[group_id]
if not group.requires_grad:
return
overwrite_main_grad = self.ddp_config.data_parallel_sharding_strategy in [
"optim_grads",
"optim_grads_params",
]
if overwrite_main_grad:
if not param.grad_added_to_main_grad:
if param.grad is not None:
param.main_grad.copy_(param.grad)
del param.grad
else:
param.main_grad.zero_()
else:
if not param.grad_added_to_main_grad:
if param.grad is not None:
param.main_grad.add_(param.grad)
del param.grad
# Reset the grad accumulate flag.
param.grad_added_to_main_grad = False
self._params_require_handle_grad = set()
def _post_backward(module, *unused):
if isinstance(module, tuple(fsdp_unit_modules)):
if self.ddp_config.data_parallel_sharding_strategy == "optim_grads_params":
release_module_parameters(module)
module._training_state = TrainingState.IDLE
param_list = list(module.parameters())
else:
param_list = list(module.parameters(recurse=False))
for param in param_list:
_grad_acc(param)
self._params_require_handle_grad.discard(param)
grad_reduce_every_bprop = self.ddp_config.data_parallel_sharding_strategy in [
"optim_grads",
"optim_grads_params",
]
if grad_reduce_every_bprop or self.is_last_microbatch:
self.grad_reduce_pipeline.reduce_gradients(
param_list, suggested_queue_capacity=self.suggested_RS_queue_capacity
)
def _pre_forward_param_unshard(
module: nn.Module, args: Tuple[Any, ...], kwargs: Dict[str, Any]
):
# Unshard the parameters before the forward pass.
input_training_state = module._training_state
fsdp_forward_prefetch = True
if input_training_state == TrainingState.PRE_BACKWARD:
# In activation recomputation case, we need to cancel forward prefetch.
fsdp_forward_prefetch = False
else:
module._training_state = TrainingState.FORWARD
if isinstance(module, tuple(fsdp_unit_modules)):
param_list = list(module.parameters())
self.all_gather_pipeline.all_gather_params(
params=param_list,
prefetch=fsdp_forward_prefetch,
suggested_AG_prefetch_size=self.suggested_AG_prefetch_size,
)
for param in param_list:
bucket_id = self.param_and_grad_buffer.param_to_param_group[param]
self.all_gather_pipeline.wait_bucket_ready(bucket_id)
else:
# All-gather the parameters in every forward pass for FSDP.
param_list = list(module.parameters(recurse=False))
self.all_gather_pipeline.all_gather_params(
params=param_list,
prefetch=fsdp_forward_prefetch,
suggested_AG_prefetch_size=self.suggested_AG_prefetch_size,
)
for param in param_list:
bucket_id = self.param_and_grad_buffer.param_to_param_group[param]
self.all_gather_pipeline.wait_bucket_ready(bucket_id)
return args, kwargs
def _register_post_backward_hook(
post_backward_hook: callable,
module: nn.Module,
args: Tuple[Any, ...],
kwargs: Dict[str, Any],
):
# Register the backward function to reduce gradients after the backward pass.
# And for optim_grads_params, we need to release the parameters after the backward pass.
if not torch.is_grad_enabled():
return args, kwargs
args_list, args_spec = tree_flatten(args)
kwargs_list, kwargs_spec = tree_flatten(kwargs)
args_kwargs_list = list(args_list) + list(kwargs_list)
inp_tensor_indices: List[int] = []
inp_tensors: List[torch.Tensor] = []
for i, obj in enumerate(args_kwargs_list):
if torch.is_tensor(obj) and obj.requires_grad:
inp_tensor_indices.append(i)
inp_tensors.append(obj)
if len(inp_tensors) == 0:
return args, kwargs
inp_tensors = RegisterFSDPBackwardFunction.apply(
functools.partial(post_backward_hook, module), *inp_tensors
)
for inp_tensor_idx, inp_tensor in zip(inp_tensor_indices, inp_tensors):
args_kwargs_list[inp_tensor_idx] = inp_tensor
args_list = args_kwargs_list[: len(args_list)]
kwargs_list = args_kwargs_list[len(args_list) :]
args = tree_unflatten(args_list, args_spec)
kwargs = tree_unflatten(kwargs_list, kwargs_spec)
return args, kwargs
fsdp_modules = []
for name, module in root_module.named_modules():
if any(is_submodule(module, fsdp_module) for fsdp_module in fsdp_modules):
continue
if isinstance(module, tuple(fsdp_unit_modules)):
fsdp_modules.append(module)
self.forward_pre_hooks[f'module {name} parameter unshard'] = (
module.register_forward_pre_hook(
_pre_forward_param_unshard, prepend=True, with_kwargs=True
)
)
self.forward_pre_hooks[f"module {name} register post-backward hook"] = (
module.register_forward_pre_hook(
functools.partial(_register_post_backward_hook, _post_backward),
with_kwargs=True,
)
)
def _root_post_backward(*unused):
# Make sure all the gradients are handled.
for param in self._params_require_handle_grad:
_grad_acc(param)
# Reduce the remain gradients.
grad_reduce_every_bprop = self.ddp_config.data_parallel_sharding_strategy in [
"optim_grads",
"optim_grads_params",
]
if grad_reduce_every_bprop or self.is_last_microbatch:
self.grad_reduce_pipeline.reduce_gradients(
list(self._params_require_handle_grad),
suggested_queue_capacity=self.suggested_RS_queue_capacity,
)
self.grad_reduce_pipeline.reset()
# Reset root_pre_backward_hook_issued flag.
self._root_pre_backward_hook_issued = False
def _pre_backward(module: nn.Module, *unused):
module._training_state = TrainingState.PRE_BACKWARD
if isinstance(module, tuple(fsdp_unit_modules)):
all_gather_module_parameters(
module, prefetch_order=PrefetchOrder.BACKWARD_PASS_ORDER
)
self._root_pre_backward_hook_issued = False
def _root_pre_backward(module: nn.Module, *unused):
"""Marks the module's training state as 'pre_backward' before the
backprop, this function is registered on the root module.
This marking enables us to determine whether forward pass needs to
perform reshard/unshard operations in activation recomputation
scenarios.
"""
if self._root_pre_backward_hook_issued:
return
self._root_pre_backward_hook_issued = True
if self.ddp_config.data_parallel_sharding_strategy == "optim_grads_params":
for module in root_module.modules():
if isinstance(module, tuple(fsdp_unit_modules)):
module._training_state = TrainingState.PRE_BACKWARD
for param in module.parameters():
bucket_id = self.param_and_grad_buffer.param_to_param_group[param]
self.all_gather_pipeline.wait_bucket_ready(bucket_id, empty_ok=True)
self.all_gather_pipeline.release_bucket(bucket_id)
self._params_require_handle_grad = set()
for param_group in self.param_and_grad_buffer.parameter_groups:
if not param_group.requires_grad:
continue
self._params_require_handle_grad |= set(param_group.params)
for param in param_group.params:
param.grad_added_to_main_grad = False
torch.autograd.Variable._execution_engine.queue_callback(_root_post_backward)
def _post_forward(module: nn.Module, input: Any, output: Any):
# When composing with module-hook-based activation checkpointing, the
# post-backward hook is responsible for the reshard
if module._training_state == TrainingState.PRE_BACKWARD:
return output
release_module_parameters(module)
module._training_state = TrainingState.IDLE
return output
def _release_module_fp8_transpose_cache(module: nn.Module, *unused):
release_params_fp8_transpose_cache(module.parameters(recurse=False))
if len(fsdp_unit_modules) != 0:
fsdp_modules = []
for name, module in root_module.named_modules():
if any(is_submodule(module, fsdp_module) for fsdp_module in fsdp_modules):
continue
if isinstance(module, tuple(fsdp_unit_modules)):
fsdp_modules.append(module)
self.forward_hooks[f"release module {name} parameters"] = (
module.register_forward_hook(_post_forward, prepend=False)
)
self.backward_pre_hooks[f"all-gather module {name} parameters"] = (
module.register_full_backward_pre_hook(_pre_backward)
)
elif not self.ddp_config.keep_fp8_transpose_cache_when_using_custom_fsdp:
self.forward_hooks[f"remove module {name} fp8 transpose cache"] = (
module.register_forward_hook(
_release_module_fp8_transpose_cache, prepend=False
)
)
# Registering all models with all parameters is to handle some special cases
# where the forward function of root_module is not called, but the forward
# functions of these equivalent modules are called instead.
for name, module in root_module.named_modules():
if len(list(module.parameters())) != len(list(root_module.parameters())):
continue
self.backward_pre_hooks[f"{name} _root_pre_backward"] = (
module.register_full_backward_pre_hook(_root_pre_backward)
)
self._root_pre_backward_hook_handle = root_module.register_full_backward_pre_hook(
_root_pre_backward
)
@contextmanager
def no_sync(self):
"""
Context manager that turns off gradient synchronization.
For grads shard mode there will actually always be gradient sync happening.
"""
# FIXME: Better handling of grads shard mode and no_sync in the training loop so that
# the code doesn't bog down developers.
self.is_last_microbatch = False
try:
yield
finally:
self.is_last_microbatch = True
def start_param_sync(self, *unused, force_sync: bool = False, force_dispatch: bool = False):
"""
Initiates param sync (all-gather) communication operations for all model parameters.
By default, when overlap_param_gather is set to True, dispatches asynchronous communication
calls; when overlap_param_gather is set to False, calls synchronous communication
ops. Can override this default behavior using flags below.
Args:
force_sync (bool, optional): force synchronous collective regardless of
other settings.
force_dispatch (bool, optional): force dispatch regardless of other settings.
"""
if not force_sync and self.ddp_config.overlap_param_gather:
# All-gather the first bucket before the forward pass.
first_param = list(self.module.parameters())[0]
self.all_gather_pipeline.all_gather_params(params=[first_param], prefetch=False)
else:
self.all_gather_pipeline.reset()
for bucket_id in range(self.all_gather_pipeline.num_buckets):
self.all_gather_pipeline.all_gather_bucket_and_set_items(
bucket_id=bucket_id, async_op=True
)
group = self.param_and_grad_buffer.parameter_groups[bucket_id]
if group.model_weight_buffer is None:
continue
if group.model_weight_buffer.is_data_distributed:
# If model weight is sharded, we wait for the all-gather to complete and
# then release the bucket immediately to save memory usage.
self.all_gather_pipeline.wait_bucket_ready(bucket_id)
for bucket_id in range(self.all_gather_pipeline.num_buckets):
self.all_gather_pipeline.wait_bucket_ready(bucket_id)
def start_grad_sync(self, *unused):
"""
Initiates grad sync (all-reduce or reduce-scatter) communication operations
for all model gradients.
When overlap_grad_reduce is set to True, dispatches asynchronous communication
calls. When overlap_grad_reduce is set to False, calls synchronous
communication ops.
"""
if not self.ddp_config.overlap_grad_reduce:
if self.data_parallel_sharding_strategy == "no_shard":
self.param_and_grad_buffer.all_reduce_gradients(
async_op=self.ddp_config.overlap_grad_reduce
)
else:
self.param_and_grad_buffer.reduce_scatter_gradients()
def finish_grad_sync(self):
"""
Finishes grad sync (all-reduce or reduce-scatter) communication operations
for all model gradients.
When overlap_grad_reduce is set to True, waits for asynchronous communication
calls to complete. When overlap_grad_reduce is set to False, calls synchronous
communication ops.
"""
if self.ddp_config.overlap_grad_reduce:
self.grad_reduce_pipeline.wait_for_previous_grad_reduce(0)
self.grad_reduce_pipeline.reset()
else:
self.start_grad_sync()
self.param_and_grad_buffer.update_main_grads()
if self.ddp_config.overlap_param_gather:
self.all_gather_pipeline.reset()
def optimizer_named_parameters(self) -> List[Tuple[str, torch.Tensor]]:
"""
Returns a list of tuples containing the main weights and their corresponding names
for mixed-precision training, to be used by the optimizer for updates.
Returns:
List[Tuple[str, torch.Tensor]]: A list of tuples, where each tuple
contains a main weight tensor and its corresponding name.
"""
return self.param_and_grad_buffer.optimizer_named_parameters
def scale_gradients(self, scaling_factor: float):
"""Scale all gradients inside the buffers by `scaling_factor`."""
self.param_and_grad_buffer.scale_gradients(scaling_factor)
def zero_grad_buffer(self):
"""
Zeros out all grad buffers. Needs to be called at the beginning of each
training iteration.
"""
for param in self.module.parameters():
if param.requires_grad:
param.grad_added_to_main_grad = False
self.param_and_grad_buffer.zero_grad()
def broadcast_params(self):
"""
Syncs parameters across all DP ranks.
"""
for param in self.module.parameters():
is_expert_parallel = not getattr(param, 'allreduce', True)
if is_expert_parallel:
data_parallel_group = parallel_state.get_data_modulo_expert_parallel_group(
with_context_parallel=True
)
else:
data_parallel_group = parallel_state.get_data_parallel_group(
with_context_parallel=True
)
torch.distributed.broadcast(
param.data,
src=torch.distributed.get_global_rank(data_parallel_group, 0),
group=data_parallel_group,
)
def load_state_dict(self, state_dict, strict=True):
"""
Copies parameters and buffers from state_dict into the wrapped module and its
descendants. If strict is True, then the keys of state_dict must exactly match
the keys returned by this module’s state_dict() function.
"""
if self.ddp_config.data_parallel_sharding_strategy == "optim_grads_params":
# make a copy of the state_dict to avoid modifying the input state_dict
state_dict = state_dict.copy()
state_dict_extra_states = {}
for key in list(state_dict.keys()):
if key.endswith("_extra_state"):
state_dict_extra_states[key] = state_dict[key]
del state_dict[key]
self.module.load_state_dict(state_dict_extra_states, strict=False)
prefix = "module."
buffer = self.param_and_grad_buffer
for param_groups in buffer.parameter_groups:
wbuf = param_groups.model_weight_buffer
for model_param in wbuf.params:
if is_float8tensor(model_param):
fp8_meta = model_param._fp8_meta['scaling_fwd']
fp8_meta_index = model_param._fp8_meta_index
model_param._scale_inv.copy_(fp8_meta.scale_inv[fp8_meta_index])
param_name = f"{buffer.param_to_name[model_param]}"[len(prefix) :]
if param_name in state_dict:
if wbuf and wbuf.is_data_distributed:
model_param.fully_shard_param_local_shard.data.copy_(
state_dict[param_name]
)
else:
model_param.data.copy_(state_dict[param_name])
del state_dict[param_name]
self.module.load_state_dict(state_dict, strict=False)
return
self.module.load_state_dict(state_dict, strict=strict)
class RegisterFSDPBackwardFunction(torch.autograd.Function):
"""
Register a backward function that will be called after the backward pass
of the model. This function is used to release the parameters after the
backward pass.
"""
@staticmethod
def forward(ctx, post_backward, *inputs: torch.Tensor):
"""
Forward pass of the RegisterFSDPBackwardFunction function.
"""
ctx.post_backward = post_backward
return inputs
@staticmethod
def backward(ctx, *grads: torch.Tensor):
"""
Backward pass of the RegisterFSDPBackwardFunction function.
"""
ctx.post_backward()
return (None,) + grads
# Copyright (c) 2024, NVIDIA CORPORATION. All rights reserved.
import dataclasses
import gc
import inspect
import logging
import math
import traceback
import warnings
from collections import namedtuple
from contextlib import ExitStack
from enum import Enum
from typing import Any, List, Optional, Tuple
import torch
from torch.distributed import _coalescing_manager
from megatron.core import parallel_state
from megatron.core.distributed.distributed_data_parallel_config import DistributedDataParallelConfig
from megatron.core.fp8_utils import is_float8tensor, modify_underlying_storage, quantize_param_shard
from megatron.core.tensor_parallel import get_cuda_rng_tracker
from megatron.core.utils import is_submodule, is_te_min_version, log_on_each_pipeline_stage
try:
from transformer_engine.pytorch import fp8_model_init
except:
pass
try:
from transformer_engine.pytorch.module.base import TransformerEngineBaseModule
except:
pass
logger = logging.getLogger(__name__)
def _p_assert(cond: Any, s: str, raise_assertion_error: bool = True) -> None:
"""Alternate to ``assert`` when in the backward context to print the error
message ``s`` since otherwise, it is swallowed.
"""
if not cond:
print(s)
traceback.print_stack()
if raise_assertion_error:
raise AssertionError(s)
def _alloc_storage(tensor: torch.Tensor, size: torch.Size) -> None:
"""
Allocate storage for ``tensor`` with the given size.
Returns:
bool: ``True`` if this method allocated storage and ``False`` if the
storage was already allocated.
"""
with torch.no_grad():
if not torch.distributed._functional_collectives.is_torchdynamo_compiling():
already_allocated = tensor._typed_storage()._size() == size.numel()
if not already_allocated:
tensor_storage_size = tensor._typed_storage()._size()
_p_assert(
tensor_storage_size == 0,
"Tensor storage should have been resized to be 0 but got PLACEHOLDEr",
)
tensor._typed_storage()._resize_(size.numel())
def _free_storage(tensor: torch.Tensor):
"""
Frees the underlying storage of ``tensor``.
Returns:
bool: ``True`` if the method freed the storage and ``False`` if the
storage was already freed.
"""
with torch.no_grad():
if not torch.distributed._functional_collectives.is_torchdynamo_compiling():
already_freed = tensor._typed_storage()._size() == 0
if not already_freed:
_p_assert(
tensor.storage_offset() == 0,
"Freeing a tensor's storage is unsafe when it is not the sole occupant\n"
f"storage offset: {tensor.storage_offset()}\n"
f"storage size: {tensor._typed_storage()._size()}\n"
f"tensor shape: {tensor.shape}",
)
tensor._typed_storage()._resize_(0)
TensorItemIndex = namedtuple(
'TensorItemIndex', ['global_data_index', 'size', 'item_id', 'bucket_id', 'shape']
)
BucketIndex = namedtuple('BucketIndex', ['bucket_id', 'global_data_index', 'size', 'items'])
ShardBucketIndex = namedtuple(
'ShardBucketIndex',
['bucket_id', 'global_data_index', 'local_data_index', 'bucket_data_index', 'size'],
)
@dataclasses.dataclass
class BucketingPolicy:
"""
A policy for bucketing in Fully Sharded Data Parallel (FSDP) training.
Attributes:
suggested_bucket_size (int): The suggested size of each bucket in num of elements.
fsdp_unit_modules (list): A list of module classes that are treated as a
single unit for FSDP bucketing.
data_parallel_sharding_strategy (str): The strategy used for sharding
data parallel modules.
Note:
This policy is used to configure the bucketing behavior in FSDP training.
"""
suggested_bucket_size: Optional[int] = 40_000_000
fsdp_unit_modules: List[torch.nn.Module] = dataclasses.field(default_factory=list)
data_parallel_sharding_strategy: str = 'no_shard'
def _pad(number_to_be_padded: int, divisor: int) -> int:
return int(math.ceil(number_to_be_padded / divisor) * divisor)
def build_data_parallel_buffer_index(
elements: List[torch.Size],
data_parallel_rank: int,
data_parallel_world_size: int,
is_data_distributed: bool,
ddp_config: DistributedDataParallelConfig,
bucket_id: int = 0,
) -> Tuple[int, List[tuple], List[tuple], List[tuple]]:
"""
Assuming that all input tensor elements are consecutively compose a global
buffer, give the index range of every tensor, every bucket and every in
bucket local buffer.
Args:
elements (List[torch.Size]): List of input tensor.
data_parallel_rank (int): Rank of the current process in the data parallel group.
data_parallel_world_size (int): World size of the data parallel group.
bucket_id (int, optional): The id of the bucket. Defaults to 0.
Returns:
Tuple[int, List[tuple], List[tuple], List[tuple]]: The index range of every tensor,
every bucket and every in bucket local buffer.
