Skip to content
GitLab
Menu
Projects
Groups
Snippets
Loading...
Help
Help
Support
Community forum
Keyboard shortcuts
?
Submit feedback
Contribute to GitLab
Sign in / Register
Toggle navigation
Menu
Open sidebar
jerrrrry
dcu_megatron
Commits
1106877d
Commit
1106877d
authored
Sep 23, 2025
by
jerrrrry
Browse files
“13.0”
parents
Pipeline
#2934
failed with stages
in 0 seconds
Changes
329
Pipelines
1
Hide whitespace changes
Inline
Side-by-side
Showing
9 changed files
with
4600 additions
and
0 deletions
+4600
-0
Megatron-LM/megatron/core/distributed/README.md
Megatron-LM/megatron/core/distributed/README.md
+11
-0
Megatron-LM/megatron/core/distributed/__init__.py
Megatron-LM/megatron/core/distributed/__init__.py
+12
-0
Megatron-LM/megatron/core/distributed/custom_fsdp/__init__.py
...tron-LM/megatron/core/distributed/custom_fsdp/__init__.py
+3
-0
Megatron-LM/megatron/core/distributed/custom_fsdp/fully_sharded_data_parallel.py
...re/distributed/custom_fsdp/fully_sharded_data_parallel.py
+824
-0
Megatron-LM/megatron/core/distributed/custom_fsdp/param_and_grad_buffer.py
...ron/core/distributed/custom_fsdp/param_and_grad_buffer.py
+2551
-0
Megatron-LM/megatron/core/distributed/data_parallel_base.py
Megatron-LM/megatron/core/distributed/data_parallel_base.py
+96
-0
Megatron-LM/megatron/core/distributed/distributed_data_parallel.py
...LM/megatron/core/distributed/distributed_data_parallel.py
+624
-0
Megatron-LM/megatron/core/distributed/distributed_data_parallel_config.py
...tron/core/distributed/distributed_data_parallel_config.py
+118
-0
Megatron-LM/megatron/core/distributed/finalize_model_grads.py
...tron-LM/megatron/core/distributed/finalize_model_grads.py
+361
-0
No files found.
Too many changes to show.
To preserve performance only
329 of 329+
files are displayed.
Plain diff
Email patch
Megatron-LM/megatron/core/distributed/README.md
0 → 100644
View file @
1106877d
## How to use pytorch FSDP2?
Add these flag to enable Torch FSDP2.
```
--use-torch-fsdp2
--no-gradient-accumulation-fusion
--ckpt-format torch_dist
```
It is worth noting that CUDA_MAX_CONNECTIONS=1 should not be enabled to ensure that the communication of FSDP and the computation on the primary stream can be fully parallelized.
Megatron-LM/megatron/core/distributed/__init__.py
0 → 100644
View file @
1106877d
# Copyright (c) 2024, NVIDIA CORPORATION. All rights reserved.
try
:
from
packaging.version
import
Version
except
ImportError
:
pass
from
.distributed_data_parallel
import
DistributedDataParallel
from
.distributed_data_parallel_config
import
DistributedDataParallelConfig
from
.finalize_model_grads
import
finalize_model_grads
from
.torch_fully_sharded_data_parallel
import
TorchFullyShardedDataParallel
from
.torch_fully_sharded_data_parallel_config
import
TorchFullyShardedDataParallelConfig
Megatron-LM/megatron/core/distributed/custom_fsdp/__init__.py
0 → 100644
View file @
1106877d
# Copyright (c) 2024, NVIDIA CORPORATION. All rights reserved.
from
.fully_sharded_data_parallel
import
FullyShardedDataParallel
Megatron-LM/megatron/core/distributed/custom_fsdp/fully_sharded_data_parallel.py
0 → 100644
View file @
1106877d
# Copyright (c) 2024, NVIDIA CORPORATION. All rights reserved.
import
functools
import
logging
from
contextlib
import
contextmanager
from
enum
import
Enum
,
auto
from
typing
import
Any
,
Dict
,
List
,
Optional
,
Tuple
import
torch
import
torch.nn
as
nn
from
torch.utils._pytree
import
tree_flatten
,
tree_unflatten
from
megatron.core
import
parallel_state
from
megatron.core.config_logger
import
has_config_logger_enabled
,
log_config_to_disk
from
megatron.core.distributed.custom_fsdp.param_and_grad_buffer
import
(
AllGatherPipeline
,
BucketingPolicy
,
GradReducePipeline
,
ParamAndGradBuffer
,
PrefetchOrder
,
override_sharded_param_methods_with_safety_checks
,
)
from
megatron.core.distributed.data_parallel_base
import
_BaseDataParallel
from
megatron.core.distributed.distributed_data_parallel_config
import
DistributedDataParallelConfig
from
megatron.core.fp8_utils
import
is_float8tensor
from
megatron.core.process_groups_config
import
GradCommProcessGroups
from
megatron.core.transformer.transformer_config
import
TransformerConfig
from
megatron.core.transformer.transformer_layer
import
TransformerLayer
from
megatron.core.utils
import
is_submodule
,
log_single_rank
logger
=
logging
.
getLogger
(
__name__
)
class
TrainingState
(
Enum
):
"""States of a FSDP parameter group, which are coupled with
the sharding activity of parameters and gradients during training."""
# From pre-forward before post-forward, where parameters should be unsharded
FORWARD
=
auto
()
# Prior to backward computation, where parameters should be unsharded
PRE_BACKWARD
=
auto
()
# After backward computation, where gradients should be re-sharded
POST_BACKWARD
=
auto
()
# Before and after module forward computaton or before pre-backward and
# after post-backward states, where no un/sharding activity happens
IDLE
=
auto
()
class
FullyShardedDataParallel
(
_BaseDataParallel
):
"""Fully Sharded Data Parallel training for MCore models.
A distributed training wrapper that shards model parameters, gradients and optimizer
states across data parallel workers. Integrates seamlessly with MCore's tensor
and expert parallelism features.
We supports following modes:
- no_shard: Traditional data parallel training without parameter sharding.
- optim: Shards optimizer states, this is conceptually close to "ZeRO-1", and
main weights for mixed precision training, meanwhile the following `optim_grads`
and `optim_grads_params` will also sharding main weights
during mixed-precision training, omitted without detailed notation.
- optim_grads: Shards gradients and optimizer states, this is conceptually close to "ZeRO-2".
- optim_grads_params: Shards parameters, gradients and optimizer states, this
is conceptually close to "ZeRO-3".