"""
def _pad_if_needed(data_index: int) -> int:
"""
Pads data indices if using distributed optimizer (to ensure uniform sharding).
"""
if ddp_config.data_parallel_sharding_strategy != 'no_shard':
# Workaround for TE bug causing cuBLAS to pick an incompatible algorithm.
# This also helps cuBLAS pick more efficient algorithms for GEMMs.
# We now ensure that all buckets start at a memory address that is 256-byte
# aligned (128 values since params and grads use >= 16-bit precision).
return _pad(data_index, math.lcm(data_parallel_world_size, 128))
return data_index
def add_item(item_id, item, bucket, item_index_map, bucket_id):
bucket.append(item)
bucket_size = sum([it.numel() for it in bucket])
item_index_map.append(
TensorItemIndex(
data_index + bucket_size - item.numel(),
item.numel(),
item_id=item_id,
bucket_id=bucket_id,
shape=item,
)
)
item_index_map = []
bucket = []
data_index = 0
for item_id, item in enumerate(elements):
add_item(item_id, item, bucket, item_index_map, bucket_id)
bucket_size = sum([it.numel() for it in bucket])
bucket_size = _pad_if_needed(bucket_size)
bucket_index = BucketIndex(
bucket_id,
data_index,
bucket_size,
items=list(filter(lambda x: x.bucket_id == bucket_id, item_index_map)),
)
shard_size = bucket_index.size // data_parallel_world_size
bucket_data_index = shard_size * data_parallel_rank
global_data_index = bucket_index.global_data_index + bucket_data_index
if is_data_distributed:
shard_bucket_index = ShardBucketIndex(
bucket_id, global_data_index, 0, bucket_data_index, shard_size
)
else:
shard_bucket_index = ShardBucketIndex(
bucket_id, global_data_index, global_data_index, bucket_data_index, shard_size
)
return item_index_map, bucket_index, shard_bucket_index
@dataclasses.dataclass
class Bucket:
"""
A container for holding data in Fully Sharded Data Parallel (FSDP) training.
Attributes:
data (torch.Tensor): A tensor containing the data elements
grouped together in a bucket.
data_operation_event (Optional[torch.cuda.Event]): An optional CUDA event
used to synchronize data operations.
status (Any): An optional status object used to track the state of the bucket.
Note:
Buckets are used to optimize communication in FSDP training by
grouping small tensors together.
"""
data: torch.Tensor
data_operation_event: Optional[torch.cuda.Event] = None
status: Any = None
class TemporaryBucketAllocator:
"""
A utility class for managing temporary buckets (buffers) used in FSDP
operations like parameters unshard and gradients reduction.
This allocator handles the dynamic allocation and deallocation of temporary memory buffers
needed during FSDP (Fully Sharded Data Parallel) operations, particularly for parameters
unshard and gradients reduction. It helps optimize memory usage by allowing temporary
buckets to be released when no longer needed.
Key Features:
- Dynamic allocation of temporary buckets for FSDP operations
- Memory-efficient management of temporary buffers
- Support for both parameters unshard and gradients reduction operations
- Automatic cleanup of unused buckets to save memory
Usage:
```python
# Create an allocator instance
allocator = TemporaryBucketAllocator(name="gpt_parameters")
# Allocate a temporary bucket
temp_bucket = allocator.allocate(size=1024, dtype=torch.float32)
# Use the temporary bucket for FSDP operations
# ... perform all-gather or reduce-scatter ...
# Free the bucket when done
allocator.free(temp_bucket)
```
Note:
It's important to release temporary buckets after use to prevent memory leaks
and optimize memory usage during training.
"""
def __init__(self):
self.buckets = {}
def allocate(
self, bucket_id: int, size: int, dtype: torch.dtype, device: torch.device
) -> Bucket:
"""
allocate a temporary bucket.
"""
if bucket_id not in self.buckets:
self.buckets[bucket_id] = Bucket(data=torch.empty(size, dtype=dtype, device=device))
return self.buckets[bucket_id]
def free(self, bucket_id: int):
"""
free a temporary bucket.
"""
if bucket_id in self.buckets:
_free_storage(self.buckets[bucket_id].data)
del self.buckets[bucket_id]
class StorageResizeBasedBucketAllocator(TemporaryBucketAllocator):
"""
A specialized temporary bucket allocator that resizes the storage of temporary buckets
based on the required size.
"""
def __init__(self):
self.buckets = {} # {bucket_id: Bucket}
def allocate(
self, bucket_id: int, size: int, dtype: torch.dtype, device: torch.device
) -> Bucket:
"""
allocate a temporary bucket.
"""
if bucket_id not in self.buckets:
self.buckets[bucket_id] = Bucket(data=torch.empty(size, dtype=dtype, device=device))
bucket = self.buckets[bucket_id]
_alloc_storage(bucket.data, torch.Size([size]))
return bucket
def free(self, bucket_id: int):
"""
free a temporary bucket.
"""
if bucket_id in self.buckets:
_free_storage(self.buckets[bucket_id].data)
class RotaryBucketAllocator(TemporaryBucketAllocator):
"""A specialized temporary bucket allocator that implements a circular buffer recycling strategy
to minimize memory fragmentation in FSDP operations.
RotaryBucketAllocator extends TemporaryBucketAllocator by maintaining a limited pool of
pre-allocated buffers that are reused in a circular manner. This approach helps prevent
memory fragmentation that typically occurs with frequent allocation and deallocation of
temporary buffers during FSDP operations.
Key Features:
- Circular buffer recycling strategy for memory efficiency
- Reduced memory fragmentation compared to dynamic allocation
- Pre-allocated buffer pool for faster access
- Automatic buffer reuse without explicit deallocation
Usage:
```python
# Create a rotary allocator
allocator = RotaryBucketAllocator(name="gpt_parameters")
# Get a temporary buffer from the pool
temp_bucket = allocator.allocate(size=1024, dtype=torch.float32)
# Use the temporary bucket for FSDP operations
# ... perform all-gather or reduce-scatter ...
# Free the bucket when done, make it in idle buffer pool
allocator.free(temp_bucket)
```
"""
def __init__(self, name: str):
self.name = name
self.num_global_buffer = 0
self.idle_buffer = [] # [buffer_id]
self.using_buffer = {} # {bucket_id: buffer_id}
self.buckets = {}
def allocate(
self, bucket_id: int, size: int, dtype: torch.dtype, device: torch.device
) -> Bucket:
"""
allocate a temporary bucket.
"""
def _get_global_buffer(buffer_id: int):
return parallel_state.get_global_memory_buffer().get_tensor(
[size], dtype=dtype, name=self._get_gbuf_name(buffer_id)
)
if bucket_id in self.using_buffer:
buffer_id = self.using_buffer[bucket_id]
return Bucket(data=_get_global_buffer(buffer_id))
if len(self.idle_buffer) == 0:
# allocate new buffer
buffer_id = self.num_global_buffer
self.num_global_buffer += 1
self.idle_buffer.append(buffer_id)
buffer_id = self.idle_buffer.pop(0)
self.using_buffer[bucket_id] = buffer_id
return Bucket(data=_get_global_buffer(buffer_id))
def _get_gbuf_name(self, buffer_id: int):
return f"{self.name}_{buffer_id}"
def free(self, bucket_id: int):
"""
free a temporary bucket.
"""
if bucket_id in self.using_buffer:
buffer_id = self.using_buffer.pop(bucket_id)
self.idle_buffer.append(buffer_id)
class DataParallelBuffer:
"""
A class that manages the data parallel buffer for Fully Sharded Data Parallel (FSDP) training.
"""
def __init__(
self,
ddp_config: DistributedDataParallelConfig,
params: List[torch.nn.Parameter],
is_data_distributed: bool,
bucket_id: int,
dtype: Optional[torch.dtype] = None,
device: Optional[torch.device] = None,
data_parallel_group: Optional[torch.distributed.ProcessGroup] = None,
temporary_bucket_allocator: Optional[TemporaryBucketAllocator] = None,
init_meta_only: bool = False,
is_dtype_float8: bool = False,
gradient_scaling_factor: Optional[float] = None,
) -> None:
self.ddp_config = ddp_config
self.params = params
_param_dtype = {p.dtype for p in self.params}
assert len(_param_dtype) == 1, f'params have different dtypes: {_param_dtype}'
self.is_data_distributed = is_data_distributed
self.bucket_id = bucket_id
self.dtype = dtype if dtype else next(iter(_param_dtype))
self.device = device
self.data_parallel_group = data_parallel_group
self.dp_rank = torch.distributed.get_rank(group=self.data_parallel_group)
self.dp_world_size = torch.distributed.get_world_size(group=self.data_parallel_group)
self.temporary_bucket_allocator = (
temporary_bucket_allocator if temporary_bucket_allocator else TemporaryBucketAllocator()
)
self.is_dtype_float8 = is_dtype_float8
self.gradient_scaling_factor = gradient_scaling_factor
(self.item_index_map, self.bucket_index, self.shard_bucket_index) = (
build_data_parallel_buffer_index(
[p.shape for p in self.params],
self.dp_rank,
self.dp_world_size,
is_data_distributed,
ddp_config,
bucket_id=bucket_id,
)
)
self.data_size = (
self.bucket_index.size if not is_data_distributed else self.shard_bucket_index.size
)
if init_meta_only:
self.data = None
else:
self.data = torch.empty(self.data_size, dtype=self.dtype, device=device)
self.param_idx = {p: i for i, p in enumerate(self.params)}
self.placeholder_bucket = None
self.placeholder_items = {}
def fetch_bucket(
self, dtype: Optional[torch.dtype] = None, and_allocate_params_data: bool = False
) -> Bucket:
"""
Fetch a communication buffer for data-parallel operations.
The size of the bucket is defined by the `DataParallelBuffer` instance.
If `and_allocate_params_data` is True, this method resets the parameter
data stored in the `DataParallelBuffer` instance.
Args:
dtype (Optional[torch.dtype], optional): The data type of the tensor
to fetch a buffer for. Defaults to None.
and_allocate_params_data (bool, optional): Whether to allocate and
reset parameter data. Defaults to False.
Returns:
Bucket: The communication buffer for the specified data type.
"""
if dtype is None:
dtype = self.dtype
bucket_index = self.bucket_index
if not self.is_data_distributed and dtype == self.dtype:
bucket = Bucket(
data=self.data[
bucket_index.global_data_index : bucket_index.global_data_index
+ bucket_index.size
]
)
else:
bucket = self.temporary_bucket_allocator.allocate(
bucket_id=bucket_index.bucket_id,
size=bucket_index.size,
dtype=dtype,
device=self.device,
)
if and_allocate_params_data:
for p in self.params:
item_id = self.param_idx[p]
if is_float8tensor(p):
p._data = self.get_item_from_bucket(bucket, item_id).view(p.shape)
else:
p.data = self.get_item_from_bucket(bucket, item_id).view(p.shape)
return bucket
def free_bucket_storage(self, and_free_params_data: bool = False):
"""
Release the storage of a temporary communication bucket.
If the bucket is temporary, this method frees its storage.
If `and_free_params_data` is True, this method also releases the storage
of the parameter data stored in the `DataParallelBuffer` instance.
Args:
and_free_params_data (bool, optional): Whether to also release the
storage of the parameter data. Defaults to False.
Returns:
None
"""
if not self.is_data_distributed:
return
self.temporary_bucket_allocator.free(self.bucket_index.bucket_id)
if and_free_params_data:
if self.placeholder_bucket is None:
self.placeholder_bucket = Bucket(
data=torch.empty(self.bucket_index.size, dtype=self.dtype, device=self.device)
)
for p in self.params:
item_id = self.param_idx[p]
self.placeholder_items[item_id] = self.get_item_from_bucket(
self.placeholder_bucket, item_id
).view(p.shape)
_free_storage(self.placeholder_bucket.data)
for p in self.params:
item_id = self.param_idx[p]
if is_float8tensor(p):
p._data = self.placeholder_items[item_id]
else:
p.data = self.placeholder_items[item_id]
def _get_item_slice_in_shard(self, item_id: int) -> Tuple[int, int]:
item_index = self.item_index_map[item_id]
shard_bucket_index = self.shard_bucket_index
item_global_start = item_index.global_data_index
item_global_end = item_index.global_data_index + item_index.size
shard_bucket_start = shard_bucket_index.global_data_index
shard_bucket_end = shard_bucket_index.global_data_index + shard_bucket_index.size
if item_global_start > shard_bucket_end or item_global_end < shard_bucket_start:
return (0, 0)
start = max(item_global_start, shard_bucket_start) - item_global_start
end = min(item_global_end, shard_bucket_end) - item_global_start
return (start, end)
# pylint: disable=missing-function-docstring
def locate_item_in_global_item(self, item_id: int) -> Tuple[int, int]:
item_index = self.item_index_map[item_id]
if not self.is_data_distributed:
return (0, item_index.size)
slice_start, slice_end = self._get_item_local_shard_index(item_id)
if slice_start == slice_end:
return (0, 0)
local_shard_index_to_global_index_offset = (
self.shard_bucket_index.global_data_index - self.shard_bucket_index.local_data_index
)
slice_start += local_shard_index_to_global_index_offset
slice_end += local_shard_index_to_global_index_offset
return (
slice_start - item_index.global_data_index,
slice_end - item_index.global_data_index,
)
def _get_item_local_shard_index(self, item_id: int) -> Tuple[int, int]:
slice_start, slice_end = self._get_item_slice_in_shard(item_id)
if slice_start == slice_end:
return (0, 0)
item_index = self.item_index_map[item_id]
shard_bucket_index = self.shard_bucket_index
offset = (
item_index.global_data_index
- shard_bucket_index.global_data_index
+ shard_bucket_index.local_data_index
)
return (offset + slice_start, offset + slice_end)
def _get_item_local_index(self, item_id: int) -> Tuple[int, int]:
if not self.is_data_distributed:
item_index = self.item_index_map[item_id]
return (item_index.global_data_index, item_index.global_data_index + item_index.size)
return self._get_item_local_shard_index(item_id)
def set_item(self, item_id: int, item_data: torch.Tensor) -> None:
"""
Update a tensor item managed by the `DataParallelBuffer` instance.
The storage of the item is mapped to the communication bucket.
This method updates the item data and ensures consistency with the bucket.
Args:
item_id (int): The ID of the tensor item to update.
item_data (torch.Tensor): The new data for the tensor item.
Returns:
None
"""
if self.is_data_distributed:
slice_start, slice_end = self._get_item_slice_in_shard(item_id)
item_data = item_data.flatten()[slice_start:slice_end]
local_index_start, local_index_end = self._get_item_local_index(item_id)
shard = self.data[local_index_start:local_index_end]
if shard.numel() > 0:
shard.data.copy_(item_data.flatten())
def get_item(self, item_id: int, only_shard: bool = False) -> torch.Tensor:
"""
Retrieve a tensor item managed by the `DataParallelBuffer` instance.
The storage of the item is mapped to the communication bucket.
If `only_shard` is True, returns only the shard of the item corresponding
to the current process.
Otherwise, returns the entire item.
Args:
item_id (int): The ID of the tensor item to retrieve.
only_shard (bool, optional): Whether to return only the shard of the
item. Defaults to False.
Returns:
torch.Tensor: The retrieved tensor item.
"""
if only_shard:
start, end = self._get_item_local_shard_index(item_id)
else:
start, end = self._get_item_local_index(item_id)
return self.data[start:end]
def get_item_from_bucket(self, bucket: Bucket, item_id: int):
"""get item from bucket."""
item_index = self.item_index_map[item_id]
bucket_index = self.bucket_index
start_index = item_index.global_data_index - bucket_index.global_data_index
end_index = start_index + item_index.size
item = bucket.data[start_index:end_index]
return item
def get_shard_from_bucket(self, bucket: Bucket):
"""Get the local sharding of the bucket."""
shard_bucket_index = self.shard_bucket_index
offset = shard_bucket_index.bucket_data_index
shard_size = shard_bucket_index.size
shard = bucket.data[offset : offset + shard_size]
return shard
def get_shard_from_local_buffer(self) -> torch.Tensor:
"""Get the local sharding of the bucket."""
index = self.shard_bucket_index
return self.data[index.local_data_index : index.local_data_index + index.size]
@dataclasses.dataclass
class ParameterGroup:
"""
A group of model parameters with associated metadata for data-parallel training.
This dataclass encapsulates a list of PyTorch parameters and additional information
necessary for managing data-parallel operations, such as data type, gradient requirements,
and buffer assignments.
"""
params: List[torch.nn.Parameter]
dtype: Optional[torch.dtype] = None
is_expert_param: bool = False
requires_grad: Optional[bool] = None
fsdp_unit_id: Optional[int] = None
data_parallel_world_size: Optional[int] = None
model_weight_buffer: Optional[DataParallelBuffer] = None
main_weight_buffer: Optional[DataParallelBuffer] = None
main_grad_buffer: Optional[DataParallelBuffer] = None
def _get_parameter_groups(
module: torch.nn.Module,
policy: BucketingPolicy,
meta_device_init_fp8_params: dict,
bucket_group_by_fsdp_unit: bool = True,
):
"""
Get the parameter group for the given module and parameters.
"""
param_to_name = {p: name for name, p in module.named_parameters()}
fsdp_units = []
if policy.fsdp_unit_modules:
param_to_id = {}
for i, p in enumerate(module.parameters()):
param_to_id[p] = i
fsdp_modules = []
for m in module.modules():
# Skip nested FSDP module.
if any(is_submodule(module, fsdp_module) for fsdp_module in fsdp_modules):
continue
if isinstance(m, tuple(policy.fsdp_unit_modules)):
fsdp_units.append([param_to_name[p] for p in m.parameters()])
fsdp_modules.append(m)
def _does_param_require_new_bucket(param):
"""
Split shared embedding parameters into separate bucket if using distributed
optimizer that makes use of reduce-scatters instead of all-reduces.
This ensures that the first and last pipeline stage partition optimizer state
for the shared embedding parameters the same way across DP replicas, allowing
the DP reduce-scatter to be before the embedding all-reduce.
"""
return (
getattr(param, "shared_embedding", False)
and policy.data_parallel_sharding_strategy != "no_shard"
)
is_expert_parameter = lambda p: not getattr(p, 'allreduce', True)
# Step 1: Group the parameters according to their execution order and attributes.
parameter_groups = []
for name, param in module.named_parameters():
param_attrs = dict(
dtype=(
"float8"
if is_float8tensor(param) or meta_device_init_fp8_params.get(name, False)
else param.dtype
),
is_expert_param=is_expert_parameter(param),
requires_grad=param.requires_grad,
fsdp_unit_id=None,
)
for fsdp_unit_id, fsdp_unit in enumerate(fsdp_units):
if name in fsdp_unit:
param_attrs["fsdp_unit_id"] = fsdp_unit_id
break
found_group = False
for param_group in parameter_groups:
group_attrs = {
key: value for key, value in param_group.__dict__.items() if key in param_attrs
}
if group_attrs == param_attrs:
param_group.params.append(param)
found_group = True
break
if not found_group:
parameter_groups.append(ParameterGroup([param], **param_attrs))
# Step 2: Bucket the parameters based on the guide bucket size.
suggested_bucket_size = policy.suggested_bucket_size
bucket_groups = []
for group in parameter_groups:
bucket = []
basic_attrs = {
key: value
for key, value in group.__dict__.items()
if key in ['dtype', 'is_expert_param', 'requires_grad', 'fsdp_unit_id']
}
for param in group.params:
if _does_param_require_new_bucket(param):
if len(bucket) > 0:
bucket_groups.append(ParameterGroup(bucket, **basic_attrs))
bucket_groups.append(ParameterGroup([param], **basic_attrs))
bucket = []
continue
bucket.append(param)
if (
group.fsdp_unit_id is None
and suggested_bucket_size
and sum([p.numel() for p in bucket]) >= suggested_bucket_size
):
bucket_groups.append(ParameterGroup(bucket, **basic_attrs))
bucket = []
continue
if bucket:
bucket_groups.append(ParameterGroup(bucket, **basic_attrs))
param_to_param_group = {}
for group_id, group in enumerate(bucket_groups):
for param in group.params:
param_to_param_group[param] = group_id
# Generate the groups of collective buckets, where each group aggregates
# the collectives per FSDP unit. This improves performance by reducing
# the number of collective calls and increasing per-collective efficiency.
#
# Set default aggregate buckets of bucket.
bucket_group_of_bucket = {}
for bucket_id in range(len(bucket_groups)):
bucket_group_of_bucket[bucket_id] = [bucket_id]
# Set aggregate buckets by FSDP units.
if bucket_group_by_fsdp_unit:
bucket_group_map = {}
for bucket_id, param_group in enumerate(bucket_groups):
if param_group.fsdp_unit_id is None:
continue
id = (param_group.fsdp_unit_id, param_group.is_expert_param)
if id not in bucket_group_map:
bucket_group_map[id] = []
bucket_group_map[id].append(bucket_id)
for bucket_group in bucket_group_map.values():
for bucket_id in bucket_group:
bucket_group_of_bucket[bucket_id] = bucket_group
return (bucket_groups, param_to_param_group, bucket_group_of_bucket)
class ParamAndGradBuffer:
"""A class that manages parameter grouping, buffer allocation, and
communication operations for data-parallel distributed training.