Key Features:
- Compatible with MCore's tensor, context and expert parallelism
- Automatic mixed precision training (BF16/FP8)
- Gradient accumulation and bucketing
- Optimized activation recompute with shard-aware communication: When recomputing
a whole Transformer layer, gather parameters once for both the recomputation
and backward computation
- Compatible with MCore's distributed checkpointing
Args:
config: Transformer config object.
ddp_config: FullyShardedDataParallel config object.
module: Underlying model.
fsdp_unit_modules: List of modules that should be treated as FSDP Unit,
i.e., the minimum releasable model unit. If not provided, defaults to
[TransformerLayer, LanguageModelEmbedding] for GPT-like models. In
addition to this, it affects the granularity of the communication
parameter grouping and triggers aggregate collective communication
in fp8 mixed precision training.
disable_bucketing: If true, force assign all parameters to a single bucket. If false,
use standard bucketing policy: assign parameters to smaller buckets and all-reduce
per bucket.
grad_comm_pgs: Optional GradCommProcessGroups object. If not provided, the default
process groups from parallel_state will be used. If provided, module expects
grad_comm_pgs to have dp_cp or dp (if cp=1) and
expt_dp attributes(if using expert data parallelism).
Examples:
>>> model = GPTModel(config)
>>> model = FullyShardedDataParallel(
... config,
... model,
... ddp_config,
... fsdp_unit_modules = [TransformerLayer, LanguageModelEmbedding],
... )
"""
def
__init__
(
self
,
config
:
TransformerConfig
,
ddp_config
:
DistributedDataParallelConfig
,
module
:
torch
.
nn
.
Module
,
fsdp_unit_modules
:
Optional
[
List
[
torch
.
nn
.
Module
]]
=
None
,
disable_bucketing
:
bool
=
False
,
device
:
Optional
[
torch
.
device
]
=
None
,
grad_comm_pgs
:
Optional
[
GradCommProcessGroups
]
=
None
,
):
super
().
__init__
(
config
=
config
,
module
=
module
)
if
has_config_logger_enabled
(
config
):
log_config_to_disk
(
config
,
locals
(),
prefix
=
type
(
self
).
__name__
)
self
.
module
=
module
self
.
ddp_config
=
ddp_config
log_single_rank
(
logger
,
logging
.
INFO
,
f
'Setting up DistributedDataParallel with config
{
self
.
ddp_config
}
'
,
)
# Check if the module has expert parameters.
self
.
contains_expert_parameters
=
False
for
_
,
param
in
self
.
module
.
named_parameters
():
if
not
getattr
(
param
,
'allreduce'
,
True
):
self
.
contains_expert_parameters
=
True
break
# Initialize the data parallel and expert data parallel groups.
self
.
inter_fsdp_group_grad_reduce
=
self
.
ddp_config
.
num_distributed_optimizer_instances
>
1
self
.
inter_distopt_group
=
None
self
.
expt_dp_group
=
None
self
.
intra_expt_dp_group
=
None
if
grad_comm_pgs
is
None
:
self
.
dp_cp_group
=
parallel_state
.
get_data_parallel_group
(
with_context_parallel
=
True
,
partial_data_parallel
=
False
)
self
.
intra_dp_cp_group
=
parallel_state
.
get_data_parallel_group
(
with_context_parallel
=
True
,
partial_data_parallel
=
True
)
self
.
expt_dp_group
=
parallel_state
.
get_expert_data_parallel_group
()
self
.
intra_expt_dp_group
=
parallel_state
.
get_expert_data_parallel_group
(
partial_expert_data_parallel
=
True
)
if
self
.
inter_fsdp_group_grad_reduce
:
self
.
inter_distopt_group
=
(
parallel_state
.
get_inter_distributed_optimizer_instance_group
()
)
else
:
cp_size
=
getattr
(
config
,
'context_parallel_size'
,
1
)
if
hasattr
(
grad_comm_pgs
,
'dp_cp'
):
self
.
dp_cp_group
=
grad_comm_pgs
.
dp_cp
elif
hasattr
(
grad_comm_pgs
,
'dp'
)
and
cp_size
==
1
:
self
.
dp_cp_group
=
grad_comm_pgs
.
dp
else
:
raise
ValueError
(
"Required process group missing: 'dp_cp' (or 'dp' when context_parallel_size=1)"
)
if
self
.
contains_expert_parameters
:
assert
hasattr
(
grad_comm_pgs
,
'expt_dp'
),
'expert process group is required when using expert parameters'
self
.
expt_dp_group
=
grad_comm_pgs
.
expt_dp
if
self
.
inter_fsdp_group_grad_reduce
:
self
.
intra_expt_dp_group
=
self
.
expt_dp_group
else
:
self
.
intra_expt_dp_group
=
grad_comm_pgs
.
intra_expt_dp
if
self
.
inter_fsdp_group_grad_reduce
:
self
.
inter_distopt_group
=
grad_comm_pgs
.
inter_dist_opt
self
.
intra_dp_cp_group
=
grad_comm_pgs
.
intra_dp_cp
else
:
self
.
intra_dp_cp_group
=
self
.
dp_cp_group
self
.
bucket_size
=
self
.
ddp_config
.
bucket_size
if
disable_bucketing
:
self
.
bucket_size
=
None
self
.
device
=
device
if
device
else
torch
.
cuda
.
current_device
()
self
.
param_to_bucket_group
=
{}
if
fsdp_unit_modules
is
not
None
:
self
.
fsdp_unit_modules
=
fsdp_unit_modules
else
:
if
self
.
ddp_config
.
data_parallel_sharding_strategy
==
"optim_grads_params"
:
self
.
fsdp_unit_modules
=
[
TransformerLayer
]
else
:
self
.
fsdp_unit_modules
=
[]
self
.
main_weights
=
True
# Determine if we should delay the gradient reduction.
self
.
is_delay_grad_reduce
=
self
.
ddp_config
.
data_parallel_sharding_strategy
in
[
"no_shard"
,
"optim"
,
]
if
self
.
ddp_config
.
data_parallel_sharding_strategy
==
"optim_grads_params"
:
assert
self
.
ddp_config
.
overlap_param_gather
if
not
self
.
is_delay_grad_reduce
:
assert
self
.
ddp_config
.
overlap_grad_reduce
self
.
_init_fsdp_param_and_grad_buffer
()
self
.
_register_fsdp_hooks
(
self
.
module
)
# Delete references to weight_tensor if they exist since we don't want two parameter copies
# if we re-mapped parameters (which happens when we use the distributed optimizer).
# This is a temporary workaround around a TE bug that is fixed with
# https://github.com/NVIDIA/TransformerEngine/pull/719.
@
torch
.
no_grad
()
def
unmap_weight_tensor
(
m
):
if
hasattr
(
m
,
'weight_tensor'
):
m
.
weight_tensor
=
None
self
.
module
.
apply
(
unmap_weight_tensor
)
def
_init_fsdp_param_and_grad_buffer
(
self
):
if
self
.
config
.
calculate_per_token_loss
:
# We don't need to scale the gradients in this case.
gradient_scaling_factor
=
None
expert_gradient_scaling_factor
=
None
else
:
if
self
.
ddp_config
.
average_in_collective
:
gradient_scaling_factor
=
1.0
if
self
.
contains_expert_parameters
:
expert_gradient_scaling_factor
=
(
self
.
expt_dp_group
.
size
()
/
self
.
dp_cp_group
.
size
()
)
else
:
expert_gradient_scaling_factor
=
None
else
:
data_parallel_world_size
=
self
.
dp_cp_group
.
size
()
gradient_scaling_factor
=
1.0
/
data_parallel_world_size
expert_gradient_scaling_factor
=
1.0
/
data_parallel_world_size
# Initialize the param and grad buffer.
self
.
data_parallel_sharding_strategy
=
self
.
ddp_config
.
data_parallel_sharding_strategy
self
.
param_to_name
=
{
p
:
name
for
name
,
p
in
self
.
module
.
named_parameters
()}
self
.
param_and_grad_buffer
=
ParamAndGradBuffer
(
self
.
ddp_config
,
self
.
module
,
bucketing_policy
=
BucketingPolicy
(
suggested_bucket_size
=
self
.
bucket_size
,
fsdp_unit_modules
=
self
.
fsdp_unit_modules
,
data_parallel_sharding_strategy
=
self
.
data_parallel_sharding_strategy
,
),
data_parallel_group
=
self
.
intra_dp_cp_group
,
expert_data_parallel_group
=
self
.
intra_expt_dp_group
,
inter_data_parallel_group
=
self
.
inter_distopt_group
,
preserve_fp32_weights
=
self
.
ddp_config
.
preserve_fp32_weights
,
grad_reduce_in_fp32
=
self
.
ddp_config
.
grad_reduce_in_fp32
,
gradient_scaling_factor
=
gradient_scaling_factor
,
expert_gradient_scaling_factor
=
expert_gradient_scaling_factor
,
device
=
self
.
device
,
reset_parameters_for_meta_device_init_module
=
self
.
config
.
init_model_with_meta_device
,
)
self
.
param_and_grad_buffer
self
.
side_stream_for_buffer_copy_and_grad_accum
=
torch
.
cuda
.
Stream
()
# Initialize the reduce-scatter pipeline.
self
.
grad_reduce_pipeline
=
GradReducePipeline
(
self
.
param_and_grad_buffer
,
rs_stream
=
self
.
side_stream_for_buffer_copy_and_grad_accum
,
inter_fsdp_group_grad_reduce
=
self
.
inter_fsdp_group_grad_reduce
,
)
# Initialize the all-gather pipeline.
self
.
all_gather_pipeline
=
AllGatherPipeline
(
self
.
param_and_grad_buffer
)
suggested_communication_unit_size
=
self
.
ddp_config
.
suggested_communication_unit_size
if
suggested_communication_unit_size
is
None
:
if
self
.
data_parallel_sharding_strategy
==
"optim_grads_params"
:
total_param_elements
=
0
total_fsdp_module
=
0
for
module
in
self
.
module
.
modules
():
if
isinstance
(
module
,
tuple
(
self
.
fsdp_unit_modules
)):
total_fsdp_module
+=
1
total_param_elements
+=
sum
(
p
.
numel
()
for
p
in
module
.
parameters
())
# The suggested size is twice the number of elements in the FSDP modules.
# This ensures we process the current FSDP module and attempt to prefetch
# the next FSDP module, making the flow of communication better.
suggested_communication_unit_size
=
total_param_elements
//
total_fsdp_module
*
2
elif
self
.
bucket_size
is
not
None
:
suggested_communication_unit_size
=
self
.
bucket_size
*
2
self
.
suggested_RS_queue_capacity
=
suggested_communication_unit_size
self
.
suggested_AG_prefetch_size
=
suggested_communication_unit_size
if
self
.
data_parallel_sharding_strategy
==
"optim_grads_params"
:
override_sharded_param_methods_with_safety_checks
(
self
.
module
.
parameters
(),
self
.
all_gather_pipeline
)
def
_register_fsdp_hooks
(
self
,
root_module
):
"""Register necessary hooks for Fully Sharded Data Parallel (FSDP) execution on the model.
This function sets up various hooks required for FSDP operations, including parameter
resharding/unsharding and gradient handling. The registered hooks are:
- Pre-forward hook: Unshards parameters before forward pass
- Post-forward hook: Reshards parameters after forward pass
- Pre-backward hook: Unshards parameters before backward pass
- Post-backward hook: Reshards parameters and reduces gradients after backward pass
Args:
root_module: The PyTorch module to register FSDP hooks on
Note:
These hooks are essential for FSDP's memory efficiency as they manage:
1. Dynamic parameter sharding/unsharding to reduce memory footprint
2. Proper gradient synchronization across distributed processes
3. Gradient accumulation for large batch training
Returns:
None
"""
# Initialize module training state.
for
m
in
root_module
.
modules
():
setattr
(
m
,
"_training_state"
,
TrainingState
.
IDLE
)
self
.
forward_pre_hooks
=
{}
self
.
forward_hooks
=
{}
self
.
backward_pre_hooks
=
{}
"""
An FSDP unit is a module designed to manage the lifecycle of model parameters
in Fully Sharded Data Parallel (FSDP) training. It ensures that parameters
are only used within the module and are released immediately after
the forward and backward computations are completed.
This approach is crucial for efficient memory management, as releasing
parameters too early can lead to issues if other computations depend on them.
`optim` and `optim_grads` do not require FSDP units because they do not
shard model parameters.
"""
fsdp_unit_modules
=
self
.
fsdp_unit_modules
def
release_module_parameters
(
module
,
*
unused
):
for
param
in
module
.
parameters
():
bucket_id
=
self
.
param_and_grad_buffer
.
param_to_param_group
[
param
]
self
.
all_gather_pipeline
.
release_bucket
(
bucket_id
)
if
not
self
.
ddp_config
.
keep_fp8_transpose_cache_when_using_custom_fsdp
:
release_params_fp8_transpose_cache
(
module
.
parameters
())
def
release_params_fp8_transpose_cache
(
params
):
for
param
in
params
:
if
is_float8tensor
(
param
):
param
.
_transpose_invalid
=
True
param
.
_transpose
=
None
def
all_gather_module_parameters
(
module
,
*
unused
,
prefetch
=
True
,
prefetch_order
=
PrefetchOrder
.