This class provides functionality to:
1. Group parameters based on their data types and communication group sizes
2. Create contiguous buffers for model weights, gradients, and high-precision
main weights
3. Handle parameter unsharding, gradient reduction, and weight
synchronization operations
Key Features:
- Efficient parameter grouping based on data types and communication patterns
- Memory-efficient contiguous buffer allocation
- Support for mixed-precision training with main weights
- Distributed operations including parameters all-gather and gradients
reduce-scatter/all-reduce
- Synchronized weight updates between model and main weights
Note:
This class is designed for distributed training scenarios where efficient
parameter management and communication are crucial for performance.
Args:
ddp_config (DistributedDataParallelConfig): The distributed data parallel
configuration.
module (torch.nn.Module): The module whose parameters are to be grouped
and flatten.
bucketing_policy (BucketingPolicy): The bucketing policy.
data_parallel_group (torch.distributed.ProcessGroup): The data parallel group.
expert_data_parallel_group (Optional[torch.distributed.ProcessGroup]):
The expert data parallel group.
preserve_fp32_weights (bool): Whether to preserve FP32 weights.
grad_reduce_in_fp32 (bool): Whether to reduce gradients in FP32.
gradient_scaling_factor (Optional[float]): The gradient scaling factor.
expert_gradient_scaling_factor (Optional[float]): The expert gradient
scaling factor.
device (torch.device): The parameter and gradient buffer device.
only_create_grad_buffer_and_main_weight_buffer_for_param_requires_grad (bool):
Whether to only create the gradient buffer and main weight buffer
for parameters that require gradients. Default is True.
"""
def __init__(
self,
ddp_config: DistributedDataParallelConfig,
module: torch.nn.Module,
bucketing_policy: BucketingPolicy,
data_parallel_group: torch.distributed.ProcessGroup,
expert_data_parallel_group: Optional[torch.distributed.ProcessGroup] = None,
preserve_fp32_weights: bool = True,
grad_reduce_in_fp32: bool = True,
gradient_scaling_factor: Optional[float] = None,
expert_gradient_scaling_factor: Optional[float] = None,
device: torch.device = torch.device('cuda'),
only_create_grad_buffer_and_main_weight_buffer_for_param_requires_grad: bool = True,
reset_parameters_for_meta_device_init_module: bool = False,
):
self.ddp_config = ddp_config
self.module = module
self.bucketing_policy = bucketing_policy
self.param_to_name = {p: name for name, p in self.module.named_parameters()}
self.preserve_fp32_weights = preserve_fp32_weights
self.grad_reduce_in_fp32 = grad_reduce_in_fp32
self.data_parallel_group = data_parallel_group
self.expert_data_parallel_group = expert_data_parallel_group
self.params = list(module.parameters())
self.gradient_scaling_factor = gradient_scaling_factor
self.expert_gradient_scaling_factor = expert_gradient_scaling_factor
self.device = device
self.only_create_grad_buffer_and_main_weight_buffer_for_param_requires_grad = (
only_create_grad_buffer_and_main_weight_buffer_for_param_requires_grad
)
self.reset_parameters_for_meta_device_init_module = (
reset_parameters_for_meta_device_init_module
)
# Mark fp8 param.
meta_device_init_fp8_params = {}
if reset_parameters_for_meta_device_init_module:
for m in module.modules():
if not isinstance(m, TransformerEngineBaseModule):
continue
for name, param in m.named_parameters(recurse=False):
# The fp8 param initialized from the meta device may NOT be
# an fp8 tensor, according to the internal logic of the TE
# to determine whether this parameter is fp8 or not.
fp8_meta_index = m.param_init_meta[name].fp8_meta_index
if m.primary_weights_in_fp8 and fp8_meta_index is not None:
meta_device_init_fp8_params[self.param_to_name[param]] = True
# Get the parameter groups.
(self.parameter_groups, self.param_to_param_group, self.bucket_group_of_bucket) = (
_get_parameter_groups(module, bucketing_policy, meta_device_init_fp8_params)
)
self._init_each_parameter_group_buffers(meta_device_init_fp8_params)
# Initialize the optimizer named parameters.
self.optimizer_named_parameters = self._init_optimizer_named_parameters()
self._log_parameter_groups()
def _log_parameter_groups(self):
"""
Log the parameter groups for all pipeline stages.
"""
# Log buckets for all PP stages.
if (
parallel_state.get_data_parallel_rank(with_context_parallel=True) == 0
and parallel_state.get_tensor_model_parallel_rank() == 0
):
bucket_groups = self.parameter_groups
param_to_name = self.param_to_name
log_strs = []
log_strs.append(f'Number of parameter groups for FSDP: {len(bucket_groups)}')
for index, group in enumerate(bucket_groups):
numel = 0
for param in group.params:
numel += param.numel()
log_strs.append(
f"Params for group {index+1} ({numel} elements, dtype: {group.dtype}, "
f"fsdp_unit_id: {group.fsdp_unit_id}, "
f"has_weight_buffer: {group.model_weight_buffer is not None}, "
f"has_grad_buffer: {group.main_grad_buffer is not None}, "
f"has_main_weight_buffer: {group.main_weight_buffer is not None}):"
)
for param in group.params:
log_strs.append(f'\t{param_to_name[param]}')
log_on_each_pipeline_stage(logger, logging.INFO, '\n'.join(log_strs))
def _init_each_parameter_group_buffers(self, meta_device_init_fp8_params):
"""
Initialize the buffers for each parameter group.
"""
data_parallel_sharding_strategy = self.ddp_config.data_parallel_sharding_strategy
if data_parallel_sharding_strategy == 'no_shard':
is_model_weight_buffer_distributed = False
is_main_weight_buffer_distributed = False
is_grad_buffer_distributed = False
elif data_parallel_sharding_strategy == 'optim':
is_model_weight_buffer_distributed = False
is_main_weight_buffer_distributed = True
is_grad_buffer_distributed = False
elif data_parallel_sharding_strategy == 'optim_grads':
is_model_weight_buffer_distributed = False
is_main_weight_buffer_distributed = True
is_grad_buffer_distributed = True
elif data_parallel_sharding_strategy == 'optim_grads_params':
is_model_weight_buffer_distributed = True
is_main_weight_buffer_distributed = True
is_grad_buffer_distributed = True
else:
raise ValueError(
f'Invalid data_parallel_sharding_strategy: {data_parallel_sharding_strategy}'
)
self.memory_allocator_for_model_weight_buffer = StorageResizeBasedBucketAllocator()
self.buffer_all_in_one = True
preserve_fp32_weights = self.preserve_fp32_weights
grad_reduce_in_fp32 = self.grad_reduce_in_fp32
buffer_size = {torch.float32: 0, torch.float16: 0, torch.bfloat16: 0, "float8": 0}
for group_id, group in enumerate(self.parameter_groups):
dp_group = (
self.data_parallel_group
if not group.is_expert_param
else self.expert_data_parallel_group
)
group.data_parallel_world_size = torch.distributed.get_world_size(group=dp_group)
gradient_scaling_factor = (
self.gradient_scaling_factor
if not group.is_expert_param
else self.expert_gradient_scaling_factor
)
one_param = group.params[0]
is_dtype_float8 = is_float8tensor(one_param) or meta_device_init_fp8_params.get(
self.param_to_name[one_param], False
)
if is_dtype_float8:
param_dtype = torch.uint8
grad_dtype = torch.bfloat16
else:
param_dtype = group.params[0].dtype
grad_dtype = param_dtype
should_create_grad_buffer_or_main_weight_buffer = (
not self.only_create_grad_buffer_and_main_weight_buffer_for_param_requires_grad
or group.requires_grad
)
# Initialize the model weight buffer.
if data_parallel_sharding_strategy != 'no_shard':
group.model_weight_buffer = DataParallelBuffer(
self.ddp_config,
group.params,
is_data_distributed=is_model_weight_buffer_distributed
and group.data_parallel_world_size > 1,
dtype=param_dtype,
device=self.device,
data_parallel_group=dp_group,
init_meta_only=True,
is_dtype_float8=is_dtype_float8,
temporary_bucket_allocator=self.memory_allocator_for_model_weight_buffer,
bucket_id=group_id,
)
# Initialize the main weight buffer.
if should_create_grad_buffer_or_main_weight_buffer and preserve_fp32_weights:
group.main_weight_buffer = DataParallelBuffer(
self.ddp_config,
group.params,
is_data_distributed=is_main_weight_buffer_distributed
and group.data_parallel_world_size > 1,
dtype=torch.float32,
device=self.device,
data_parallel_group=dp_group,
init_meta_only=True,
bucket_id=group_id,
)
# Initialize the main grad buffer.
if should_create_grad_buffer_or_main_weight_buffer:
group.main_grad_buffer = DataParallelBuffer(
self.ddp_config,
group.params,
is_data_distributed=is_grad_buffer_distributed
and group.data_parallel_world_size > 1,
dtype=torch.float32 if grad_reduce_in_fp32 else grad_dtype,
device=self.device,
data_parallel_group=dp_group,
init_meta_only=True,
is_dtype_float8=not grad_reduce_in_fp32 and grad_dtype is torch.uint8,
gradient_scaling_factor=gradient_scaling_factor,
bucket_id=group_id,
)
if grad_reduce_in_fp32:
buffer_size[torch.float32] += group.main_grad_buffer.data_size
elif group.main_grad_buffer.is_dtype_float8:
buffer_size["float8"] += group.main_grad_buffer.data_size
else:
buffer_size[group.main_grad_buffer.dtype] += group.main_grad_buffer.data_size
reset_context_args = {"init_param_with_fp8": self.ddp_config.fp8_param_gather}
module_reset_flag = {}
if self.reset_parameters_for_meta_device_init_module:
self.param_to_direct_module = {}
for name, m in self.module.named_modules():
for p in m.parameters(recurse=False):
self.param_to_direct_module[p] = (name, m)
meta_params_numel = 0
cuda_params_numel = 0
cpu_params_numel = 0
for group in self.parameter_groups:
for p in group.params:
if p.is_meta:
meta_params_numel += p.numel()
elif p.device.type == 'cuda':
cuda_params_numel += p.numel()
else:
cpu_params_numel += p.numel()
log_str = (
f"Meta params numel: {meta_params_numel / 1_000_000:.2f} M, "
f"CUDA params numel: {cuda_params_numel / 1_000_000:.2f} M, "
f"CPU params numel: {cpu_params_numel / 1_000_000:.2f} M"
)
log_on_each_pipeline_stage(logger, logging.INFO, log_str)
# Initialize the model weight buffer data of each parameter group.
for group in self.parameter_groups:
wbuf = group.model_weight_buffer
if wbuf:
wbuf.data = torch.empty(wbuf.data_size, dtype=wbuf.dtype, device=self.device)
bucket = wbuf.fetch_bucket()
mbuf = group.main_weight_buffer
if mbuf:
mbuf.data = torch.empty(mbuf.data_size, dtype=mbuf.dtype, device=self.device)
for item_id, p in enumerate(group.params):
if wbuf:
if self.reset_parameters_for_meta_device_init_module and p.is_meta:
m_name, m = self.param_to_direct_module[p]
if not module_reset_flag.get(m_name, False) and hasattr(
m, "reset_parameters"
):
old_params = list(m.parameters(recurse=False))
# If the GPU memory over threshold, empty cache to leave
# some memory for initialization of the model on the
# CUDA device.
if check_gpu_memory(threshold=0.5):
gc.collect()
torch.cuda.empty_cache()
m.to_empty(device=self.device, recurse=False)
if is_te_min_version("0.9.0") and not isinstance(
m, TransformerEngineBaseModule
):
reset_context_args["with_cuda_rng_tracker"] = True
with ResetParametersContext(**reset_context_args):
m.reset_parameters()
module_reset_flag[m_name] = True
new_params = list(m.parameters(recurse=False))
self._reset_parameters(old_params, new_params)
p = group.params[item_id]
# After resetting parameters, delete fp8 transpose cache
# if we do not need keep cache.
if not self.ddp_config.keep_fp8_transpose_cache_when_using_custom_fsdp:
for _param in m.parameters(recurse=False):
if is_float8tensor(_param):
_param._transpose_invalid = True
_param._transpose = None
assert not p.is_meta, (self.param_to_name[p], module_reset_flag)
wbuf.set_item(item_id, p.data)
# reset the parameter data to the buffer
new_param_data = wbuf.get_item_from_bucket(bucket, item_id).view(p.shape)
if is_float8tensor(p):
modify_underlying_storage(p, new_param_data)
else:
old_param_data = p.data
p.data = new_param_data
assert old_param_data._base is None
p.data.detach().copy_(old_param_data)
del old_param_data
if mbuf:
if hasattr(p, 'get_high_precision_init_val'):
mbuf.set_item(item_id, p.get_high_precision_init_val())
p.clear_high_precision_init_val()
else:
mbuf.set_item(item_id, p)
if wbuf and wbuf.is_data_distributed:
"""
When MCore Custom FSDP `optim_grads_params` is enabled,
it is necessary to save the tensor local shard. This local shard is
accessible through the `fully_shard_param_local_shard`
attribute of the tensor.
This attribute contains the local shard of the fully
sharded parameter, which is essential for correctly
saving and loading the model state when using
`optim_grads_params` with FSDP.
Example:
>>> # Assuming `tensor` is a fully sharded parameter
>>> local_shard = tensor.fully_shard_param_local_shard
>>> # Save the local shard as needed
"""
local_shard = wbuf.get_item(item_id, only_shard=True)
local_shard.fsdp_shard_orig_param = p
p.fully_shard_param_local_shard = local_shard
p.fully_shard_param_local_index = wbuf.locate_item_in_global_item(item_id)
def disable_shard_param_to_function(*unused):
"""Prevents users from accessing the 'to' operation
on parameters after sharding.
This restriction helps maintain data integrity and
proper sharding behavior by disabling direct 'to'
device/dtype operations on sharded parameters.
"""
raise RuntimeError(
"Your model is wrapped by MCore Custom FSDP. All "
"parameter dtypes and devices must be set before FSDP "
"wrapping. After FSDP wrapping, parameter storage "
"is sharded and you cannot modify parameter "
"dtypes or devices."
)
setattr(p, 'to', disable_shard_param_to_function)
def disable_shard_param_cpu_function(*unused):
warnings.warn(
"The parameters are sharded by custom fsdp, "
"and no actual cpu operation is performed."
)
return torch.empty([], device='cpu')
setattr(p, 'cpu', disable_shard_param_cpu_function)
if wbuf and wbuf.is_data_distributed:
wbuf.free_bucket_storage()
# Allocate the main_weight buffer and main_grad buffer data in one buffer.
if self.buffer_all_in_one:
self.buffer = {
torch.float32: torch.empty(
buffer_size[torch.float32], dtype=torch.float32, device=self.device
),
torch.float16: torch.empty(
buffer_size[torch.float16], dtype=torch.float16, device=self.device
),
torch.bfloat16: torch.empty(
buffer_size[torch.bfloat16], dtype=torch.bfloat16, device=self.device
),
"float8": torch.empty(buffer_size["float8"], dtype=torch.uint8, device=self.device),
}
offset = {torch.float32: 0, torch.float16: 0, torch.bfloat16: 0, "float8": 0}
def _alloc(dtype, size):
if self.buffer_all_in_one:
if dtype == torch.uint8:
dtype = "float8"
data = self.buffer[dtype][offset[dtype] : offset[dtype] + size]
offset[dtype] += size
return data
return torch.empty(size, dtype=dtype, device=self.device)
# Initialize the main grad buffer data of each parameter group.
for group in self.parameter_groups:
gbuf = group.main_grad_buffer
if not gbuf:
continue
gbuf.data = _alloc(gbuf.dtype, gbuf.data_size)
gbuf.data.zero_()
for item_id, p in enumerate(group.params):
p.fsdp_managed_main_grad = gbuf.get_item(item_id)
p._gbuf = gbuf
p._item_id = item_id
def main_grad_getter(p):
# Make sure main_grad memory storage ready.
bucket = p._gbuf.fetch_bucket()
gbuf = p._gbuf
item_id = p._item_id
return gbuf.get_item_from_bucket(bucket, item_id).view(p.shape)
setattr(p.__class__, 'main_grad', property(main_grad_getter))
if gbuf.is_data_distributed:
gbuf.free_bucket_storage()
gc.collect()
torch.cuda.empty_cache()
def _reset_parameters(self, old_params, new_params):
assert len(old_params) == len(new_params)
param_map = {}
for old_param, new_param in zip(old_params, new_params):
param_map[old_param] = new_param
self.param_to_name[new_param] = self.param_to_name[old_param]
del self.param_to_name[old_param]
self.param_to_param_group[new_param] = self.param_to_param_group[old_param]
del self.param_to_param_group[old_param]
self.param_to_direct_module[new_param] = self.param_to_direct_module[old_param]
del self.param_to_direct_module[old_param]
for item_id, p in enumerate(self.params):
if p in param_map:
new_p = param_map[p]
self.params[item_id] = new_p
for group in self.parameter_groups:
for item_id, p in enumerate(group.params):
if p not in param_map:
continue
new_p = param_map[p]
group.params[item_id] = new_p
for buf in [
group.model_weight_buffer,
group.main_weight_buffer,
group.main_grad_buffer,
]:
if buf is None:
continue
buf.param_idx[new_p] = buf.param_idx[p]
del buf.param_idx[p]
def scale_gradients(self, scaling_factor: float) -> None:
"""Scale the gradient data by `scaling_factor`."""
for group in self.parameter_groups:
if group.main_grad_buffer is None:
continue
group.main_grad_buffer.data *= scaling_factor
self.update_main_grads()
def zero_grad(self):
"""
Zero out the underlying grad_buffer and reset all buckets in preparation
for the next iteration of training.
"""
for _, param in self.optimizer_named_parameters:
if param.grad is not None and param.grad._base is None:
# For tensors that are not referenced, trying to use storage
# resize to make memory free immediately.
_free_storage(param.grad)
param.grad = None
for group in self.parameter_groups:
if group.main_grad_buffer is None:
continue
group.main_grad_buffer.data.zero_()
def _init_optimizer_named_parameters(self) -> List[Tuple[str, torch.nn.Parameter]]:
named_parameters = []
for pg in self.parameter_groups:
if pg.main_grad_buffer is None:
continue
optimizer_state_is_shard = pg.main_grad_buffer.is_data_distributed or (
pg.main_weight_buffer and pg.main_weight_buffer.is_data_distributed
)
for item_id, orig_param in enumerate(pg.params):
if pg.main_weight_buffer:
param = pg.main_weight_buffer.get_item(
item_id, only_shard=optimizer_state_is_shard
)
elif pg.model_weight_buffer:
param = pg.model_weight_buffer.get_item(
item_id, only_shard=optimizer_state_is_shard
)
else:
param = orig_param
def set_param_attribute_closure(param, orig_param):
def set_param_attribute():
for attr_name in [
'requires_grad',
'sequence_parallel',
'shared',
'tensor_model_parallel',
'partition_dim',
'partition_stride',
'is_embedding_or_output_parameter',
]:
if hasattr(orig_param, attr_name):
setattr(param, attr_name, getattr(orig_param, attr_name))
return set_param_attribute
setattr(param, 'reset_attribute', set_param_attribute_closure(param, orig_param))
setattr(param, 'orig_param', orig_param)
param.reset_attribute()
named_parameters.append((self.param_to_name[orig_param], param))
return named_parameters
def update_main_grads(self):
"""Update the main gradients for preparing the optimizer step."""
for _, param in self.optimizer_named_parameters:
param.reset_attribute()
orig_param = param.orig_param
group = self.parameter_groups[self.param_to_param_group[orig_param]]
item_id = group.main_grad_buffer.param_idx[orig_param]
optimizer_grad = group.main_grad_buffer.get_item(
item_id, only_shard=group.main_weight_buffer.is_data_distributed
)
setattr(
param,
'grad',
optimizer_grad.to(param.dtype) if optimizer_grad.numel() > 0 else None,
)
@property
def num_buckets(self):
"""Return the number of buckets."""
return len(self.parameter_groups)
@torch.no_grad()
def copy_main_weights_to_model_weights(self):
"""Update the model weights from the main weights."""
for pg in self.parameter_groups:
mbuf = pg.main_weight_buffer
wbuf = pg.model_weight_buffer
if mbuf is None:
continue
fp8_params = []
shard_fp32_from_fp8 = []
shard_offsets_in_fp8 = []
shard_model_params = []
for param in pg.params:
item_id = mbuf.param_idx[param]
if wbuf:
if wbuf.is_data_distributed or mbuf.is_data_distributed:
model_param = wbuf.get_item(item_id, only_shard=True)
main_weight = mbuf.get_item(item_id, only_shard=True)
else:
model_param = wbuf.get_item(item_id)
main_weight = mbuf.get_item(item_id)
else:
assert not mbuf.is_data_distributed
model_param = param
main_weight = pg.main_weight_buffer.get_item(item_id)
if is_float8tensor(param):
fp8_params.append(param)
if model_param.numel() == 0:
shard_fp32_from_fp8.append(None)
shard_offsets_in_fp8.append(None)
shard_model_params.append(None)
else:
shard_fp32_from_fp8.append(main_weight)
shard_offsets_in_fp8.append(wbuf.locate_item_in_global_item(item_id)[0])
shard_model_params.append(model_param)
continue
if model_param.numel() > 0:
model_param.data.copy_(main_weight.view(model_param.shape))
quantize_param_shard(
fp8_params,
shard_fp32_from_fp8,
shard_offsets_in_fp8,
wbuf.data_parallel_group,
shard_model_params,
)
@torch.no_grad()
def copy_model_weights_to_main_weights(self):
"""Copy the model weights to the main weights."""
for group in self.parameter_groups:
mbuf = group.main_weight_buffer
if mbuf is None:
continue
wbuf = group.model_weight_buffer
if mbuf.is_data_distributed:
copyin_data = wbuf.get_shard_from_local_buffer()
else:
copyin_data = wbuf.data
assert mbuf.data.numel() == copyin_data.numel(), (
f"Master weight buffer size {mbuf.data.numel()} does not match "
f"model weight buffer size {copyin_data.numel()}"
)
mbuf.data.copy_(copyin_data.data)
def all_gather_parameters(self, async_op: bool = True):
"""All gather the parameters.
Args:
async_op (bool, optional): Whether to do the all-reduce
asynchronously. Defaults to False.
"""
assert all(
[not g.model_weight_buffer.is_data_distributed for g in self.parameter_groups]
), 'all_gather_parameters() should only be called when parameters are not sharded.'
all_gather_ops = []
for g in self.parameter_groups:
shard = g.model_weight_buffer.get_shard_from_local_buffer()
all_gather_handler = torch.distributed.all_gather_into_tensor(
output_tensor=g.model_weight_buffer.data,
input_tensor=shard,
group=g.model_weight_buffer.data_parallel_group,
async_op=async_op,
)
if async_op:
all_gather_ops.append(all_gather_handler)
for op in all_gather_ops:
op.wait()
def reduce_scatter_gradients(self, async_op: bool = True):
"""Reduce scatter the gradients.
Args:
async_op (bool, optional): Whether to do the all-reduce
asynchronously. Defaults to False.
"""
assert all(
[not g.main_grad_buffer.is_data_distributed for g in self.parameter_groups]
), 'reduce_scatter_gradients() should only be called when gradients are not sharded.'
reduce_scatter_ops = []
for g in self.parameter_groups:
gbuf = g.main_grad_buffer
if gbuf is not None:
continue
scaling_factor = gbuf.gradient_scaling_factor
reduce_op = gradient_reduce_preprocessing(gbuf.data, scaling_factor, self.ddp_config)
reduce_scatter_handler = torch.distributed.reduce_scatter_tensor(
output=gbuf.get_shard_from_local_buffer(),
input=gbuf.data,
op=reduce_op,
group=g.main_grad_buffer.data_parallel_group,
async_op=async_op,
)
if async_op:
reduce_scatter_ops.append(reduce_scatter_handler)
for op in reduce_scatter_ops:
op.wait()
def all_reduce_gradients(self, async_op: bool = False):
"""All reduce the gradients.
Args:
async_op (bool, optional): Whether to do the all-reduce
asynchronously. Defaults to False.
"""
assert all(
[
not g.main_grad_buffer.is_data_distributed
for g in self.parameter_groups
if g.main_grad_buffer
]
), 'all_reduce_gradients() should only be called when gradients are not sharded.'
all_reduce_ops = []
for g in self.parameter_groups:
gbuf = g.main_grad_buffer
if gbuf is not None:
continue
scaling_factor = gbuf.gradient_scaling_factor
reduce_op = gradient_reduce_preprocessing(gbuf.data, scaling_factor, self.ddp_config)
all_reduce_handler = torch.distributed.all_reduce(
gbuf.data, op=reduce_op, group=gbuf.data_parallel_group, async_op=async_op
)
if async_op:
all_reduce_ops.append(all_reduce_handler)
for op in all_reduce_ops:
op.wait()
class BucketStatus(Enum):
"""
An enumeration of possible statuses for a data-parallel communication bucket.
Attributes:
EMPTY (int): The bucket is empty and not in use.
COMMUNICATING (int): The bucket is currently being used for communication.
READY_TO_USE (int): The bucket is filled with data and ready for use.
"""
EMPTY = 1
COMMUNICATING = 2
READY_TO_USE = 3
class GradReducePipeline:
"""
Pipeline for reducing gradients.
"""
def __init__(
self,
param_and_grad_buffer: ParamAndGradBuffer,
cuda_stream: Optional[torch.cuda.Stream] = None,
check_nans: bool = False,
) -> None:
self.buffer = param_and_grad_buffer
self.grad_reduce_queue = []
self.bucket_status = {
i: BucketStatus.EMPTY
for i in range(self.buffer.num_buckets)
if self.buffer.parameter_groups[i].main_grad_buffer
}
self.bucket_grad_ready_params = [set() for _ in range(self.buffer.num_buckets)]
self.cuda_stream = cuda_stream
self.check_nans = check_nans
@property
def num_buckets(self):
"""Return the number of buckets."""
return self.buffer.num_buckets
def reset(self):
"""Handle the processing tasks and reset the pipeline."""
self.wait_for_previous_grad_reduce(0)
for bucket_id, grad_ready_params in enumerate(self.bucket_grad_ready_params):
param_list = self.buffer.parameter_groups[bucket_id].params
n_params = len(param_list)
param_to_name = self.buffer.param_to_name
assert len(grad_ready_params) == 0, (
f"Found {len(grad_ready_params)} out of {n_params} parameters that are ready for "
f"reduce-scatter/all-reduce, but the pipeline is being reset. "
f"grad_ready_params: {[param_to_name[p] for p in grad_ready_params]} "
f"param_list: {[param_to_name[p] for p in param_list]}"
)
for bucket_id, _ in self.bucket_status.items():
gbuf = self.buffer.parameter_groups[bucket_id].main_grad_buffer
gbuf.free_bucket_storage()
self.bucket_status[bucket_id] = BucketStatus.EMPTY
def reduce_gradients(
self, params: List[torch.Tensor], suggested_queue_capacity: Optional[int] = None
):
"""Reduce the gradients for the given parameters.
Args:
params (List[torch.Tensor]): The parameters.
suggested_queue_capacity (int, optional): The suggested queue capacity.
Defaults to None.
"""
for param in params:
bucket_id = self.buffer.param_to_param_group[param]
param_group = self.buffer.parameter_groups[bucket_id]
if not param.requires_grad:
assert param_group.requires_grad is False, (
f"Param {self.buffer.param_to_name[param]} has requires_grad=False, "
f"but it is in a parameter group with requires_grad=True."
)
continue
assert param_group.requires_grad, (
f"Param {self.buffer.param_to_name[param]} has requires_grad=True, "
f"but it is in a parameter group with requires_grad=False."
)
# Mark grad as ready for reduce-scatter/all-reduce.
self.bucket_grad_ready_params[bucket_id].add(param)
if len(self.bucket_grad_ready_params[bucket_id]) == len(param_group.params):
self.wait_for_previous_grad_reduce(
suggested_queue_capacity=suggested_queue_capacity
)
self.mark_bucket_ready(bucket_id, async_rs=True)
def wait_for_previous_grad_reduce(
self, suggested_queue_size: int = 1, suggested_queue_capacity: Optional[int] = None
):
"""
Wait for the previous reduce-scatter/all-reduce to finish.
Args:
suggested_queue_size (int, optional): The recommended queue size. Defaults to 1.
suggested_queue_capacity (Optional[int], optional): The recommended queue capacity.
Defaults to None.
"""
if suggested_queue_capacity is not None:
queue_space = sum(
[
self.buffer.parameter_groups[bucket_id].main_grad_buffer.bucket_index.size
for _, _, bucket_id in self.grad_reduce_queue
]
)
while queue_space > suggested_queue_capacity:
grad_reduce_event, free_up_grad_bucket, bucket_id = self.grad_reduce_queue.pop(0)
grad_reduce_event.wait()
free_up_grad_bucket()
queue_space -= self.buffer.parameter_groups[
bucket_id
].main_grad_buffer.bucket_index.size
else:
suggested_queue_size = max(0, min(suggested_queue_size, self.buffer.num_buckets - 1))
while len(self.grad_reduce_queue) > suggested_queue_size:
grad_reduce_event, free_up_grad_bucket, _ = self.grad_reduce_queue.pop(0)
grad_reduce_event.wait()
free_up_grad_bucket()
def mark_bucket_ready(self, bucket_id: int, async_rs: bool = False) -> bool:
"""Mark the bucket ready for reduce-scatter/all-reduce, if all bucket in
the bucket group are ready, then do the reduce-scatter/all-reduce.
Args:
bucket_id (int): The bucket to be marked.
async_rs (bool, optional): Whether to do the reduce-scatter/all-reduce
asynchronously. Defaults to False.
Returns:
bool: True if the bucket is go for reduce-scatter/all-reduce.
"""
# Prepare the bucket group for gradient reduce. Note that the
# some bucket parameters do not require grad, so we need to
# remove them from the bucket group.
bucket_group = self.buffer.bucket_group_of_bucket[bucket_id]
bucket_group = [i for i in bucket_group if self.buffer.parameter_groups[i].main_grad_buffer]
# If any bucket in the bucket group is not ready, skip the gradient reduce
# waiting for the bucket group to be all ready before executing.
for bucket_id in bucket_group:
param_group = self.buffer.parameter_groups[bucket_id]
if len(self.bucket_grad_ready_params[bucket_id]) != len(param_group.params):
return False
current_stream = torch.cuda.current_stream()
reduce_scatter_stream = (
self.cuda_stream if self.cuda_stream is not None else torch.cuda.current_stream()
)
reduce_scatter_stream.wait_stream(current_stream)
dp_group = self.buffer.parameter_groups[bucket_id].main_grad_buffer.data_parallel_group
with torch.cuda.stream(reduce_scatter_stream):
with _coalescing_manager(dp_group, async_ops=async_rs) as coalescing_event:
grad_shards = {}
for bucket_id in bucket_group:
gbuf = self.buffer.parameter_groups[bucket_id].main_grad_buffer
bucket = gbuf.fetch_bucket()
scaling_factor = gbuf.gradient_scaling_factor
reduce_op = gradient_reduce_preprocessing(
gbuf.data, scaling_factor, gbuf.ddp_config
)
if gbuf.ddp_config.data_parallel_sharding_strategy == 'no_shard':
torch.distributed.all_reduce(
bucket.data, op=reduce_op, group=gbuf.data_parallel_group
)
else:
grad_shard = gbuf.get_shard_from_bucket(bucket)
# pylint: disable=C0301
# The `grad_shard`` is part of `bucket.data`` and the following
# new empty is important for memory safety, when using
# TORCH_NCCL_AVOID_RECORD_STREAMS=1.
# For reference: https://dev-discuss.pytorch.org/t/fsdp-cudacachingallocator-an-outsider-newb-perspective/1486
grad_shard = torch.empty_like(grad_shard)
torch.distributed.reduce_scatter_tensor(
output=grad_shard,
input=bucket.data,
op=reduce_op,
group=gbuf.data_parallel_group,
)
grad_shards[bucket_id] = grad_shard
self.bucket_status[bucket_id] = BucketStatus.COMMUNICATING
coalescing_event.wait()
for bucket_id in bucket_group:
# Local gradient accumulate
gbuf = self.buffer.parameter_groups[bucket_id].main_grad_buffer
if gbuf.ddp_config.data_parallel_sharding_strategy != 'no_shard':
# Gradient accumulate on local buffer
local_buffer = gbuf.get_shard_from_local_buffer()
local_buffer += grad_shards[bucket_id]
reduce_scatter_view_out_event = reduce_scatter_stream.record_event()
free_up_grad_bucket_func = {}
for bucket_id in bucket_group:
def get_closure(bucket_id):
def free_up_grad_bucket():
self.bucket_grad_ready_params[bucket_id] = set()
gbuf = self.buffer.parameter_groups[bucket_id].main_grad_buffer
if gbuf.is_data_distributed:
gbuf.free_bucket_storage()
self.bucket_status[bucket_id] = BucketStatus.EMPTY
return free_up_grad_bucket
free_up_grad_bucket_func[bucket_id] = get_closure(bucket_id)
if async_rs:
for bucket_id, free_up_grad_bucket in free_up_grad_bucket_func.items():
self.grad_reduce_queue.append(
(reduce_scatter_view_out_event, free_up_grad_bucket, bucket_id)
)
return True
reduce_scatter_view_out_event.wait()
for free_up_grad_bucket in free_up_grad_bucket_func.values():
free_up_grad_bucket()
return True
class PrefetchOrder(Enum):
"""
An enumeration of possible prefetch orders for data-parallel operations.
Attributes:
FORWARD_PASS_ORDER (int): Prefetch in the order of forward pass computation.
BACKWARD_PASS_ORDER (int): Prefetch in the order of backward pass computation.
"""
FORWARD_PASS_ORDER = 0
BACKWARD_PASS_ORDER = 1
class AllGatherPipeline:
"""
Pipeline for all-gathering parameters.
"""
def __init__(self, param_and_grad_buffer: ParamAndGradBuffer) -> None:
self.buffer = param_and_grad_buffer
self.param_gather_event_map = {}
self.bucket_status = {i: BucketStatus.EMPTY for i in range(self.buffer.num_buckets)}
self.bucket_can_be_released = {i: False for i in range(self.buffer.num_buckets)}
self.bucket_to_bucket_group = {}
group_id = 0
for bucket_group in self.buffer.bucket_group_of_bucket.values():
new_group = False
for bucket_id in bucket_group:
if bucket_id not in self.bucket_to_bucket_group:
new_group = True
break
if new_group:
group_id += 1
for bucket_id in bucket_group:
self.bucket_to_bucket_group[bucket_id] = group_id
@property
def num_buckets(self):
"""Return the number of buckets."""
return self.buffer.num_buckets
def reset(self):
"""Reset the pipeline state."""
if len(self.param_gather_event_map) > 0:
warnings.warn(
"There are still pending all-gather tasks, process them. "
f"Bucket status: {self.bucket_status}.",
UserWarning,
)
while len(self.param_gather_event_map) > 0:
bucket_id = next(iter(self.param_gather_event_map))
self.wait_bucket_ready(bucket_id)
for bucket_id in self.bucket_can_be_released:
self.bucket_can_be_released[bucket_id] = True
self.recycle_unused_buckets()
assert all([status is BucketStatus.EMPTY for status in self.bucket_status.values()]), (
f"There are still working buckets, it is not safe to reset. "
f"bucket_status: {self.bucket_status}."
)
assert all(
[not can_be_released for can_be_released in self.bucket_can_be_released.values()]
), (
f"The bucket can be released table is in an abnormal state, not safe to reset. "
f"bucket_can_be_released: {self.bucket_can_be_released}."
)
def all_gather_params(
self,
params: List[torch.Tensor],
prefetch: bool = False,
prefetch_order: PrefetchOrder = PrefetchOrder.FORWARD_PASS_ORDER,
suggested_AG_prefetch_size: Optional[int] = None,
):
"""All-gather the params. If prefetch is enabled, prefetch next buckets
in the order of `prefetch_order`.
Args:
params (List[torch.Tensor]): The list of params to be all-gathered.
prefetch (bool, optional): Whether to prefetch the next bucket. Defaults to False.
prefetch_order (PrefetchOrder, optional): The order of prefetching.
Defaults to PrefetchOrder.FORWARD_PASS_ORDER.
suggested_AG_prefetch_size (Optional[int], optional):
The suggested prefetch size for all-gathering. Defaults to None.