FORWARD_PASS_ORDER
,
wait_bucket_ready
=
True
,
):
ag_pipeline
=
self
.
all_gather_pipeline
ag_pipeline
.
all_gather_params
(
params
=
list
(
module
.
parameters
()),
prefetch
=
prefetch
,
prefetch_order
=
prefetch_order
,
suggested_AG_prefetch_size
=
self
.
suggested_AG_prefetch_size
,
)
if
wait_bucket_ready
:
for
param
in
module
.
parameters
():
bucket_id
=
self
.
param_and_grad_buffer
.
param_to_param_group
[
param
]
ag_pipeline
.
wait_bucket_ready
(
bucket_id
)
def
_grad_acc
(
param
):
"""
Accumulate the gradient in the main_grad buffer.
"""
group_id
=
self
.
param_and_grad_buffer
.
param_to_param_group
[
param
]
group
=
self
.
param_and_grad_buffer
.
parameter_groups
[
group_id
]
if
not
group
.
requires_grad
:
return
overwrite_main_grad
=
self
.
ddp_config
.
data_parallel_sharding_strategy
in
[
"optim_grads"
,
"optim_grads_params"
,
]
if
overwrite_main_grad
:
if
not
param
.
grad_added_to_main_grad
:
# Get `main_grad` will allocate bucket, check that the currently
# used main_grad buffer does not exceed the scope of two FSDP Unit
# Modules, i.e., the buffer limit imposed by double-buffer allocator.
if
self
.
ddp_config
.
fsdp_double_buffer
:
self
.
grad_reduce_pipeline
.
_enforce_double_buffer_limit
([
group_id
])
if
param
.
grad
is
not
None
:
param
.
main_grad
.
copy_
(
param
.
grad
)
del
param
.
grad
else
:
param
.
main_grad
.
zero_
()
else
:
if
not
param
.
grad_added_to_main_grad
:
if
param
.
grad
is
not
None
:
param
.
main_grad
.
add_
(
param
.
grad
)
del
param
.
grad
# Reset the grad accumulate flag.
param
.
grad_added_to_main_grad
=
False
self
.
_params_require_handle_grad
=
set
()
def
_post_backward
(
module
,
*
unused
):
if
isinstance
(
module
,
tuple
(
fsdp_unit_modules
)):
if
self
.
ddp_config
.
data_parallel_sharding_strategy
==
"optim_grads_params"
:
release_module_parameters
(
module
)
module
.
_training_state
=
TrainingState
.
IDLE
param_list
=
list
(
module
.
parameters
())
else
:
param_list
=
list
(
module
.
parameters
(
recurse
=
False
))
for
param
in
param_list
:
_grad_acc
(
param
)
self
.
_params_require_handle_grad
.
discard
(
param
)
grad_reduce_every_bprop
=
self
.
ddp_config
.
data_parallel_sharding_strategy
in
[
"optim_grads"
,
"optim_grads_params"
,
]
if
grad_reduce_every_bprop
or
self
.
is_last_microbatch
:
self
.
grad_reduce_pipeline
.
reduce_gradients
(
param_list
,
suggested_queue_capacity
=
self
.
suggested_RS_queue_capacity
,
inter_fsdp_group_grad_reduce
=
(
self
.
inter_fsdp_group_grad_reduce
and
self
.
is_last_microbatch
),
)
def
_pre_forward_param_unshard
(
module
:
nn
.
Module
,
args
:
Tuple
[
Any
,
...],
kwargs
:
Dict
[
str
,
Any
]
):
# Unshard the parameters before the forward pass.
input_training_state
=
module
.
_training_state
fsdp_forward_prefetch
=
True
if
input_training_state
==
TrainingState
.
PRE_BACKWARD
:
# In activation recomputation case, we need to cancel forward prefetch.
fsdp_forward_prefetch
=
False
else
:
module
.
_training_state
=
TrainingState
.
FORWARD
if
isinstance
(
module
,
tuple
(
fsdp_unit_modules
)):
param_list
=
list
(
module
.
parameters
())
self
.
all_gather_pipeline
.
all_gather_params
(
params
=
param_list
,
prefetch
=
fsdp_forward_prefetch
,
suggested_AG_prefetch_size
=
self
.
suggested_AG_prefetch_size
,
)
for
param
in
param_list
:
bucket_id
=
self
.
param_and_grad_buffer
.
param_to_param_group
[
param
]
self
.
all_gather_pipeline
.
wait_bucket_ready
(
bucket_id
)
else
:
# All-gather the parameters in every forward pass for FSDP.
param_list
=
list
(
module
.
parameters
(
recurse
=
False
))
self
.
all_gather_pipeline
.
all_gather_params
(
params
=
param_list
,
prefetch
=
fsdp_forward_prefetch
,
suggested_AG_prefetch_size
=
self
.
suggested_AG_prefetch_size
,
)
for
param
in
param_list
:
bucket_id
=
self
.
param_and_grad_buffer
.
param_to_param_group
[
param
]
self
.
all_gather_pipeline
.
wait_bucket_ready
(
bucket_id
)
return
args
,
kwargs
def
_register_post_backward_hook
(
post_backward_hook
:
callable
,
module
:
nn
.
Module
,
args
:
Tuple
[
Any
,
...],
kwargs
:
Dict
[
str
,
Any
],
):
# Register the backward function to reduce gradients after the backward pass.
# And for optim_grads_params, we need to release the parameters after the backward pass.
if
not
torch
.
is_grad_enabled
():
return
args
,
kwargs
args_list
,
args_spec
=
tree_flatten
(
args
)
kwargs_list
,
kwargs_spec
=
tree_flatten
(
kwargs
)
args_kwargs_list
=
list
(
args_list
)
+
list
(
kwargs_list
)
inp_tensor_indices
:
List
[
int
]
=
[]
inp_tensors
:
List
[
torch
.
Tensor
]
=
[]
for
i
,
obj
in
enumerate
(
args_kwargs_list
):
if
torch
.
is_tensor
(
obj
)
and
obj
.
requires_grad
:
inp_tensor_indices
.
append
(
i
)
inp_tensors
.
append
(
obj
)
if
len
(
inp_tensors
)
==
0
:
return
args
,
kwargs
inp_tensors
=
RegisterFSDPBackwardFunction
.
apply
(
functools
.
partial
(
post_backward_hook
,
module
),
*
inp_tensors
)
for
inp_tensor_idx
,
inp_tensor
in
zip
(
inp_tensor_indices
,
inp_tensors
):
args_kwargs_list
[
inp_tensor_idx
]
=
inp_tensor
args_list
=
args_kwargs_list
[:
len
(
args_list
)]
kwargs_list
=
args_kwargs_list
[
len
(
args_list
)
:]
args
=
tree_unflatten
(
args_list
,
args_spec
)
kwargs
=
tree_unflatten
(
kwargs_list
,
kwargs_spec
)
return
args
,
kwargs
fsdp_modules
=
[]
for
name
,
module
in
root_module
.
named_modules
():
if
any
(
is_submodule
(
module
,
fsdp_module
)
for
fsdp_module
in
fsdp_modules
):
continue
if
isinstance
(
module
,
tuple
(
fsdp_unit_modules
)):
fsdp_modules
.
append
(
module
)
self
.
forward_pre_hooks
[
f
'module
{
name
}
parameter unshard'
]
=
(
module
.
register_forward_pre_hook
(
_pre_forward_param_unshard
,
prepend
=
True
,
with_kwargs
=
True
)
)
self
.
forward_pre_hooks
[
f
"module
{
name
}
register post-backward hook"
]
=
(
module
.
register_forward_pre_hook
(
functools
.
partial
(
_register_post_backward_hook
,
_post_backward
),
with_kwargs
=
True
,
)
)
def
_root_post_backward
(
*
unused
):
# Make sure all the gradients are handled.
for
param
in
self
.
_params_require_handle_grad
:
_grad_acc
(
param
)
# Reduce the remain gradients.
grad_reduce_every_bprop
=
self
.
ddp_config
.
data_parallel_sharding_strategy
in
[
"optim_grads"
,
"optim_grads_params"
,
]
if
grad_reduce_every_bprop
or
self
.
is_last_microbatch
:
self
.
grad_reduce_pipeline
.
reduce_gradients
(
list
(
self
.
_params_require_handle_grad
),
suggested_queue_capacity
=
self
.
suggested_RS_queue_capacity
,
inter_fsdp_group_grad_reduce
=
(
self
.
inter_fsdp_group_grad_reduce
and
self
.
is_last_microbatch
),
)
self
.
grad_reduce_pipeline
.
reset
()
# Reset root_pre_backward_hook_issued flag.
self
.
_root_pre_backward_hook_issued
=
False
def
_pre_backward
(
module
:
nn
.
Module
,
*
unused
):
module
.
_training_state
=
TrainingState
.
PRE_BACKWARD
if
isinstance
(
module
,
tuple
(
fsdp_unit_modules
)):
all_gather_module_parameters
(
module
,
prefetch_order
=
PrefetchOrder
.
BACKWARD_PASS_ORDER
)
self
.
_root_pre_backward_hook_issued
=
False
def
_root_pre_backward
(
module
:
nn
.
Module
,
*
unused
):
"""Marks the module's training state as 'pre_backward' before the
backprop, this function is registered on the root module.
This marking enables us to determine whether forward pass needs to
perform reshard/unshard operations in activation recomputation
scenarios.
"""
if
self
.
_root_pre_backward_hook_issued
:
return
self
.
_root_pre_backward_hook_issued
=
True
if
self
.
ddp_config
.
data_parallel_sharding_strategy
==
"optim_grads_params"
:
for
module
in
root_module
.
modules
():
if
isinstance
(
module
,
tuple
(
fsdp_unit_modules
)):
module
.
_training_state
=
TrainingState
.
PRE_BACKWARD
for
param
in
module
.
parameters
():
bucket_id
=
self
.
param_and_grad_buffer
.
param_to_param_group
[
param
]
self
.
all_gather_pipeline
.
wait_bucket_ready
(
bucket_id
,
empty_ok
=
True
)
self
.
all_gather_pipeline
.
release_bucket
(
bucket_id
)
self
.
_params_require_handle_grad
=
set
()
for
param_group
in
self
.
param_and_grad_buffer
.
parameter_groups
:
if
not
param_group
.
requires_grad
:
continue
self
.
_params_require_handle_grad
|=
set
(
param_group
.
params
)
for
param
in
param_group
.
params
:
param
.
grad_added_to_main_grad
=
False
torch
.
autograd
.
Variable
.
_execution_engine
.
queue_callback
(
_root_post_backward
)
def
_post_forward
(
module
:
nn
.
Module
,
input
:
Any
,
output
:
Any
):
# When composing with module-hook-based activation checkpointing, the
# post-backward hook is responsible for the reshard
if
module
.
_training_state
==
TrainingState
.
PRE_BACKWARD
:
return
output
release_module_parameters
(
module
)
module
.
_training_state
=
TrainingState
.
IDLE
return
output
def
_release_module_fp8_transpose_cache
(
module
:
nn
.
Module
,
*
unused
):
release_params_fp8_transpose_cache
(
module
.
parameters
(
recurse
=
False
))
if
len
(
fsdp_unit_modules
)
!=
0
:
fsdp_modules
=
[]
for
name
,
module
in
root_module
.
named_modules
():
if
any
(
is_submodule
(
module
,
fsdp_module
)
for
fsdp_module
in
fsdp_modules
):
continue
if
isinstance
(
module
,
tuple
(
fsdp_unit_modules
)):
fsdp_modules
.
append
(
module
)
self
.
forward_hooks
[
f
"release module
{
name
}
parameters"
]
=
(
module
.
register_forward_hook
(
_post_forward
,
prepend
=
False
)
)
self
.
backward_pre_hooks
[
f
"all-gather module
{
name
}
parameters"
]
=
(
module
.
register_full_backward_pre_hook
(
_pre_backward
)
)
elif
not
self
.
ddp_config
.
keep_fp8_transpose_cache_when_using_custom_fsdp
:
self
.
forward_hooks
[
f
"remove module
{
name
}
fp8 transpose cache"
]
=
(
module
.
register_forward_hook
(
_release_module_fp8_transpose_cache
,
prepend
=
False
)
)
# Registering all models with all parameters is to handle some special cases
# where the forward function of root_module is not called, but the forward
# functions of these equivalent modules are called instead.
for
name
,
module
in
root_module
.
named_modules
():
if
len
(
list
(
module
.
parameters
()))
!=
len
(
list
(
root_module
.
parameters
())):
continue
self
.
backward_pre_hooks
[
f
"
{
name
}
_root_pre_backward"
]
=
(
module
.
register_full_backward_pre_hook
(
_root_pre_backward
)
)
self
.
_root_pre_backward_hook_handle
=
root_module
.
register_full_backward_pre_hook
(
_root_pre_backward
)
@
contextmanager
def
no_sync
(
self
):
"""
Context manager that turns off gradient synchronization.
For grads shard mode there will actually always be gradient sync happening.
"""
# FIXME: Better handling of grads shard mode and no_sync in the training loop so that
# the code doesn't bog down developers.
self
.
is_last_microbatch
=
False
try
:
yield
finally
:
self
.
is_last_microbatch
=
True
def
start_param_sync
(
self
,
*
unused
,
force_sync
:
bool
=
False
,
force_dispatch
:
bool
=
False
):
"""
Initiates param sync (all-gather) communication operations for all model parameters.