"""
if len(params) == 0:
return
ag_buckets = [self.buffer.param_to_param_group[item] for item in params]
ag_buckets = list(sorted(set(ag_buckets)))
parameter_groups = self.buffer.parameter_groups
# If prefetch is enabled, we will add prefetch buckets to ag_buckets.
if prefetch:
def next_bucket_id(ag_buckets):
if prefetch_order == PrefetchOrder.FORWARD_PASS_ORDER:
bucket_id = ag_buckets[0] + 1
for i in ag_buckets[1:]:
if i != bucket_id:
break
bucket_id += 1
else:
bucket_id = ag_buckets[-1] - 1
for i in reversed(ag_buckets[:-1]):
if i != bucket_id:
break
bucket_id -= 1
if bucket_id < 0 or bucket_id >= self.buffer.num_buckets:
return None
return bucket_id
if suggested_AG_prefetch_size is not None:
bucket_id = next_bucket_id(ag_buckets)
while bucket_id is not None:
all_gather_size = sum(
[
parameter_groups[i].model_weight_buffer.bucket_index.size
for i in ag_buckets
]
)
if all_gather_size >= suggested_AG_prefetch_size:
break
ag_buckets.extend(self.buffer.bucket_group_of_bucket[bucket_id])
ag_buckets = list(sorted(set(ag_buckets)))
bucket_id = next_bucket_id(ag_buckets)
else:
bucket_id = next_bucket_id(ag_buckets)
if bucket_id is not None:
ag_buckets.extend(self.buffer.bucket_group_of_bucket[bucket_id])
ag_buckets = list(sorted(set(ag_buckets)))
ag_buckets = [i for i in ag_buckets if self.bucket_status[i] == BucketStatus.EMPTY]
if len(ag_buckets) == 0:
return
# Divide buckets into aggregate groups
bucket_group_to_buckets = {}
for bucket_id in ag_buckets:
group_id = self.bucket_to_bucket_group[bucket_id]
if group_id not in bucket_group_to_buckets:
bucket_group_to_buckets[group_id] = []
bucket_group_to_buckets[group_id].append(bucket_id)
# Coalesce all-gather operations for all buckets in the same data-parallel-group
for _, buckets in bucket_group_to_buckets.items():
param_group = parameter_groups[buckets[0]]
dp_group = param_group.model_weight_buffer.data_parallel_group
with _coalescing_manager(dp_group, async_ops=True) as coalescing_event:
for bucket_id in buckets:
self.all_gather_bucket_and_set_items(bucket_id, async_op=True)
# reset param gather event with coalescing event
for bucket_id in buckets:
_, mark_bucket_ready_to_use = self.param_gather_event_map[bucket_id]
self.param_gather_event_map[bucket_id] = (
coalescing_event,
mark_bucket_ready_to_use,
)
def wait_bucket_ready(self, bucket_id, empty_ok=False):
"""Wait for the bucket to be ready."""
if self.bucket_status[bucket_id] == BucketStatus.READY_TO_USE:
return
if self.bucket_status[bucket_id] == BucketStatus.EMPTY:
if empty_ok:
return
raise ValueError(f"Bucket {bucket_id} is empty.")
param_gather_event, mark_bucket_ready_to_use = self.param_gather_event_map.pop(bucket_id)
param_gather_event.wait()
mark_bucket_ready_to_use()
@torch.no_grad()
def release_bucket(self, bucket_id: int):
"""Release the bucket."""
if self.bucket_status[bucket_id] == BucketStatus.EMPTY:
return
if self.bucket_status[bucket_id] == BucketStatus.COMMUNICATING:
raise ValueError(f"Bucket {bucket_id} is communicating.")
wbuf = self.buffer.parameter_groups[bucket_id].model_weight_buffer
wbuf.free_bucket_storage()
self.bucket_status[bucket_id] = BucketStatus.EMPTY
def recycle_unused_buckets(self):
"""Recycle the unused buckets."""
for bucket_id, can_be_released in self.bucket_can_be_released.items():
if can_be_released:
self.release_bucket(bucket_id)
self.bucket_can_be_released[bucket_id] = False
@torch.no_grad()
def all_gather_bucket_and_set_items(self, bucket_id: int, async_op: bool = False) -> None:
"""All-gather the bucket and set the items."""
self.bucket_can_be_released[bucket_id] = False
if self.bucket_status[bucket_id] != BucketStatus.EMPTY:
return
self.bucket_status[bucket_id] = BucketStatus.COMMUNICATING
wbuf = self.buffer.parameter_groups[bucket_id].model_weight_buffer
# Lazy release the unused buckets.
self.recycle_unused_buckets()
bucket = wbuf.fetch_bucket(and_allocate_params_data=True)
param_gather_event = torch.distributed.all_gather_into_tensor(
output_tensor=bucket.data,
input_tensor=wbuf.get_shard_from_local_buffer(),
group=wbuf.data_parallel_group,
async_op=async_op,
)
def get_closure(bucket_id):
@torch.no_grad()
def mark_bucket_ready_to_use():
self.bucket_status[bucket_id] = BucketStatus.READY_TO_USE
return mark_bucket_ready_to_use
mark_bucket_ready_to_use = get_closure(bucket_id)
if async_op:
self.param_gather_event_map[bucket_id] = (param_gather_event, mark_bucket_ready_to_use)
return
mark_bucket_ready_to_use()
@torch.no_grad()
def gradient_reduce_preprocessing(grad_data, scaling_factor, ddp_config):
"""
Gradient reduce preprocessing for gradient averaging and gradient scaling.
"""
if scaling_factor is None:
reduce_op = torch.distributed.ReduceOp.SUM
elif ddp_config.average_in_collective:
reduce_op = torch.distributed.ReduceOp.AVG
elif ddp_config.gradient_reduce_div_fusion and grad_data.dtype != torch.bfloat16:
reduce_op = torch.distributed._make_nccl_premul_sum(scaling_factor)
else:
grad_data.mul_(scaling_factor)
reduce_op = torch.distributed.ReduceOp.SUM
return reduce_op
def check_gpu_memory(threshold=0.9):
"""
Check if the GPU memory is over the threshold.
Args:
threshold (float, optional): The threshold to check if the GPU memory is over.
Defaults to 0.9.
Returns:
bool: True if the GPU memory is over the threshold.
"""
if not torch.cuda.is_available():
return False
device = torch.cuda.current_device()
allocated = torch.cuda.memory_allocated(device)
reserved = torch.cuda.memory_reserved(device)
total = torch.cuda.get_device_properties(device).total_memory
allocated_ratio = allocated / total
reserved_ratio = reserved / total
near_full = allocated_ratio >= threshold or reserved_ratio >= threshold
if near_full:
log_on_each_pipeline_stage(
logger,
logging.INFO,
f"GPU Memory: Allocated: {allocated_ratio:.2%}, Reserved: {reserved_ratio:.2%}",
)
return near_full
class ResetParametersContext:
"""
Context manager for resetting parameters for meta device initialization module.
"""
def __init__(self, init_param_with_fp8=False, with_cuda_rng_tracker=False):
self.init_param_with_fp8 = init_param_with_fp8
self.with_cuda_rng_tracker = with_cuda_rng_tracker
def __enter__(self):
self.stack = ExitStack()
if self.init_param_with_fp8:
args = {"enabled": True}
if "preserve_high_precision_init_val" in inspect.signature(fp8_model_init).parameters:
args["preserve_high_precision_init_val"] = True
self.stack.enter_context(fp8_model_init(**args))
if self.with_cuda_rng_tracker:
self.stack.enter_context(get_cuda_rng_tracker().fork())
return self
def __exit__(self, *exc_details):
self.stack.__exit__(*exc_details)
# Copyright (c) 2024, NVIDIA CORPORATION. All rights reserved.
from contextlib import contextmanager
import torch
from ..transformer.module import MegatronModule
from ..transformer.transformer_config import TransformerConfig
class _BaseDataParallel(MegatronModule):
"""A template class for DistributedDataParallel implementations."""
def __init__(self, config: TransformerConfig, module: torch.nn.Module):
super().__init__(config=config)
self.module = module
def forward(self, *inputs, **kwargs):
"""
Calls the wrapped module's forward() method.
"""
return self.module(*inputs, **kwargs)
@contextmanager
def no_sync(self):
"""
Context manager that turns off gradient synchronization.
"""
try:
yield
finally:
pass
def start_grad_sync(self, *unused):
"""
Initiates grad sync (all-reduce or reduce-scatter) communication operations
for all model gradients.
When overlap_grad_reduce is set to True, dispatches asynchronous communication
calls. When overlap_grad_reduce is set to False, calls synchronous
communication ops.
"""
pass
def scale_gradients(self, scaling_factor: float) -> None:
"""Scale all gradients inside the buffers by `scaling_factor`."""
pass
def finish_grad_sync(self):
"""
Finishes grad sync (all-reduce or reduce-scatter) communication operations
for all model gradients.
When overlap_grad_reduce is set to True, waits for asynchronous communication
calls to complete. When overlap_grad_reduce is set to False, calls synchronous
communication ops.
"""
pass
def zero_grad_buffer(self):
"""
Zeros out all grad buffers. Needs to be called at the beginning of each
training iteration.
"""
pass
def broadcast_params(self):
"""
Syncs parameters across all DP ranks.
"""
pass
def state_dict(self, prefix='', keep_vars=False, destination=None):
"""
Returns a dictionary containing references to the whole state of the
wrapped module.
Both parameters and persistent buffers (e.g. running averages) are included.
Keys are corresponding parameter and buffer names. Parameters and buffers
set to None are not included.
"""
return self.module.state_dict(prefix=prefix, keep_vars=keep_vars, destination=destination)
def state_dict_for_save_checkpoint(self, prefix='', keep_vars=False):
"""
Returns wrapped module's state_dict for checkpoint saving.
"""
return self.module.state_dict_for_save_checkpoint(prefix=prefix, keep_vars=keep_vars)
def load_state_dict(self, state_dict, strict=True):
"""
Copies parameters and buffers from state_dict into the wrapped module and its
descendants. If strict is True, then the keys of state_dict must exactly match
the keys returned by this module’s state_dict() function.
"""
self.module.load_state_dict(state_dict, strict=strict)
# Copyright (c) 2024, NVIDIA CORPORATION. All rights reserved.
import logging
from contextlib import contextmanager
import torch
from .. import parallel_state
from ..config_logger import has_config_logger_enabled, log_config_to_disk
from ..fp8_utils import is_float8tensor
from ..transformer.cuda_graphs import is_graph_capturing
from ..transformer.transformer_config import TransformerConfig
from ..utils import log_single_rank
from .data_parallel_base import _BaseDataParallel
from .distributed_data_parallel_config import DistributedDataParallelConfig
from .param_and_grad_buffer import _ParamAndGradBuffer, partition_buckets
logger = logging.getLogger(__name__)
class DistributedDataParallel(_BaseDataParallel):
"""
DDP wrapper which stores grads in contiguous buffers. Also has option of overlapping
communication with backprop computation by breaking up full model's gradients into smaller
buckets and running all-reduce / reduce-scatter on each bucket asynchronously. This class
also provides the option to do the gradient accumulation in a type other than the param type
(e.g., fp32 for a bf16 model).
Args:
config: Transformer config object.
ddp_config: DistributedDataParallel config object.
module: Underlying model.
disable_bucketing: If true, force assign all parameters to a single bucket. If false,
use standard bucketing policy: assign parameters to smaller buckets and all-reduce
per bucket _if_ overlap_grad_reduce is True and pp_rank is 0.
"""
def __init__(
self,
config: TransformerConfig,
ddp_config: DistributedDataParallelConfig,
module: torch.nn.Module,
disable_bucketing: bool = False,
):
super().__init__(config=config, module=module)
if has_config_logger_enabled(config):
log_config_to_disk(config, locals(), prefix=type(self).__name__)
self.module = module
# If bucket_size is not provided as an input, use sane default.
# If using very large dp_sizes, make buckets larger to ensure that chunks used in NCCL
# ring-reduce implementations are large enough to remain bandwidth-bound rather than
# latency-bound.
if ddp_config.bucket_size is None:
ddp_config.bucket_size = max(
40000000, 1000000 * parallel_state.get_data_parallel_world_size()
)
# Set bucket_size to infinity if overlap_grad_reduce is False.
if not ddp_config.overlap_grad_reduce:
ddp_config.bucket_size = None
self.ddp_config = ddp_config
log_single_rank(
logger,
logging.INFO,
f'Setting up DistributedDataParallel with config {self.ddp_config}',
)
# Turn off bucketing if we are on a pipeline stage that is not the first (since
# data-parallel communication on these stages is not on the critical path), or if
# disable_bucketing is True (e.g., we might not want to break up model parameters
# into buckets for model chunks after the first in the interleaved schedule).
self.bucket_size = self.ddp_config.bucket_size
if parallel_state.get_pipeline_model_parallel_rank() > 0:
self.bucket_size = None
if disable_bucketing:
self.bucket_size = None
self.param_to_bucket_group = {}
# Group parameters by their gradient type.
param_to_name = {}
dense_params = []
expert_parallel_params = []
self.params_with_grad = []
for name, param in self.module.named_parameters():
if not param.requires_grad:
continue
# Track params with grad to enable direct setting
# of param.grad_added_to_main_grad
self.params_with_grad.append(param)
param.grad_added_to_main_grad = False
param_to_name[param] = name
if getattr(param, 'allreduce', True):
dense_params.append(param)
else:
expert_parallel_params.append(param)
def _allocate_buffers_for_parameters(
input_params, data_parallel_group, gradient_scaling_factor
):
param_and_grad_dtype_to_params = {}
param_and_grad_dtype_to_offsets = {}
param_and_grad_dtype_to_indices = {}
# Group parameters by their gradient type.
for param in input_params:
assert param.requires_grad
param_dtype = param.dtype
if is_float8tensor(param):
# Currently TE's Float8Tensor is a wrapper of torch.Tensor. It has a "fake"
# dtype (usually a higher precision dtype such as bfloat16), but its actual
# data is stored in the form of a torch uint8 tensor within the Float8Tensor's
# ".data" attribute. Therefore, when creating the param buffer for fp8 params,
# it is necessary to use torch.uint8, not the "fake" dtype got from
# "param.dtype".
param_dtype = torch.uint8
grad_dtype = torch.float if self.ddp_config.grad_reduce_in_fp32 else param.dtype
params = param_and_grad_dtype_to_params.get((param_dtype, grad_dtype), [])
params.append(param)
param_and_grad_dtype_to_params[(param_dtype, grad_dtype)] = params
# Get the index of each param among the params with same dtype, if a param is fp8,
# use its "fake" high precision dtype to find which params have same dtype with it.
# For example:
# Case 1:
# params = [p1(bf16), p2(bf16), p3(bf16), p4(bf16)]
# param_and_grad_dtype_to_indices = {
# (torch.bfloat16, torch.float32): [0, 1, 2, 3],
# }
# Case 2:
# params = [p1(bf16), p2(fp8), p3(fp8), p4(bf16)]
# param_and_grad_dtype_to_indices = {
# (torch.bfloat16, torch.float32): [0, 3],
# (torch.uint8, torch.float32): [1, 2],
# }
# We need these indices to load a non-native-fp8 checkpoint in native-fp8 mode.
offset = param_and_grad_dtype_to_offsets.get((param.dtype, grad_dtype), 0)
param_and_grad_dtype_to_offsets[(param.dtype, grad_dtype)] = offset + 1
indices = param_and_grad_dtype_to_indices.get((param_dtype, grad_dtype), [])
indices.append(offset)
param_and_grad_dtype_to_indices[(param_dtype, grad_dtype)] = indices
if not config.calculate_per_token_loss:
target_gradient_scaling_factor = 1.0 / parallel_state.get_data_parallel_world_size(
with_context_parallel=True
)
if self.ddp_config.average_in_collective:
if self.ddp_config.num_distributed_optimizer_instances == 1:
# Collective is averaging gradients in collective with data_parallel_group.
assert (
gradient_scaling_factor
/ torch.distributed.get_world_size(group=data_parallel_group)
== target_gradient_scaling_factor
)
else:
# For non-expert parameters, gradient_scaling_factor is 1.
# For expert parameters, gradient_scaling_factor is edp_size/dp_size.
assert (gradient_scaling_factor == 1) or (
gradient_scaling_factor
== (
parallel_state.get_expert_data_parallel_world_size()
/ parallel_state.get_data_parallel_world_size(
with_context_parallel=True
)
)
)
else:
assert gradient_scaling_factor == target_gradient_scaling_factor
# Allocate the grad buffers and map the grads.
buffers = []
for (param_dtype, grad_dtype), params in param_and_grad_dtype_to_params.items():
buffers.append(
_ParamAndGradBuffer(
self.ddp_config,
param_dtype,
grad_dtype,
params,
data_parallel_group,
self.bucket_size,
param_to_name,
gradient_scaling_factor,
param_and_grad_dtype_to_indices[(param_dtype, grad_dtype)],
)
)
# In some scenarios, we want to put buckets from different buffers into a group so that
# their communication can be aggregated. For example, when there are both fp8 buffers
# and bf16 buffers in the model and vpp is enabled, each model chunk will have an fp8
# bucket and a bf16 bucket, which doubles the number of communication kernels, and
# because of the use of CUDA_DEVICE_MAX_CONNECTIONS=1, having multiple back-to-back
# communications will prevent the overlap of the communication kernels with computation
# kernels.
# If bucketing is explicitly disabled, then put all buckets in a buffer into a single
# bucket group.
bucket_groups = partition_buckets(buffers, force_single_bucket_group=disable_bucketing)
if self.ddp_config.num_distributed_optimizer_instances > 1:
assert (
parallel_state.get_expert_model_parallel_world_size() == 1
), "Partial DistOpt cannot support MoE models with expert parallelism."
assert (
self.ddp_config.use_distributed_optimizer
), 'Partial DistOpt cannot be used without DistOpt'
communication_stream = torch.cuda.Stream(device=torch.cuda.current_device())
for bucket_group in bucket_groups:
bucket_group.inter_distributed_optimizer_instance_group = (
parallel_state.get_inter_partial_data_parallel_group()
)
bucket_group.communication_stream = communication_stream
# Set `next_param_gather_bucket_group` for different bucket groups by iterating through
# buckets in reverse order (since all-gathers happen in reverse order of buckets).
if self.ddp_config.use_distributed_optimizer and self.ddp_config.overlap_param_gather:
num_bucket_groups = len(bucket_groups)
for i in range(1, num_bucket_groups):
bucket_groups[num_bucket_groups - i].next_param_gather_bucket_group = (
bucket_groups[num_bucket_groups - i - 1]
)
# Create map from param to bucket group, used in pre_hook.
for bucket_group in bucket_groups:
for bucket in bucket_group.buckets:
for param in bucket.params_list:
self.param_to_bucket_group[param] = bucket_group
return buffers, bucket_groups
if config.calculate_per_token_loss:
assert (
not self.ddp_config.average_in_collective
), "Cannot average in collective when calculating per-token loss!"
gradient_scaling_factor = 1.0
expert_gradient_scaling_factor = 1.0
else:
# The goal is to scale reduced gradients by 1/dp_size.
# This can be achieved in two ways:
#
# Case 1: average_in_collective=True
# - Non-expert parameters:
# 1. No pre-scaling (gradient_scaling_factor=1.0)
# 2. Do average reduction over dp group (equals to sum then divide by dp_size)
# 3. Final result is scaled by 1/dp_size as desired
#
# - Expert parameters:
# 1. Scale by edp_size/dp_size before reduction
# 2. Do average reduction over edp group (equals to sum then divide by edp_size)
# 3. Resulted scaling: (edp_size/dp_size) * (1/edp_size) = 1/dp_size as desired
# (edp_size = expert data parallel world size)
#
# Case 2: average_in_collective=False
# - Both expert and non-expert parameters:
# 1. Scale gradients by 1/dp_size before reduction
# 2. Do sum reduction across data parallel ranks
# 3. Final result is scaled by 1/dp_size as desired
if self.ddp_config.average_in_collective:
gradient_scaling_factor = 1.0
expert_gradient_scaling_factor = (
parallel_state.get_expert_data_parallel_world_size()
/ parallel_state.get_data_parallel_world_size(with_context_parallel=True)
)
else:
data_parallel_world_size = parallel_state.get_data_parallel_world_size(
with_context_parallel=True
)
gradient_scaling_factor = 1.0 / data_parallel_world_size
expert_gradient_scaling_factor = 1.0 / data_parallel_world_size
# Allocate the param+grad buffers for dense params' grads.
self.buffers, self.bucket_groups = _allocate_buffers_for_parameters(
dense_params,
parallel_state.get_data_parallel_group(
with_context_parallel=True, partial_data_parallel=True
),
gradient_scaling_factor=gradient_scaling_factor,
)
# Allocate separate param+grad buffers for expert parallel params' grads.
self.expert_parallel_buffers, self.expert_parallel_bucket_groups = (
_allocate_buffers_for_parameters(
expert_parallel_params,
parallel_state.get_expert_data_parallel_group(),
gradient_scaling_factor=expert_gradient_scaling_factor,
)
)
# Delete references to weight_tensor if they exist since we don't want two parameter copies
# if we re-mapped parameters (which happens when we use the distributed optimizer).
# This is a temporary workaround around a TE bug that is fixed with
# https://github.com/NVIDIA/TransformerEngine/pull/719.
if self.ddp_config.use_distributed_optimizer:
@torch.no_grad()
def unmap_weight_tensor(m):
if hasattr(m, 'weight_tensor'):
m.weight_tensor = None
self.module.apply(unmap_weight_tensor)
# Register backward hook.
# Accumulation function for the gradients need to be stored so they
# don't go out of scope.
self.grad_accs = []
for param in self.module.parameters():
if param.requires_grad:
# Expand so we get access to grad_fn.
param_tmp = param.expand_as(param)
# Get the gradient accumulator function.
grad_acc = param_tmp.grad_fn.next_functions[0][0]
grad_acc.register_hook(self._make_backward_post_hook(param))
self.grad_accs.append(grad_acc)
self.use_forward_hook = (
self.ddp_config.use_distributed_optimizer and self.ddp_config.overlap_param_gather
)
self.remove_forward_pre_hook_handles = {}
if self.use_forward_hook:
self.enable_forward_pre_hook()
self.overlap_param_gather_with_optimizer_step = False
def enable_forward_pre_hook(self):
"""
Enable forward pre-hooks needed for param all-gather overlap with forward compute.