By default, when overlap_param_gather is set to True, dispatches asynchronous communication
calls; when overlap_param_gather is set to False, calls synchronous communication
ops. Can override this default behavior using flags below.
Args:
force_sync (bool, optional): force synchronous collective regardless of
other settings.
force_dispatch (bool, optional): force dispatch regardless of other settings.
"""
if
not
force_sync
and
self
.
ddp_config
.
overlap_param_gather
:
# All-gather the first bucket before the forward pass.
first_param
=
list
(
self
.
module
.
parameters
())[
0
]
self
.
all_gather_pipeline
.
all_gather_params
(
params
=
[
first_param
],
prefetch
=
False
)
else
:
self
.
all_gather_pipeline
.
reset
()
for
bucket_id
in
range
(
self
.
all_gather_pipeline
.
num_buckets
):
self
.
all_gather_pipeline
.
async_bucket_gather
(
bucket_id
)
group
=
self
.
param_and_grad_buffer
.
parameter_groups
[
bucket_id
]
if
group
.
model_weight_buffer
is
None
:
continue
if
group
.
model_weight_buffer
.
is_data_distributed
:
# If model weight is sharded, we wait for the all-gather to complete and
# then release the bucket immediately to save memory usage.
self
.
all_gather_pipeline
.
wait_bucket_ready
(
bucket_id
)
for
bucket_id
in
range
(
self
.
all_gather_pipeline
.
num_buckets
):
self
.
all_gather_pipeline
.
wait_bucket_ready
(
bucket_id
)
def
start_grad_sync
(
self
,
*
unused
):
"""
Initiates grad sync (all-reduce or reduce-scatter) communication operations
for all model gradients.
When overlap_grad_reduce is set to True, dispatches asynchronous communication
calls. When overlap_grad_reduce is set to False, calls synchronous
communication ops.
"""
if
not
self
.
ddp_config
.
overlap_grad_reduce
:
if
self
.
data_parallel_sharding_strategy
==
"no_shard"
:
self
.
param_and_grad_buffer
.
all_reduce_gradients
(
async_op
=
self
.
ddp_config
.
overlap_grad_reduce
)
else
:
self
.
param_and_grad_buffer
.
reduce_scatter_gradients
()
def
finish_grad_sync
(
self
):
"""
Finishes grad sync (all-reduce or reduce-scatter) communication operations
for all model gradients.
When overlap_grad_reduce is set to True, waits for asynchronous communication
calls to complete. When overlap_grad_reduce is set to False, calls synchronous
communication ops.
"""
if
self
.
ddp_config
.
overlap_grad_reduce
:
self
.
grad_reduce_pipeline
.
wait_for_previous_grad_reduce
(
0
)
self
.
grad_reduce_pipeline
.
reset
()
else
:
self
.
start_grad_sync
()
self
.
param_and_grad_buffer
.
update_main_grads
()
if
self
.
ddp_config
.
overlap_param_gather
:
self
.
all_gather_pipeline
.
reset
()
def
optimizer_named_parameters
(
self
)
->
List
[
Tuple
[
str
,
torch
.
Tensor
]]:
"""
Returns a list of tuples containing the main weights and their corresponding names
for mixed-precision training, to be used by the optimizer for updates.
Returns:
List[Tuple[str, torch.Tensor]]: A list of tuples, where each tuple
contains a main weight tensor and its corresponding name.
"""
return
self
.
param_and_grad_buffer
.
optimizer_named_parameters
def
scale_gradients
(
self
,
scaling_factor
:
float
):
"""Scale all gradients inside the buffers by `scaling_factor`."""
self
.
param_and_grad_buffer
.
scale_gradients
(
scaling_factor
)
def
zero_grad_buffer
(
self
):
"""
Zeros out all grad buffers. Needs to be called at the beginning of each
training iteration.
"""
for
param
in
self
.
module
.
parameters
():
if
param
.
requires_grad
:
param
.
grad_added_to_main_grad
=
False
self
.
param_and_grad_buffer
.
zero_grad
()
def
broadcast_params
(
self
):
"""
Syncs parameters across all DP ranks.
"""
for
param
in
self
.
module
.
parameters
():
is_expert_parallel
=
not
getattr
(
param
,
'allreduce'
,
True
)
if
is_expert_parallel
:
data_parallel_group
=
self
.
expt_dp_group
else
:
data_parallel_group
=
self
.
dp_cp_group
torch
.
distributed
.
broadcast
(
param
.
data
,
src
=
torch
.
distributed
.
get_global_rank
(
data_parallel_group
,
0
),
group
=
data_parallel_group
,
)
def
load_state_dict
(
self
,
state_dict
,
strict
=
True
):
"""
Copies parameters and buffers from state_dict into the wrapped module and its
descendants. If strict is True, then the keys of state_dict must exactly match
the keys returned by this module’s state_dict() function.
"""
if
self
.
ddp_config
.
data_parallel_sharding_strategy
==
"optim_grads_params"
:
# make a copy of the state_dict to avoid modifying the input state_dict
state_dict
=
state_dict
.
copy
()
state_dict_extra_states
=
{}
for
key
in
list
(
state_dict
.
keys
()):
if
key
.
endswith
(
"_extra_state"
):
state_dict_extra_states
[
key
]
=
state_dict
[
key
]
del
state_dict
[
key
]
self
.
module
.
load_state_dict
(
state_dict_extra_states
,
strict
=
False
)
prefix
=
"module."
buffer
=
self
.
param_and_grad_buffer
for
param_groups
in
buffer
.
parameter_groups
:
wbuf
=
param_groups
.
model_weight_buffer
for
model_param
in
wbuf
.
params
:
if
is_float8tensor
(
model_param
):
fp8_meta
=
model_param
.
_fp8_meta
[
'scaling_fwd'
]
fp8_meta_index
=
model_param
.
_fp8_meta_index
model_param
.
_scale_inv
.
copy_
(
fp8_meta
.
scale_inv
[
fp8_meta_index
])
param_name
=
f
"
{
buffer
.
param_to_name
[
model_param
]
}
"
[
len
(
prefix
)
:]
if
param_name
in
state_dict
:
if
wbuf
and
wbuf
.
is_data_distributed
:
model_param
.
fully_shard_param_local_shard
.
data
.
copy_
(
state_dict
[
param_name
]
)
else
:
model_param
.
data
.
copy_
(
state_dict
[
param_name
])
del
state_dict
[
param_name
]
self
.
module
.
load_state_dict
(
state_dict
,
strict
=
False
)
return
self
.
module
.
load_state_dict
(
state_dict
,
strict
=
strict
)
class
RegisterFSDPBackwardFunction
(
torch
.
autograd
.