"""
assert self.use_forward_hook
assert len(self.remove_forward_pre_hook_handles) == 0
# Register forward pre-hook for all sub-modules.
for module in self.module.modules():
self.remove_forward_pre_hook_handles[module] = module.register_forward_pre_hook(
self._make_forward_pre_hook()
)
def disable_forward_pre_hook(self, param_sync: bool = True):
"""
Disable forward pre-hooks needed for param all-gather overlap with forward compute.
Skip synchronous param all-gather if `param_sync` is False.
"""
assert self.use_forward_hook
# De-register forward pre-hook for all sub-modules.
for module in self.module.modules():
assert self.remove_forward_pre_hook_handles[module] is not None
self.remove_forward_pre_hook_handles[module].remove()
del self.remove_forward_pre_hook_handles[module]
assert len(self.remove_forward_pre_hook_handles) == 0
# Force synchronize parameters.
if param_sync:
self.start_param_sync(force_sync=True)
def _make_forward_pre_hook(self):
"""
Create a forward pre-hook to wait on all-gather handles when necessary (i.e.,
when a module uses a parameter in a bucket with a still incomplete all-gather).
"""
def hook(module, *unused):
assert (
self.use_forward_hook
), "Should use pre-hook only when overlap_param_gather is True"
if is_graph_capturing():
return
# Make sure all parameters in this module have been all-gathered as necessary.
for param in module.parameters(recurse=False):
# Skip parameters without an associated buffer (such parameters have a
# .requires_grad field equal to False).
if param not in self.param_to_bucket_group:
continue
assert param.requires_grad
# If aligning param all-gather across pipeline stages, all-gather is dispatched
# by start_param_sync calls in core/pipeline_parallelism/schedules.py.
# If overlapping param all-gather with optimizer step, then all-gather has
# already been dispatched in optimizer step.
skip_next_bucket_dispatch = (
self.ddp_config.align_param_gather
or self.overlap_param_gather_with_optimizer_step
)
self.param_to_bucket_group[param].finish_param_sync(
skip_next_bucket_dispatch=skip_next_bucket_dispatch
)
return hook
def _make_backward_post_hook(self, param: torch.nn.Parameter):
"""
Creates a backward post-hook to dispatch an all-reduce / reduce-scatter when
ready (i.e., when all grads in a bucket have been computed in all microbatches
in a batch).
"""
def hook(*unused):
if is_graph_capturing():
return
if param in self.param_to_bucket_group:
assert param.requires_grad
if self.ddp_config.overlap_grad_reduce:
assert (
param.grad is not None
), 'param.grad being None is not safe when overlap_grad_reduce is True'
if param.grad is not None and (
not param.grad_added_to_main_grad or getattr(param, 'zero_out_wgrad', False)
):
param.main_grad.add_(param.grad.data)
param.grad = None
if self.ddp_config.overlap_grad_reduce:
self.param_to_bucket_group[param].register_grad_ready(param)
return hook
@contextmanager
def no_sync(self):
"""
Context manager that turns off gradient synchronization.
"""
for bucket_group in self.bucket_groups + self.expert_parallel_bucket_groups:
bucket_group.is_last_microbatch = False
try:
yield
finally:
for bucket_group in self.bucket_groups + self.expert_parallel_bucket_groups:
bucket_group.is_last_microbatch = True
def start_param_sync(self, *unused, force_sync: bool = False, force_dispatch: bool = False):
"""
Initiates param sync (all-gather) communication operations for all model parameters.
By default, when overlap_param_gather is set to True, dispatches asynchronous communication
calls; when overlap_param_gather is set to False, calls synchronous communication
ops. Can override this default behavior using flags below.
Args:
force_sync (bool, optional): force synchronous collective regardless of
other settings.
force_dispatch (bool, optional): force dispatch regardless of other settings.
"""
if not force_sync:
# If overlapping param AG with optimizer step, AG should not be dispatched again
# in forward_backward_step.
if self.overlap_param_gather_with_optimizer_step and not force_dispatch:
return
for bucket_group in self.bucket_groups + self.expert_parallel_bucket_groups:
bucket_group.start_param_sync(force_sync=force_sync)
def start_grad_sync(self, *unused):
"""
Initiates grad sync (all-reduce or reduce-scatter) communication operations
for all model gradients.
When overlap_grad_reduce is set to True, dispatches asynchronous communication
calls. When overlap_grad_reduce is set to False, calls synchronous
communication ops.
"""
for bucket_group in self.bucket_groups + self.expert_parallel_bucket_groups:
bucket_group.start_grad_sync()
def finish_grad_sync(self):
"""
Finishes grad sync (all-reduce or reduce-scatter) communication operations
for all model gradients.
When overlap_grad_reduce is set to True, waits for asynchronous communication
calls to complete. When overlap_grad_reduce is set to False, calls synchronous
communication ops.
"""
for bucket_group in self.bucket_groups + self.expert_parallel_bucket_groups:
bucket_group.finish_grad_sync()
def scale_gradients(self, scaling_factor: float):
"""Scale all gradients inside the buffers by `scaling_factor`."""
for buffer in self.buffers + self.expert_parallel_buffers:
buffer.scale_gradients(scaling_factor)
def zero_grad_buffer(self):
"""
Zeros out all grad buffers. Needs to be called at the beginning of each
training iteration.
"""
if not getattr(self.config, 'external_cuda_graph', False):
# Don't reset grad_added_to_main_grad when CUDA Graph is used.
# Because in CUDA Graph it no longer has the opportunity to set it back
# to True, and there will be a double-GA.
for param in self.params_with_grad:
param.grad_added_to_main_grad = False
for buffer in self.buffers + self.expert_parallel_buffers:
buffer.reset()
for bucket_group in self.bucket_groups + self.expert_parallel_bucket_groups:
bucket_group.reset()
def broadcast_params(self):
"""
Syncs parameters across all DP ranks.
"""
for param in self.module.parameters():
is_expert_parallel = not getattr(param, 'allreduce', True)
if is_expert_parallel:
data_parallel_group = parallel_state.get_expert_data_parallel_group()
else:
data_parallel_group = parallel_state.get_data_parallel_group(
with_context_parallel=True, partial_data_parallel=True
)
torch.distributed.broadcast(
param.data,
src=torch.distributed.get_global_rank(data_parallel_group, 0),
group=data_parallel_group,
)
# Copyright (c) 2024, NVIDIA CORPORATION. All rights reserved.
from dataclasses import dataclass
from typing import Optional
@dataclass
class DistributedDataParallelConfig:
"""Configuration for DistributedDataParallel."""
grad_reduce_in_fp32: bool = False
"""If true, reduce grads in fp32."""
overlap_grad_reduce: bool = False
"""If true, overlap grad all-reduce / reduce-scatter with backward compute."""
overlap_param_gather: bool = False
"""If true, overlap param all-gather with forward compute."""
align_param_gather: bool = False
"""If true, all PP stages will launch param all-gathers simultaneously. Otherwise, each
PP stage will independently launch as needed.
"""
use_distributed_optimizer: bool = False
"""If true, issue reduce-scatter collectives to aggregate gradients and clean up
originally allocated model parameters, otherwise issue all-reduce collectives.
"""
num_distributed_optimizer_instances: int = 1
"""Sets the factor by which the DP domain is sharded to have the partial DistOpt
enabled. Defaults to 1, which means DistOpt is across entire DP domain.
"""
check_for_nan_in_grad: bool = False
"""If true, check for NaNs and Infs in gradients _before_ communication collective."""
check_for_large_grads: bool = False
"""If true, check for unexpectedly large gradients _before_ communication collective."""
bucket_size: Optional[int] = None
"""Maximum number of parameters in each bucket. If unspecified, MCore uses a default
value of max(40000000, 1000000 * dp_size) parameters (larger DP sizes need larger
buckets to ensure collectives do not become latency-bound)."""
pad_buckets_for_high_nccl_busbw: bool = False
"""If true, make sure the bucket size is divisible by a large power of 2 (2^16) to
ensure NCCL collectives have high bus bandwidth at large DP counts, since NCCL
message size (which for ring algorithms is bucket_size / dp_size) apparently needs
to be divisible by a power of 2 for high busbw."""
average_in_collective: bool = False
"""If true, compute average in collective directly, as opposed to dividing by the
dp_size first and then computing sum in the collective."""
fp8_param_gather: bool = False
"""If true, keep the compute param in fp8 (do not use any other intermediate dtype) and
perform the param all-gather in fp8."""
use_custom_fsdp: bool = False
"""If true, use the FSDP code path for DDP."""
data_parallel_sharding_strategy: str = 'no_shard'
"""Sharding strategy for FSDP. Valid values are 'no_shard', 'optim',
'optim_grads', 'optim_grads_params'."""
gradient_reduce_div_fusion: bool = True
"""If true, perform gradient reduce and division fusion."""
suggested_communication_unit_size: int = None
"""Specifies the number of elements to communicate at once during
FSDP (Fully Sharded Data Parallel) operations.
This flag also affects FSDP all-gather prefetch behavior. Setting a larger
value increases the communication buffer size, while a smaller value
disables prefetching and may degrade performance. Adjust this value
based on your system's memory and performance requirements."""
preserve_fp32_weights: bool = True
"""If true, preserve fp32 weights in the custom FSDP ParamAndGradBuffer."""
keep_fp8_transpose_cache_when_using_custom_fsdp: bool = False
"""If true, keep the fp8 transpose cache when using custom FSDP."""
# Copyright (c) 2024, NVIDIA CORPORATION. All rights reserved.
from typing import List, Optional, Union
import torch
from torch._utils import _flatten_dense_tensors, _unflatten_dense_tensors
try:
from torch.distributed._tensor import DTensor, distribute_tensor
HAVE_DTENSOR = True
except ImportError:
HAVE_DTENSOR = False
from .. import parallel_state
from ..transformer.moe.moe_utils import get_updated_expert_bias
from ..transformer.transformer_config import TransformerConfig
from ..utils import get_attr_wrapped_model, get_model_config
def _get_main_grad_attr(param: torch.nn.Parameter, use_custom_fsdp: bool = False):
if use_custom_fsdp:
return "fsdp_managed_main_grad"
if hasattr(param, "main_grad"):
return "main_grad"
return "grad"
def _unshard_if_dtensor(tensor: Union[torch.Tensor, "DTensor"]) -> torch.Tensor:
"""
Unshards the input tensor if it is a DTensor and otherwise returns the
tensor unmodified.
Args:
tensor (Union[torch.Tensor, DTensor]): The tensor to potentially unshard.
Returns:
An unsharded version of the input tensor if it is a DTensor, or the
input tensor unmodified if it is not a DTensor.
"""
if HAVE_DTENSOR and isinstance(tensor, DTensor):
unsharded_tensor = tensor.full_tensor()
for k, v in vars(tensor).items():
setattr(unsharded_tensor, k, v)
return unsharded_tensor
return tensor
def _reshard_if_dtensor(
tensor_to_shard: torch.Tensor, reference_tensor: Union[torch.Tensor, "DTensor"]
) -> Union[torch.Tensor, "DTensor"]:
"""
Reshards the input tensor to match the sharding configuration of the
reference tensor if the reference tensor is a DTensor. Otherwise, returns
the reference tensor unmodified.
Args:
tensor_to_shard (torch.Tensor): The tensor to be potentially sharded.
reference_tensor (Union[torch.Tensor, DTensor]): The reference tensor
for the sharding configuration.
Returns:
Union[torch.Tensor, DTensor]: The sharded tensor matching the reference tensor's
configuration, or the reference tensor itself if it is not a DTensor.
"""
if HAVE_DTENSOR and isinstance(reference_tensor, DTensor):
sharded_tensor = distribute_tensor(
tensor_to_shard,
device_mesh=reference_tensor.device_mesh,
placements=reference_tensor.placements,
)
for k, v in vars(reference_tensor).items():
setattr(sharded_tensor, k, v)
return sharded_tensor
return reference_tensor
def _allreduce_conditional_embedding_grads(model: List[torch.nn.Module], config: TransformerConfig):
"""
All-reduce conditional embedding grads.
Reduce grads across all the pp stages to ensure that parameters of the conditional embedders
(e.g., timestep embedder, FPS embedder, label embedder) stay in sync.
This is for the models with replicated embedders on each PP / VPP rank, like diffusion models.
"""
if parallel_state.get_pipeline_model_parallel_world_size() > 1 and getattr(
config, "has_cond_embedder", False
):
grads_dict = {}
for model_chunk in model:
for name, param in get_attr_wrapped_model(model_chunk, 'named_parameters')():
if param.requires_grad and getattr(param, 'pipeline_parallel', False):
grad = param.main_grad
if name in grads_dict:
# Add all the virtual PP rank's gradients to
# the first local virtual PP rank.
grads_dict[name][0].add_(grad)
# Append to the end for later update after cross-rank reduce.
grads_dict[name].append(grad)
else:
grads_dict[name] = [grad]
if grads_dict:
# All-reduce the gradient on the first VPP rank.
grads = [param_grad[0] for _, param_grad in grads_dict.items()]
coalesced = _flatten_dense_tensors(grads)
torch.distributed.all_reduce(
coalesced, group=parallel_state.get_pipeline_model_parallel_group()
)
for buf, synced in zip(grads, _unflatten_dense_tensors(coalesced, grads)):
buf.copy_(synced)
# Update the gradients on other VPP ranks.
for grads in grads_dict.values():
for grad in grads[1:]:
grad.copy_(grads[0])
def _allreduce_word_embedding_grads(model: List[torch.nn.Module], config: TransformerConfig):
"""
All-reduce word embedding grads.
Reduce grads across first and last stages to ensure that word_embeddings parameters stay in
sync.
"""
if (
parallel_state.is_rank_in_embedding_group(ignore_virtual=True)
and torch.distributed.get_world_size(parallel_state.get_embedding_group()) > 1
):
if parallel_state.is_pipeline_first_stage(ignore_virtual=True):
model_module = model[0]
elif parallel_state.is_pipeline_last_stage(ignore_virtual=True):
model_module = model[-1]
else: # We do not support an interleaved schedule for models with encoders yet.
model_module = model[0]
ddp_config = model_module.ddp_config
model_module = get_attr_wrapped_model(model_module, 'pre_process', return_model_obj=True)
# If share_embeddings_and_output_weights is True, we need to maintain duplicated
# embedding weights in post processing stage. If use Multi-Token Prediction (MTP),
# we also need to maintain duplicated embedding weights in mtp process stage.
# So we need to allreduce grads of embedding in the embedding group in these cases.
if model_module.share_embeddings_and_output_weights or getattr(config, 'mtp_num_layers', 0):
weight = model_module.shared_embedding_or_output_weight()
grad_attr = _get_main_grad_attr(weight, ddp_config.use_custom_fsdp)
orig_grad = getattr(weight, grad_attr)
grad = _unshard_if_dtensor(orig_grad)
torch.distributed.all_reduce(grad, group=parallel_state.get_embedding_group())
setattr(weight, grad_attr, _reshard_if_dtensor(grad, orig_grad))
def _allreduce_position_embedding_grads(model: List[torch.nn.Module], config: TransformerConfig):
"""
All-reduce position_embeddings grad across encoder and decoder stages to ensure that position
embeddings parameters stay in sync.
"""
if (
parallel_state.is_rank_in_position_embedding_group()
and torch.distributed.get_world_size(parallel_state.get_position_embedding_group()) > 1
):
if parallel_state.is_pipeline_first_stage(ignore_virtual=True):
model_module = model[0]
elif parallel_state.is_pipeline_last_stage(ignore_virtual=True):
model_module = model[-1]
else: # We do not support an interleaved schedule for models with encoders yet.
model_module = model[0]
ddp_config = model_module.ddp_config
model_module = get_attr_wrapped_model(model_module, 'pre_process', return_model_obj=True)
assert hasattr(model_module, 'position_embeddings')
weight = model_module.position_embeddings.weight
grad_attr = _get_main_grad_attr(weight, ddp_config.use_custom_fsdp)
orig_grad = getattr(weight, grad_attr)
grad = _unshard_if_dtensor(orig_grad)
torch.distributed.all_reduce(grad, group=parallel_state.get_position_embedding_group())
setattr(weight, grad_attr, _reshard_if_dtensor(grad, orig_grad))
def _allreduce_embedding_grads(model: List[torch.nn.Module], config: TransformerConfig):
"""
All-reduce both word and position embeddings.
"""
_allreduce_word_embedding_grads(model, config)
_allreduce_position_embedding_grads(model, config)
def _allreduce_layernorm_grads(model: List[torch.nn.Module], config: TransformerConfig):
"""
All-reduce layernorm grads (for sequence parallelism).
"""
# All-reduce layernorm parameters across model parallel nodes
# when sequence parallelism is used
if parallel_state.get_tensor_model_parallel_world_size() > 1 and (
config.sequence_parallel or config.qk_layernorm
):
params = []
grads = []
for model_chunk in model:
ddp_config = model_chunk.ddp_config
for name, param in get_attr_wrapped_model(model_chunk, 'named_parameters')():
if param.requires_grad and (
getattr(param, 'sequence_parallel', False)
or 'q_layernorm' in name
or 'k_layernorm' in name
):
params.append(param)
grad_attr = _get_main_grad_attr(param, ddp_config.use_custom_fsdp)
grad = getattr(param, grad_attr)
grad = _unshard_if_dtensor(grad)
grads.append(grad.data)
if grads:
coalesced = _flatten_dense_tensors(grads)
torch.distributed.all_reduce(
coalesced, group=parallel_state.get_tensor_model_parallel_group()
)
for param, buf, synced in zip(
params, grads, _unflatten_dense_tensors(coalesced, grads)
):
buf.copy_(synced)
grad_attr = _get_main_grad_attr(param, ddp_config.use_custom_fsdp)
orig_grad = getattr(param, grad_attr)
setattr(param, grad_attr, _reshard_if_dtensor(buf, orig_grad))
def _update_router_expert_bias(model: List[torch.nn.Module], config: TransformerConfig):
"""
Update the expert bias of the router for a global batch.
This requires all-reduce of local_tokens_per_expert across TPxCPxDP ranks
"""
tokens_per_expert_list = []
expert_bias_list = []
for model_chunk in model:
for module in get_attr_wrapped_model(model_chunk, 'modules')():
if hasattr(module, 'expert_bias'):
tokens_per_expert_list.append(module.local_tokens_per_expert)
expert_bias_list.append(module.expert_bias)
# For hybrid models with both MoE and Dense layers, this list can be empty.
if len(expert_bias_list) == 0:
return
stacked_tokens_per_expert = torch.stack(tokens_per_expert_list, dim=0)
stacked_expert_bias = torch.stack(expert_bias_list, dim=0)
stacked_updated_expert_bias = get_updated_expert_bias(
stacked_tokens_per_expert, stacked_expert_bias, config.moe_router_bias_update_rate
)
for tokens_per_expert, expert_bias, updated_expert_bias in zip(
tokens_per_expert_list, expert_bias_list, stacked_updated_expert_bias
):
tokens_per_expert.zero_()
expert_bias.copy_(updated_expert_bias)
def finalize_model_grads(model: List[torch.nn.Module], num_tokens: Optional[torch.Tensor] = None):
"""
All-reduce all model grads across DP replicas, layernorm grads for sequence parallelism,
embedding grads across first and last pipeline stages (if not tied),
scale gradients by `num_tokens`.
"""
config = get_model_config(model[0])
# All-reduce / reduce-scatter across DP replicas.
if config.timers is not None:
config.timers('all-grads-sync', log_level=1).start(barrier=config.barrier_with_L1_time)
for model_chunk in model:
model_chunk.finish_grad_sync()
if config.timers is not None:
config.timers('all-grads-sync').stop()
# All-reduce t_embedder grads (for pp & vpp of DiT).
if config.timers is not None:
config.timers('conditional-embedder-grads-all-reduce', log_level=1).start(
barrier=config.barrier_with_L1_time
)
_allreduce_conditional_embedding_grads(model, config)
if config.timers is not None:
config.timers('conditional-embedder-grads-all-reduce').stop()
# All-reduce layer-norm grads (for sequence parallelism).
if config.timers is not None:
config.timers('layernorm-grads-all-reduce', log_level=1).start(
barrier=config.barrier_with_L1_time
)
_allreduce_layernorm_grads(model, config)
if config.timers is not None:
config.timers('layernorm-grads-all-reduce').stop()
# All-reduce embedding grads (for pipeline parallelism).
if config.timers is not None:
config.timers('embedding-grads-all-reduce', log_level=1).start(
barrier=config.barrier_with_L1_time
)
_allreduce_embedding_grads(model, config)
if config.timers is not None:
config.timers('embedding-grads-all-reduce').stop()
if config.moe_router_enable_expert_bias:
_update_router_expert_bias(model, config)
# normalize gradients for per-token loss normalization.
# if we are using by the number of tokens, then we use that as a divisor. this number
# will be the total number of non-padded tokens in the global batch.
if num_tokens is not None:
# the number of tokens is only present on the last stage, so broadcast it
# to the other ranks in the pipeline parallel group.
last_rank = parallel_state.get_pipeline_model_parallel_last_rank()
pp_group = parallel_state.get_pipeline_model_parallel_group()
if not isinstance(last_rank, list):
assert not isinstance(last_rank, list)
last_rank = [last_rank]
assert not isinstance(pp_group, list)
pp_group = [pp_group]
# need to do a broadcast for every pp group, even though num_tokens should be the same.
num_tokens_list = []
for lr, group in zip(last_rank, pp_group):
torch.distributed.broadcast(num_tokens, src=lr, group=group)
num_tokens_list.append(torch.clone(num_tokens))
assert all(x.item() == num_tokens_list[0] for x in num_tokens_list)
# all-reduce across DP ranks.
torch.distributed.all_reduce(num_tokens, group=parallel_state.get_data_parallel_group())
for model_chunk in model:
if num_tokens > 0:
scaling = 1.0 / num_tokens
model_chunk.scale_gradients(scaling)
# Copyright (c) 2024, NVIDIA CORPORATION. All rights reserved.
import logging
import math
import warnings
from contextlib import nullcontext
from enum import Enum
from functools import partial
from typing import Dict, List, Optional
import torch
from torch.distributed import _coalescing_manager
from megatron.core.rerun_state_machine import get_rerun_state_machine
from ..fp8_utils import is_float8tensor, modify_underlying_storage
from ..utils import is_torch_min_version, log_on_each_pipeline_stage
from .distributed_data_parallel_config import DistributedDataParallelConfig
logger = logging.getLogger(__name__)
if is_torch_min_version("1.13.0"):
dist_all_gather_func = torch.distributed.all_gather_into_tensor
dist_reduce_scatter_func = torch.distributed.reduce_scatter_tensor
else:
dist_all_gather_func = torch.distributed._all_gather_base
dist_reduce_scatter_func = torch.distributed._reduce_scatter_base
class BufferType(Enum):
"""
Enumeration for buffer type.
"""
PARAM = 1
GRAD = 2
def shard_buffer(buffer: torch.Tensor, data_parallel_world_size: int):
"""
Shard buffer into data_parallel_world_size chunks of equal size.
"""
assert buffer.numel() % data_parallel_world_size == 0
shard_size = buffer.numel() // data_parallel_world_size
sharded_buffer = [
buffer[(r * shard_size) : ((r + 1) * shard_size)] for r in range(data_parallel_world_size)
]
return sharded_buffer
class _ParamAndGradBucket:
"""
Bucket to keep track of a subset of the model's parameters and gradients.
Args:
params: List of parameters whose gradients are collated in this bucket.
param_data: View in _ParamAndGradBuffer.param_data that this bucket is responsible for.
grad_data: View in _ParamAndGradBuffer.grad_data that this bucket is responsible for.
offset: Offset of this bucket's view in the larger _ParamAndGradBuffer.
numel_unpadded: Number of unpadded elements in bucket.
gradient_scaling_factor: This factor is utilized to scale gradients prior to their
communication. Its application is twofold: it facilitates the averaging of gradients
and the scaling of gradients in the context of the Mixture of Experts (MoE) model.
bucket_id: Index of bucket in buffer.
"""
def __init__(
self,
params: List[torch.nn.Parameter],
param_data: Optional[torch.Tensor],
grad_data: torch.Tensor,
offset: int,
numel_unpadded: int,
gradient_scaling_factor: float,
bucket_id: int,
):
self.params_list = params
self.params = set(params)
# Make sure there are no duplicate params.
assert len(self.params_list) == len(self.params)
self.param_data = param_data
self.grad_data = grad_data
# The distributed optimizer needs to keep track of this bucket's offset
# within the full grad_buffer.
self.offset = offset
self.numel_unpadded = numel_unpadded
self.gradient_scaling_factor = gradient_scaling_factor
self.bucket_id = bucket_id
class _ParamAndGradBucketGroup:
"""
Put multiple buckets into a group so that their communications can be aggregated together.
Provides functionality to register when params in the bucket group have grads ready to be
synced; an asynchronous communication call is automatically launched when _all_ params in
the bucket group have grads ready.
Args:
buckets: A list of buckets.
ddp_config: DistributedDataParallel config object.
collective_group: intra_distributed_optimizer_instance_group if using distributed
optimizer, data_parallel_group if not.
collective_group_size: World size using the intra data-parallel group.
"""
def __init__(
self,
buckets: List[_ParamAndGradBucket],
ddp_config: DistributedDataParallelConfig,
collective_group: torch.distributed.ProcessGroup,
collective_group_size: int,
):
self.buckets = buckets
self.ddp_config = ddp_config
if self.ddp_config.use_distributed_optimizer:
self.intra_distributed_optimizer_instance_group = collective_group
self.intra_distributed_optimizer_instance_size = collective_group_size
self.intra_distributed_optimizer_instance_rank = torch.distributed.get_rank(
group=collective_group
)
else:
self.data_parallel_group = collective_group
# State for bookkeeping: params is the set of parameters this bucket group is
# responsible for, params_with_grad is the set of parameters with grads
# available. When overlap_grad_reduce is True, communication (all-reduce
# or reduce-scatter) is issued when params_with_grad equals params.
self.param_to_bucket = {}
self.params = set()
for bucket in self.buckets:
for param in bucket.params_list:
self.param_to_bucket[param] = bucket
self.params.add(param)
self.next_param_gather_bucket_group = None
if self.ddp_config.num_distributed_optimizer_instances > 1:
self.inter_distributed_optimizer_instance_group = None
self.communication_stream = None
self.reset()
self.param_gather_handle = None
self.param_gather_dispatched = False
self.grad_reduce_handle = None
def reset(self):
"""
Reset metadata in bucket group in preparation for the next iteration of training.
"""
self.params_with_grad = set()
self.is_last_microbatch = True
def check_grads(self, check_for_nan_or_inf, check_for_large):
"""
Make sure norm of grads in bucket are not NaN prior to data-parallel
all-reduce / reduce-scatter.
"""
rerun_state_machine = get_rerun_state_machine()
for i in range(len(self.buckets)):
grad_norm = self.buckets[i].grad_data.norm(p=2)
# check for NaN, Inf and unexpectedly large grads
if check_for_nan_or_inf:
rerun_state_machine.validate_result(
result=grad_norm,
rejection_func=torch.isnan,
message=f"found NaN in local grad norm for bucket #{i} "
f"in backward pass before data-parallel communication collective",
tolerance=0.001, # 0.1% tolerance to account for non-deterministic FA backward
fatal=True,
)
rerun_state_machine.validate_result(
result=grad_norm,
rejection_func=torch.isinf,
message=f"found Inf in local grad norm for bucket #{i} "
f"in backward pass before data-parallel communication collective",
tolerance=0.001, # 0.1% tolerance to account for non-deterministic FA backward
fatal=True,
)
if check_for_large:
rerun_state_machine.validate_result(
result=grad_norm,
rejection_func=partial(
rerun_state_machine.is_unexpectedly_large, threshold=10, context="grads"
),
message=f"found unexpected large grads in bucket #{i} "
f"in backward pass before data-parallel communication collective",
tolerance=0.001, # 0.1% tolerance to account for non-deterministic FA backward
fatal=False,
)
def start_param_sync(self, force_sync: bool = False):
"""
Initiates all necessary param all-gathers for this bucket.
When ddp_config.overlap_param_gather is set to True, dispatches an asynchronous
communication call (unless force_sync is True). When ddp_config.overlap_param_gather
is set to False, makes synchronous call.
Args:
force_sync (bool, optional): force synchronous collective regardless of
other settings if true.
"""
assert self.ddp_config.use_distributed_optimizer
if force_sync:
if self.param_gather_handle is not None:
self.param_gather_handle.wait()
self.param_gather_handle = None
return
else:
assert self.param_gather_handle is None
async_op = self.ddp_config.overlap_param_gather and not force_sync
# Coalesce communication kernels across buckets in the bucket group.
with _coalescing_manager(
self.intra_distributed_optimizer_instance_group, async_ops=async_op
) as cm:
for bucket in self.buckets:
local_data_view = shard_buffer(
bucket.param_data, self.intra_distributed_optimizer_instance_size
)[self.intra_distributed_optimizer_instance_rank]
dist_all_gather_func(
bucket.param_data,
local_data_view,
group=self.intra_distributed_optimizer_instance_group,
async_op=async_op,
)
if async_op:
self.param_gather_handle = cm
else:
# When using `_coalescing_manager`, even if a synchronous op (async_op=False) is used,
# `cm` is not None, which is different from when `_coalescing_manager` is not used in
# which case the torch.distributed._all_gather_base() will return None. In order to
# maintain consistency with prior code, we need to manually set communication handle to
# None.
self.param_gather_handle = None
self.param_gather_dispatched = True
def finish_param_sync(self, skip_next_bucket_dispatch: bool = False):
"""
Finishes param sync communication operation for this bucket. Dispatches
next bucket's param sync if available, unless skip_next_bucket_dispatch
is True.
When ddp_config.overlap_param_gather is set to True, waits for asynchronous
communication call to complete (and dispatches one if one is not already
outstanding). Throws assertion error if ddp_config.overlap_param_gather is set to
False.
Args:
skip_next_bucket_dispatch (bool, optional): if true, dispatch next
bucket's communication if available.
"""
assert self.ddp_config.use_distributed_optimizer
assert self.ddp_config.overlap_param_gather
# If current bucket's param AG has not been dispatched, dispatch it now (e.g., first
# AG bucket in first model chunk if ddp_config.align_param_gather is False).
if not self.param_gather_dispatched:
self.start_param_sync()
if self.param_gather_handle is not None:
self.param_gather_handle.wait()
self.param_gather_handle = None
# Dispatch next bucket's asynchronous param AG only if it has not been dispatched yet.
if self.next_param_gather_bucket_group is not None and not skip_next_bucket_dispatch:
if self.next_param_gather_bucket_group.param_gather_dispatched:
warnings.warn(
"The next bucket's parameter all-gather operation has already been "
"dispatched. This may be caused by a mismatch between the order of "
"parameter registration and forward pass execution, which will "
"hurt the communication-computation overlap performance."
)
else:
self.next_param_gather_bucket_group.start_param_sync()
def start_grad_sync(self):
"""
Initiates grad sync (all-reduce or reduce-scatter) communication operations
for all buckets in the bucket group.
When ddp_config.overlap_grad_reduce is set to True, dispatches an asynchronous
communication call. When ddp_config.overlap_grad_reduce is set to False, makes
synchronous call.
"""
assert (
self.grad_reduce_handle is None
), 'Should not have multiple communication calls outstanding at once'
if self.ddp_config.check_for_nan_in_grad or self.ddp_config.check_for_large_grads:
self.check_grads(
check_for_nan_or_inf=self.ddp_config.check_for_nan_in_grad,
check_for_large=self.ddp_config.check_for_large_grads,
)
# gradient_scaling_factor already takes into account whether we are computing
# an average or sum in the data-parallel collective.
for bucket in self.buckets:
if bucket.gradient_scaling_factor != 1.0:
bucket.grad_data *= bucket.gradient_scaling_factor
# Decide reduce_op.
reduce_op = torch.distributed.ReduceOp.SUM
if self.ddp_config.average_in_collective:
reduce_op = torch.distributed.ReduceOp.AVG
# We use the following stream synchronization for the gradient reduction
# within and across DistOpt instances.
# Compute Stream: -------------Gradient compute-------------------
# Comm. Stream: ------(wait for NCCL)-----(wait for NCCL)-------
# NCCL Stream: -------RS------ -------AR------
# Use async communications only when overlap_grad_reduce is True.
async_op = (
self.ddp_config.overlap_grad_reduce
and self.ddp_config.num_distributed_optimizer_instances == 1
)
if (
self.ddp_config.num_distributed_optimizer_instances > 1
and self.ddp_config.overlap_grad_reduce
):
# Assign a communication stream if we have multiple DistOpt instances and we
# need to overlap communication.
stream_context = torch.cuda.stream(self.communication_stream)
# The RS/AR communication stream needs to wait for the default stream
# to complete its gradient computation before launching the next
# gradient reduction collective.
self.communication_stream.wait_stream(torch.cuda.default_stream())
else:
stream_context = nullcontext()
if self.ddp_config.use_distributed_optimizer:
communication_group = self.intra_distributed_optimizer_instance_group
else:
communication_group = self.data_parallel_group
# Coalesce communication kernels across buckets in the bucket group.
with stream_context, _coalescing_manager(communication_group, async_ops=async_op) as cm:
for bucket in self.buckets:
if self.ddp_config.use_distributed_optimizer:
local_data_view = shard_buffer(
bucket.grad_data, self.intra_distributed_optimizer_instance_size
)[self.intra_distributed_optimizer_instance_rank]
dist_reduce_scatter_func(
local_data_view,
bucket.grad_data,
op=reduce_op,
group=communication_group,
async_op=async_op,
)
else:
torch.distributed.all_reduce(
bucket.grad_data, op=reduce_op, group=communication_group, async_op=async_op
)
# With multiple DistOpt instances, we need to all-reduce across instances.
if (
self.ddp_config.use_distributed_optimizer
and self.ddp_config.num_distributed_optimizer_instances > 1
):
assert self.inter_distributed_optimizer_instance_group is not None
# Create a new coalescing manager for the inter-instance all-reduce.
with stream_context, _coalescing_manager(
self.inter_distributed_optimizer_instance_group, async_ops=async_op
) as cm:
for bucket in self.buckets:
local_data_view = shard_buffer(
bucket.grad_data, self.intra_distributed_optimizer_instance_size
)[self.intra_distributed_optimizer_instance_rank]
torch.distributed.all_reduce(
local_data_view,
op=reduce_op,
group=self.inter_distributed_optimizer_instance_group,
async_op=async_op,
)
if async_op:
self.grad_reduce_handle = cm
else:
# When using `_coalescing_manager`, even if a synchronous op (async_op=False) is used,
# `cm` is not None, which is different from when `_coalescing_manager` is not used in
# which case the torch.distributed._reduce_scatter_base() will return None. In order to
# maintain consistency with prior code, we need to manually set communication handle to
# None.
self.grad_reduce_handle = None
def finish_grad_sync(self):
"""
Finishes grad sync (all-reduce or reduce-scatter) communication operations
for all buckets in the bucket group.
When ddp_config.overlap_grad_reduce is set to True, waits for asynchronous
communication call to complete. When ddp_config.overlap_grad_reduce is set to False,
makes synchronous call.
"""
self.param_gather_dispatched = False
# If overlap_grad_reduce is False, start (and finish) synchronous communication call here.
if not self.ddp_config.overlap_grad_reduce:
self.start_grad_sync()
return
# When using multiple DistOpt instances, we don't need to sync here as we launch
# communications on a separate communication stream.
if self.ddp_config.num_distributed_optimizer_instances > 1:
torch.cuda.default_stream().wait_stream(self.communication_stream)
return
assert self.grad_reduce_handle is not None, (
f'Communication call has not been issued for this bucket '
f'({len(self.params_with_grad)}/{len(self.params)} params have grad available)'
)
self.grad_reduce_handle.wait()
self.grad_reduce_handle = None
def register_grad_ready(self, param: torch.nn.Parameter):
"""
Registers grads for the passed-in param to be "ready" for grad sync.
When the number of microbatches is greater than 1, we only want to register
grads as ready when processing the last microbatch and ddp_config.overlap_grad_reduce
is True.
"""
assert (
self.ddp_config.overlap_grad_reduce
), 'register_grad_ready() should only be called when overlap_grad_reduce is True'
if self.is_last_microbatch:
assert param in self.param_to_bucket, 'Param is not in the bucket group'
assert param not in self.params_with_grad, 'Cannot set grad twice'
self.params_with_grad.add(param)
# If all params in bucket group have grads available, issue communication call.
if len(self.params_with_grad) == len(self.params):
self.start_grad_sync()
class _ParamAndGradBuffer:
"""
Groups parameters and gradients into a contiguous buffer, and then breaks the buffer into
buckets with roughly `bucket_size` parameters each.
Args:
ddp_config: DistributedDataParallel config object.
param_dtype: Type of param tensor.
grad_dtype: Type of grad tensor.
params: List of parameters whose parameters and gradients are collated in the underlying
tensor.
data_parallel_group: Data-parallel process group.
bucket_size: The rough size of each bucket in terms of number of parameters.
param_to_name: Mapping from `torch.nn.Parameter` to name (for logging purposes).
gradient_scaling_factor: This factor is utilized to scale gradients prior to their
communication. Its application is twofold: it facilitates the averaging of gradients
and the scaling of gradients in the context of the Mixture of Experts (MoE) model.
param_indices: The index of each param among the params with same dtype, if a param is fp8,
use its "fake" high precision dtype to determine which params have same dtype with it.
These indices are needed when loading a non-native-fp8 checkpoint in native-fp8 mode.
"""
def __init__(
self,
ddp_config: DistributedDataParallelConfig,
param_dtype: torch.dtype,
grad_dtype: torch.dtype,
params: List[torch.nn.Parameter],
data_parallel_group: torch.distributed.ProcessGroup,
bucket_size: int,
param_to_name: Dict[torch.nn.Parameter, str],
gradient_scaling_factor: float,
param_indices: List[int],
):
self.ddp_config = ddp_config
self.params = params
self.param_indices = param_indices
# Check that params are unique.
unique_params = set()
for param in params:
assert param not in unique_params
unique_params.add(param)
del unique_params
# Store attributes that will be needed later.
self.param_dtype = param_dtype
self.grad_dtype = grad_dtype
self.data_parallel_group = data_parallel_group
self.data_parallel_world_size = torch.distributed.get_world_size(
group=self.data_parallel_group
)
self.gradient_scaling_factor = gradient_scaling_factor
# Data structures to store underlying buckets and relevant indexing data.
self.buckets = []
self.param_to_bucket = {} # Param -> bucket mapping.
self.param_index_map = {} # Param -> location in buffer mapping (used in dist. optimizer).
def _pad(number_to_be_padded: int, divisor: int) -> int:
return int(math.ceil(number_to_be_padded / divisor) * divisor)
def _pad_end_of_bucket_if_needed(bucket_end_index: int) -> int:
"""
Pads end index of bucket if using distributed optimizer (to ensure uniform sharding).