Function
):
"""
Register a backward function that will be called after the backward pass
of the model. This function is used to release the parameters after the
backward pass.
"""
@
staticmethod
def
forward
(
ctx
,
post_backward
,
*
inputs
:
torch
.
Tensor
):
"""
Forward pass of the RegisterFSDPBackwardFunction function.
"""
ctx
.
post_backward
=
post_backward
return
inputs
@
staticmethod
def
backward
(
ctx
,
*
grads
:
torch
.
Tensor
):
"""
Backward pass of the RegisterFSDPBackwardFunction function.
"""
ctx
.
post_backward
()
return
(
None
,)
+
grads
Megatron-LM/megatron/core/distributed/custom_fsdp/param_and_grad_buffer.py
0 → 100644
View file @
1106877d
# Copyright (c) 2024, NVIDIA CORPORATION. All rights reserved.
import
dataclasses
import
functools
import
gc
import
inspect
import
logging
import
math
import
traceback
import
warnings
from
collections
import
defaultdict
,
namedtuple
from
contextlib
import
ExitStack
,
nullcontext
from
enum
import
Enum
from
typing
import
Any
,
Callable
,
List
,
Optional
,
Tuple
import
torch
from
torch.distributed
import
_coalescing_manager
from
megatron.core
import
parallel_state
from
megatron.core.distributed.distributed_data_parallel_config
import
DistributedDataParallelConfig
from
megatron.core.fp8_utils
import
is_float8tensor
,
modify_underlying_storage
,
quantize_param_shard
from
megatron.core.tensor_parallel
import
get_cuda_rng_tracker
from
megatron.core.utils
import
is_submodule
,
is_te_min_version
,
log_on_each_pipeline_stage
try
:
from
transformer_engine.pytorch
import
fp8_model_init
except
:
pass
try
:
from
transformer_engine.pytorch.module.base
import
TransformerEngineBaseModule
except
:
pass
try
:
import
apex.contrib.nccl_allocator
as
nccl_allocator
except
ImportError
:
nccl_allocator
=
None
NCCL_MEMORY_POOL
=
None
logger
=
logging
.
getLogger
(
__name__
)
def
_p_assert
(
cond
:
Any
,
s
:
str
,
raise_assertion_error
:
bool
=
True
)
->
None
:
"""Alternate to ``assert`` when in the backward context to print the error
message ``s`` since otherwise, it is swallowed.
"""
if
not
cond
:
print
(
s
)
traceback
.
print_stack
()
if
raise_assertion_error
:
raise
AssertionError
(
s
)
def
_alloc_storage
(
tensor
:
torch
.
Tensor
,
size
:
torch
.
Size
)
->
None
:
"""
Allocate storage for ``tensor`` with the given size.
Returns:
bool: ``True`` if this method allocated storage and ``False`` if the
storage was already allocated.
"""
with
torch
.
no_grad
():
if
not
torch
.
distributed
.
_functional_collectives
.
is_torchdynamo_compiling
():
already_allocated
=
tensor
.
_typed_storage
().
_size
()
==
size
.
numel
()
if
not
already_allocated
:
tensor_storage_size
=
tensor
.
_typed_storage
().
_size
()
_p_assert
(
tensor_storage_size
==
0
,
"Tensor storage should have been resized to be 0 but got PLACEHOLDEr"
,
)
tensor
.
_typed_storage
().
_resize_
(
size
.
numel
())
def
_free_storage
(
tensor
:
torch
.
Tensor
):
"""
Frees the underlying storage of ``tensor``.
Returns:
bool: ``True`` if the method freed the storage and ``False`` if the
storage was already freed.
"""
with
torch
.
no_grad
():
if
not
torch
.
distributed
.
_functional_collectives
.
is_torchdynamo_compiling
():
already_freed
=
tensor
.
_typed_storage
().
_size
()
==
0
if
not
already_freed
:
_p_assert
(
tensor
.
storage_offset
()
==
0
,
"Freeing a tensor's storage is unsafe when it is not the sole occupant
\n
"
f
"storage offset:
{
tensor
.
storage_offset
()
}
\n
"
f
"storage size:
{
tensor
.
_typed_storage
().
_size
()
}
\n
"
f
"tensor shape:
{
tensor
.
shape
}
"
,
)
tensor
.
_typed_storage
().
_resize_
(
0
)
TensorItemIndex
=
namedtuple
(
'TensorItemIndex'
,
[
'global_data_index'
,
'size'
,
'item_id'
,
'bucket_id'
,
'shape'
]
)
BucketIndex
=
namedtuple
(
'BucketIndex'
,
[
'bucket_id'
,
'global_data_index'
,
'size'
,
'items'
])
ShardBucketIndex
=
namedtuple
(
'ShardBucketIndex'
,
[
'bucket_id'
,
'global_data_index'
,
'local_data_index'
,
'bucket_data_index'
,
'size'
],
)
class
DualUBRAllocator
:
"""
A custom allocator class that registers a single memory pool with two different
communication groups, which is not natively supported by apex's nccl_allocator.
This is particularly useful for Mixture of Experts (MoE) models where:
- Non-expert parameters/gradients use the data-parallel + context-parallel group (dp_cp_group)
- Expert parameters/gradients use the expert-parallel + data-parallel group (ep_dp_group)
Since Megatron-Core FSDP uses a contiguous single tensor for the entire model's parameters, we
need to register the same memory pool with both communication groups to enable nccl algorithms
that is relying on the user buffer registration for both expert and non-expert parameters.
Implementation:
It uses apex nccl_allocator internally to create a Tensor using ncclMemAlloc
and register to the `group` and then registers the Mempool also for the `additional_group`
Example:
```
import apex.contrib.nccl_allocator as nccl_allocator
nccl_allocator.init()
pool = nccl_allocator.create_nccl_mem_pool()
group_1 = torch.distributed.new_group(ranks=[0, 1, 2, 3, 4, 5, 6, 7], backend="nccl")
group_2 = torch.distributed.new_group(ranks=[0, 2, 4, 6], backend="nccl")
with DualUBRAllocator(pool, group_1, group_2):
a = torch.zeros(1024, dtype=torch.float32, device="cuda")
b = torch.zeros(1024, dtype=torch.float32, device="cuda")
```
"""
def
__init__
(
self
,
pool
,
# torch.cuda.MemPool
group
,
# torch.distributed.ProcessGroup
additional_group
,
# torch.distributed.ProcessGroup
):
self
.
pool
=
pool
self
.
group
=
group
self
.
additional_group
=
additional_group
self
.
mem_allocator
=
nccl_allocator
.
nccl_mem
(
self
.
pool
,
group
=
self
.
group
)
def
__enter__
(
self
):
backend
=
self
.
additional_group
.
_get_backend
(
torch
.
device
(
"cuda"
,
torch
.
cuda
.
current_device
())
)
try
:
# Since the registration is done in mempool granularity, we need to deregister
# the tensors in the mempool and re-register the mempool including the newly created
# tensors after the context is exited.
backend
.
deregister_mem_pool
(
self
.
pool
)
except
RuntimeError
:
pass
self
.
mem_allocator
.
__enter__
()
def
__exit__
(
self
,
*
args
):
self
.
mem_allocator
.
__exit__
(
*
args
)
backend
=
self
.
additional_group
.
_get_backend
(
torch
.
device
(
"cuda"
,
torch
.
cuda
.
current_device
())
)
backend
.
register_mem_pool
(
self
.
pool
)
@
dataclasses
.
dataclass
class
BucketingPolicy
:
"""
A policy for bucketing in Fully Sharded Data Parallel (FSDP) training.
Attributes:
suggested_bucket_size (int): The suggested size of each bucket in num of elements.
fsdp_unit_modules (list): A list of module classes that are treated as a
single unit for FSDP bucketing.
data_parallel_sharding_strategy (str): The strategy used for sharding
data parallel modules.
Note:
This policy is used to configure the bucketing behavior in FSDP training.
"""
suggested_bucket_size
:
Optional
[
int
]
=
40_000_000
fsdp_unit_modules
:
List
[
torch
.
nn
.
Module
]
=
dataclasses
.
field
(
default_factory
=
list
)
data_parallel_sharding_strategy
:
str
=
'no_shard'
def
_pad
(
number_to_be_padded
:
int
,
divisor
:
int
)
->
int
:
return
int
(
math
.
ceil
(
number_to_be_padded
/
divisor
)
*
divisor
)
def
build_data_parallel_buffer_index
(
elements
:
List
[
torch
.
Size
],
data_parallel_rank
:
int
,
data_parallel_world_size
:
int
,
is_data_distributed
:
bool
,
ddp_config
:
DistributedDataParallelConfig
,
bucket_id
:
int
=
0
,
)
->
Tuple
[
List
[
TensorItemIndex
],
BucketIndex
,
ShardBucketIndex
]:
"""
Assuming that all input tensor elements are consecutively compose a global
buffer, give the index range of every tensor, every bucket and every in
bucket local buffer.
Args:
elements (List[torch.Size]): List of input tensor.
data_parallel_rank (int): Rank of the current process in the data parallel group.
data_parallel_world_size (int): World size of the data parallel group.
bucket_id (int, optional): The id of the bucket. Defaults to 0.
Returns:
Tuple[List[TensorItemIndex], BucketIndex, ShardBucketIndex]: The index
range of every tensor, every bucket and every in bucket local buffer.
"""
def
_pad_if_needed
(
data_index
:
int
)
->
int
:
"""
Pads data indices if using distributed optimizer (to ensure uniform sharding).
"""
if
ddp_config
.
data_parallel_sharding_strategy
!=
'no_shard'
:
# Workaround for TE bug causing cuBLAS to pick an incompatible algorithm.
# This also helps cuBLAS pick more efficient algorithms for GEMMs.
# We now ensure that all buckets start at a memory address that is 256-byte
# aligned (128 values since params and grads use >= 16-bit precision).
return
_pad
(
data_index
,
math
.
lcm
(
data_parallel_world_size
,
128
))
return
data_index
def
add_item
(
item_id
,
item
,
bucket
,
item_index_map
,
bucket_id
):
bucket
.
append
(
item
)
bucket_size
=
sum
([
it
.
numel
()
for
it
in
bucket
])
item_index_map
.
append
(
TensorItemIndex
(
data_index
+
bucket_size
-
item
.
numel
(),
item
.
numel
(),
item_id
=
item_id
,
bucket_id
=
bucket_id
,
shape
=
item
,
)
)
item_index_map
=
[]
bucket
=
[]
data_index
=
0
for
item_id
,
item
in
enumerate
(
elements
):
add_item
(
item_id
,
item
,
bucket
,
item_index_map
,
bucket_id
)
bucket_size
=
sum
([
it
.
numel
()
for
it
in
bucket
])
bucket_size
=
_pad_if_needed
(
bucket_size
)
bucket_index
=
BucketIndex
(
bucket_id
,
data_index
,
bucket_size
,
items
=
list
(
filter
(
lambda
x
:
x
.
bucket_id
==
bucket_id
,
item_index_map
)),
)
shard_size
=
bucket_index
.
size
//
data_parallel_world_size
bucket_data_index
=
shard_size
*
data_parallel_rank
global_data_index
=
bucket_index
.
global_data_index
+
bucket_data_index
if
is_data_distributed
:
shard_bucket_index
=
ShardBucketIndex
(
bucket_id
,
global_data_index
,
0
,
bucket_data_index
,
shard_size
)
else
:
shard_bucket_index
=
ShardBucketIndex
(
bucket_id
,
global_data_index
,
global_data_index
,
bucket_data_index
,
shard_size
)
return
item_index_map
,
bucket_index
,
shard_bucket_index
@
dataclasses
.
dataclass
class
Bucket
:
"""
A container for holding data in Fully Sharded Data Parallel (FSDP) training.
Attributes:
data (torch.Tensor): A tensor containing the data elements
grouped together in a bucket.
data_operation_event (Optional[torch.cuda.Event]): An optional CUDA event
used to synchronize data operations.
status (Any): An optional status object used to track the state of the bucket.
Note:
Buckets are used to optimize communication in FSDP training by
grouping small tensors together.
"""
data
:
torch
.
Tensor
data_operation_event
:
Optional
[
torch
.
cuda
.
Event
]
=
None
status
:
Any
=
None
class
TemporaryBucketAllocator
:
"""
A utility class for managing temporary buckets (buffers) used in FSDP
operations like parameters unshard and gradients reduction.
This allocator handles the dynamic allocation and deallocation of temporary memory buffers
needed during FSDP (Fully Sharded Data Parallel) operations, particularly for parameters
unshard and gradients reduction. It helps optimize memory usage by allowing temporary
buckets to be released when no longer needed.
Key Features:
- Dynamic allocation of temporary buckets for FSDP operations
- Memory-efficient management of temporary buffers
- Support for both parameters unshard and gradients reduction operations
- Automatic cleanup of unused buckets to save memory
Usage:
```python
# Create an allocator instance
allocator = TemporaryBucketAllocator(name="gpt_parameters")
# Allocate a temporary bucket
temp_bucket = allocator.allocate(size=1024, dtype=torch.float32)
# Use the temporary bucket for FSDP operations
# ... perform all-gather or reduce-scatter ...
# Free the bucket when done
allocator.free(temp_bucket)
```
Note:
It's important to release temporary buckets after use