"""
if self.ddp_config.use_distributed_optimizer:
# Workaround for TE bug causing cuBLAS to pick an incompatible algorithm.
# This also helps cuBLAS pick more efficient algorithms for GEMMs.
# We now ensure that all buckets start at a memory address that is 256-byte
# aligned (128 values since params and grads use >= 16-bit precision).
if self.ddp_config.pad_buckets_for_high_nccl_busbw:
# Make sure the bucket size is divisible by a large power of 2 (2^16) to
# ensure NCCL collectives have high bus bandwidth at large DP counts,
# since NCCL message size (which for ring algorithms is bucket_size /
# dp_size) apparently needs to be divisible by a power of 2 for high busbw.
bucket_size_divisor = math.lcm(self.data_parallel_world_size, 128, 2**16)
else:
bucket_size_divisor = math.lcm(self.data_parallel_world_size, 128)
return _pad(bucket_end_index, bucket_size_divisor)
return bucket_end_index
def _pad_start_of_param_if_needed(param_start_index: int) -> int:
"""
Pads start index of param if using distributed optimizer (to ensure "good" alignment).
"""
if self.ddp_config.use_distributed_optimizer:
# Ensure that params start at 128-byte aligned addresses (64 values
# since params are >= 16-bit precision).
return _pad(param_start_index, 64)
return param_start_index
# First, figure out how many elements should be in the underlying buffer storage.
# Note that if we need to split the buffer into smaller buckets, each of these
# might need to be padded as well (if using the distributed optimizer).
param_start_index = 0
bucket_start_index = param_start_index
bucket_params = set()
self.bucket_indices = []
per_bucket_numel_unpadded = []
bucket_id = 0
def _update_bucket_metadata(param_end_index: int) -> int:
"""
Record metadata for the bucket starting at bucket_start_index and ending with the
passed-in param_end_index. Returns the bucket's end_index.
"""
nonlocal bucket_start_index, bucket_params, bucket_id
per_bucket_numel_unpadded.append(param_end_index - bucket_start_index)
bucket_end_index = _pad_end_of_bucket_if_needed(param_end_index)
# Record metadata of new bucket.
self.bucket_indices.append((bucket_start_index, bucket_end_index))
bucket_start_index = bucket_end_index
# Prepare for next bucket.
bucket_params = set()
bucket_id += 1
# Return the potentially padded bucket_end_index.
return bucket_end_index
def _does_param_require_new_bucket(param):
"""
Split shared embedding parameters into separate bucket if using distributed
optimizer that makes use of reduce-scatters instead of all-reduces.
This ensures that the first and last pipeline stage partition optimizer state
for the shared embedding parameters the same way across DP replicas, allowing
the DP reduce-scatter to be before the embedding all-reduce.
"""
return (
getattr(param, "shared_embedding", False)
and self.ddp_config.use_distributed_optimizer
)
for param in params[::-1]:
# Iterate through parameters in reverse order to roughly follow backprop order.
this_numel = param.data.nelement()
param_start_index = _pad_start_of_param_if_needed(param_start_index)
# Create bucket with collected parameters if current param needs its own bucket.
if _does_param_require_new_bucket(param):
# We are creating a bucket for the already accumulated parameters, whose params
# end at the current param_start_index.
if self.ddp_config.use_distributed_optimizer:
# Make sure new bucket is appropriately padded.
if param_start_index % self.data_parallel_world_size != 0:
param_start_index = _pad_end_of_bucket_if_needed(param_start_index)
if len(bucket_params) > 0:
bucket_end_index = _update_bucket_metadata(param_start_index)
param_end_index = param_start_index + this_numel
self.param_index_map[param] = (param_start_index, param_end_index, bucket_id)
bucket_params.add(param)
# If we have enough elements already or the current param is part of the shared
# embedding layer and needs a separate bucket, form a new bucket.
if (
bucket_size is not None and (param_end_index - bucket_start_index) >= bucket_size
) or _does_param_require_new_bucket(param):
bucket_end_index = _update_bucket_metadata(param_end_index)
param_start_index = bucket_end_index
else:
param_start_index = param_end_index
# Add remaining params to a new bucket.
if len(bucket_params) > 0:
bucket_end_index = _update_bucket_metadata(param_end_index)
# Next, create underlying storage for buffer (with numel elements that includes
# padding as necessary).
self.numel = bucket_end_index
self.numel_unpadded = sum(per_bucket_numel_unpadded)
assert self.numel_unpadded <= self.numel
if self.ddp_config.use_distributed_optimizer:
assert self.numel % self.data_parallel_world_size == 0
else:
assert self.numel == self.numel_unpadded
self.param_data = None
# Only re-map param tensors if using distributed optimizer.
if self.ddp_config.use_distributed_optimizer:
self.param_data = torch.zeros(
self.numel,
dtype=self.param_dtype,
device=torch.cuda.current_device(),
requires_grad=False,
)
self.grad_data = torch.zeros(
self.numel,
dtype=self.grad_dtype,
device=torch.cuda.current_device(),
requires_grad=False,
)
# Finally, map param.data and param.main_grad fields to buffers.
bucket_params = []
bucket_start_index = 0
cur_bucket_id = 0
for param in params[::-1]:
param_start_index, param_end_index, bucket_id = self.param_index_map[param]
# Assign param.data to appropriate segment of self.param_data.
if self.param_data is not None:
new_param_data = self._get(
param.data.shape, param_start_index, buffer_type=BufferType.PARAM
)
if is_float8tensor(param):
modify_underlying_storage(param, new_param_data)
else:
old_param_data = param.data
param.data = new_param_data
assert old_param_data._base is None
# Copy tensor values (from initialization or checkpoint).
param.data.detach().copy_(old_param_data)
del old_param_data
param.main_grad = self._get(
param.data.shape, param_start_index, buffer_type=BufferType.GRAD
)
if bucket_id != cur_bucket_id:
bucket_end_index = _pad_end_of_bucket_if_needed(param_start_index)
self.buckets.append(
self._new_bucket(
bucket_params=bucket_params,
start_index=bucket_start_index,
end_index=bucket_end_index,
numel_unpadded=per_bucket_numel_unpadded[cur_bucket_id],
bucket_id=cur_bucket_id,
)
)
bucket_start_index = bucket_end_index
bucket_params = []
assert cur_bucket_id + 1 == len(self.buckets)
assert bucket_id == cur_bucket_id + 1
cur_bucket_id = bucket_id
bucket_params.append(param)
# Add remaining params to a new bucket.
if len(bucket_params) > 0:
bucket_end_index = _pad_end_of_bucket_if_needed(param_end_index)
self.buckets.append(
self._new_bucket(
bucket_params=bucket_params,
start_index=bucket_start_index,
end_index=bucket_end_index,
numel_unpadded=per_bucket_numel_unpadded[cur_bucket_id],
bucket_id=cur_bucket_id,
)
)
# Log buckets for all PP stages.
log_strs = []
log_strs.append(
f'Number of buckets for gradient all-reduce / reduce-scatter: {len(self.buckets)}'
)
for index, bucket in enumerate(self.buckets):
numel = 0
for param in bucket.params:
numel += param.data.nelement()
log_strs.append(
f"Params for bucket {index+1} ({numel} elements, "
f"{bucket.grad_data.nelement()} padded size):"
)
for param in bucket.params:
log_strs.append(f'\t{param_to_name[param]}')
log_on_each_pipeline_stage(logger, logging.INFO, '\n'.join(log_strs))
def scale_gradients(self, scaling_factor: float) -> None:
"""Scale the gradient data by `scaling_factor`."""
self.grad_data *= scaling_factor
def _get(self, shape: torch.Size, start_index: int, buffer_type: BufferType) -> torch.Tensor:
"""
Return a tensor with the input `shape` as a view into the 1-D data starting at
`start_index`.
"""
end_index = start_index + shape.numel()
assert end_index <= self.numel, 'Requested tensor is out of buffer range'
if buffer_type == BufferType.PARAM:
assert self.param_data is not None
buffer_tensor = self.param_data[start_index:end_index]
elif buffer_type == BufferType.GRAD:
buffer_tensor = self.grad_data[start_index:end_index]
else:
raise Exception("Illegal buffer type provided to GradBuffer._get() function")
buffer_tensor = buffer_tensor.view(shape)
return buffer_tensor
def _new_bucket(
self,
bucket_params: List[torch.nn.Parameter],
start_index: int,
end_index: int,
numel_unpadded: int,
bucket_id: int,
) -> _ParamAndGradBucket:
"""
Helper function that creates a new bucket. Also updates param->bucket mapping.
"""
# Assert that indices are correctly padded (if needed), and that bucket
# position is same as originally computed.
if self.ddp_config.use_distributed_optimizer:
assert start_index % self.data_parallel_world_size == 0
assert end_index % self.data_parallel_world_size == 0
assert (start_index, end_index) == self.bucket_indices[bucket_id]
# Get appropriate view into global _ParamAndGradBuffer.
bucketed_param_data = None
if self.param_data is not None:
bucketed_param_data = self._get(
torch.Size([end_index - start_index]), start_index, buffer_type=BufferType.PARAM
)
bucketed_grad_data = self._get(
torch.Size([end_index - start_index]), start_index, buffer_type=BufferType.GRAD
)
bucket = _ParamAndGradBucket(
params=bucket_params,
param_data=bucketed_param_data,
grad_data=bucketed_grad_data,
offset=start_index,
numel_unpadded=numel_unpadded,
gradient_scaling_factor=self.gradient_scaling_factor,
bucket_id=bucket_id,
)
for bucket_param in bucket_params:
assert bucket_param not in self.param_to_bucket
self.param_to_bucket[bucket_param] = bucket
return bucket
def reset(self):
"""
Zero out the underlying grad_buffer.
"""
self.grad_data.zero_()
def partition_buckets(
buffers: List[_ParamAndGradBuffer], force_single_bucket_group: bool = False
) -> List[_ParamAndGradBucketGroup]:
"""
Automatically regroup the buckets of input buffers and return a list of bucket groups.
In some scenarios, we need to put buckets from different buffers into a group so that their
communication can be aggregated.
For example, when there are both fp8 weights and bf16 biases in the model and virtual
pipeline parallelism is enabled, each model chunk will have an fp8 bucket and a bf16 bucket,
which doubles the number of communication kernels, and because of the use of
CUDA_DEVICE_MAX_CONNECTIONS=1, having multiple back-to-back communications will prevent the
overlap of communication kernels with computation kernels.
The grouping strategy is:
1. If force_single_bucket_group is True, put all buckets across all buffers into a single
bucket group.
2. If force_single_bucket_group is False, when there is no fp8 buffer in the input buffers,
let each bucket group have only one bucket.
3. If force_single_bucket_group is False, when using fp8 params, merge all non-fp8 buckets
into the last fp8 bucket group.
- Since the non-fp8 parameters (typically the biases of various layers) are relatively
small, they are likely to be grouped into a single non-fp8 bucket.
- The fp8 buckets start from the end of the model, i.e., the first bucket corresponds to
the end of the model, while the last bucket corresponds to the beginning.
- If we combine the non-fp8 bucket with the first fp8 bucket, we cannot initiate the
reduce-scatter to synchronize gradients after the backward pass at the end of the model
has completed. This is because we need to wait for the non-fp8 params from the beginning
layers to obtain their gradients.
- Combining the non-fp8 bucket with the last fp8 bucket can help avoid this issue.
Args:
buffers (list): list of input buffers.
single_bucket_group_per_buffer (bool, optional): force group all buckets in each buffer
into a single bucket group.
"""
if len(buffers) == 0:
return []
dtype_to_buffer_map = {}
for buffer in buffers:
dtype = buffer.param_dtype
# Make sure that the param_dtype of any two buffers is different.
assert dtype not in dtype_to_buffer_map
dtype_to_buffer_map[dtype] = buffer
# Case 1: Put all buckets into a single bucket group if force_single_bucket_group is True.
if force_single_bucket_group:
buckets = []
ddp_config = buffers[0].ddp_config
data_parallel_group = buffers[0].data_parallel_group
data_parallel_world_size = buffers[0].data_parallel_world_size
for buffer in buffers:
assert ddp_config == buffer.ddp_config
assert data_parallel_group == buffer.data_parallel_group
assert data_parallel_world_size == buffer.data_parallel_world_size
buckets.extend(buffer.buckets)
bucket_group = _ParamAndGradBucketGroup(
buckets, ddp_config, data_parallel_group, data_parallel_world_size
)
return [bucket_group]
if torch.uint8 not in dtype_to_buffer_map:
# Case 2: When there is no fp8 buffer in the input buffers, let each bucket group have
# only one bucket.
bucket_groups = []
for buffer in buffers:
for bucket in buffer.buckets:
bucket_groups.append(
_ParamAndGradBucketGroup(
[bucket],
buffer.ddp_config,
buffer.data_parallel_group,
buffer.data_parallel_world_size,
)
)
return bucket_groups
else:
# Case 3: When using fp8 params, merge all non-fp8 buckets into the last fp8 bucket group.
non_fp8_buckets = []
for buffer in buffers:
if buffer.param_dtype != torch.uint8:
for bucket in buffer.buckets:
non_fp8_buckets.append(bucket)
bucket_groups = []
fp8_buffer = dtype_to_buffer_map[torch.uint8]
for bucket in fp8_buffer.buckets:
if len(bucket_groups) == len(fp8_buffer.buckets) - 1:
# The last bucket group.
group_buckets = [bucket] + non_fp8_buckets
else:
# The first N-1 bucket groups.
group_buckets = [bucket]
bucket_groups.append(
_ParamAndGradBucketGroup(
group_buckets,
buffer.ddp_config,
buffer.data_parallel_group,
buffer.data_parallel_world_size,
)
)
return bucket_groups
# Copyright (c) 2024, NVIDIA CORPORATION. All rights reserved.
from typing import Optional, Set
import torch
try:
from torch.distributed import DeviceMesh
from torch.distributed._composable.fsdp import fully_shard
HAVE_FSDP = True
except ImportError:
HAVE_FSDP = False
from torch.distributed import ProcessGroup
from megatron.core.fp8_utils import is_float8tensor
from .. import parallel_state, tensor_parallel
from ..models.common.embeddings.language_model_embedding import LanguageModelEmbedding
from ..models.common.embeddings.rotary_pos_embedding import RotaryEmbedding
from ..transformer.transformer_config import TransformerConfig
from ..transformer.transformer_layer import TransformerLayer
from .data_parallel_base import _BaseDataParallel
from .distributed_data_parallel_config import DistributedDataParallelConfig
class TorchFullyShardedDataParallel(_BaseDataParallel):
"""
Enables fully sharded data parallelism by wrapping the given model with
the PyTorch FSDP2 API:
https://github.com/pytorch/torchtitan/blob/main/docs/fsdp.md
To utilize this class, PyTorch version >= 2.4.0 is required.
Args:
config: Transformer config object.
ddp_config: DistributedDataParallel config object.
module: Underlying model.
sub_modules_to_wrap: Set of sub_modules to shard with FSDP.
Parameters within each sub_module will be all-gathered just-in-time.
The default set includes the following submodules derived from the
GPT model architecture:
TransformerLayer (all Transformer layers)
LanguageModelEmbedding (initial embedding layer)
RotaryEmbedding (initial RoPE layer)
tensor_parallel.ColumnParallelLinear (final output layer)
User can set _fsdp_modules attribute on submodules to set additional
submodules to shard with FSDP.
process_group: Optional ProcessGroup to use for distributed operations.
If None (default), the data parallel process group will be obtained from
parallel_state.get_data_parallel_group(with_context_parallel=True).
"""
def __init__(
self,
config: TransformerConfig,
ddp_config: DistributedDataParallelConfig,
module: torch.nn.Module,
sub_modules_to_wrap: Set[torch.nn.Module] = {
TransformerLayer,
LanguageModelEmbedding,
RotaryEmbedding,
tensor_parallel.ColumnParallelLinear,
},
process_group: Optional[ProcessGroup] = None,
):
assert (
HAVE_FSDP
), 'TorchFullyShardedDataParallel requires PyTorch >= 2.4.0 with FSDP 2 support.'
super().__init__(config=config, module=module)
if process_group is None:
self.process_group = parallel_state.get_data_parallel_group(with_context_parallel=True)
else:
self.process_group = process_group
self.device_mesh = DeviceMesh.from_group(self.process_group, "cuda")
kwargs = {"mesh": self.device_mesh}
def save_custom_attrs(module):
custom_attrs = {}
for name, param in module.named_parameters():
attrs = vars(param)
if is_float8tensor(param):
# disable fp8 transpose cache and perform transposing fp8 weights
# at each micro-batch because torch-FSDP doesn't recognize the
# micro-batch id, thus removing unnecessary memory stores
attrs['_fp8_attrs']['transpose_invalid'] = False
del attrs['_fp8_attrs']['transpose']
custom_attrs[name] = {k: v for k, v in attrs.items()}
return custom_attrs
def restore_custom_attrs(module, custom_attrs):
for name, param in module.named_parameters():
if name in custom_attrs:
for attr_name, attr_value in custom_attrs[name].items():
setattr(param, attr_name, attr_value)
# Save the custom attributes on Parameters before FSDP overwrites them.
# See https://github.com/pytorch/pytorch/issues/136929.
attrs = save_custom_attrs(self.module)
sub_modules_to_wrap = set(sub_modules_to_wrap)
for sub_module in self.module.modules():
fsdp_modules = getattr(sub_module, "_fsdp_modules", [])
for f in fsdp_modules:
sub_modules_to_wrap.add(f)
prev_module = None
for sub_module in self.module.modules():
# Wrap individual submodules to fetch parameters just-in-time rather than
# conservatively fetching all parameters at the start of each iteration.
# See https://github.com/pytorch/pytorch/issues/114299.
if any(
isinstance(sub_module, sub_module_to_wrap)
for sub_module_to_wrap in sub_modules_to_wrap
):
fully_shard(sub_module, **kwargs)
# Explicitly set the FSDP backward prefetch schedule to prevent activation
# recomputation from disrupting the automatically generated default schedule.
if config.recompute_granularity is not None:
sub_module.set_modules_to_backward_prefetch(
[prev_module] if prev_module else []
)
prev_module = sub_module
# Wrap the root module as required by the FSDP API.
# See https://github.com/pytorch/pytorch/issues/114299.
fully_shard(self.module, **kwargs)
restore_custom_attrs(self.module, attrs)
def load_state_dict(self, state_dict, strict=True):
"""
No-op because tensors are already loaded in-place by
`_load_base_checkpoint` with FSDP2."""
pass
# Copyright (c) 2023, NVIDIA CORPORATION. All rights reserved.
import enum
class ModelType(enum.Enum):
"""Model type."""
encoder_or_decoder = 1
encoder_and_decoder = 2
retro_encoder = 3
retro_decoder = 4
class Fp8Recipe(str, enum.Enum):
"""FP8 recipe names: delayed, tensorwise, mxfp8."""
delayed = "delayed"
tensorwise = "tensorwise"
mxfp8 = "mxfp8"
# Copyright (c) 2024, NVIDIA CORPORATION. All rights reserved.
# Copyright (c) 2024, NVIDIA CORPORATION. All rights reserved.
from enum import Enum
DataType = Enum('DataType', ["bfloat16", "float16", "float32"])
# Copyright (c) 2024, NVIDIA CORPORATION. All rights reserved.
from dataclasses import dataclass
@dataclass
class ExportConfig:
"""Base configuration for Megatron Core Export
These parameters control the export setting for trtllm
"""
inference_tp_size: int = 1
inference_pp_size: int = 1
use_parallel_embedding: bool = False
use_embedding_sharing: bool = False
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment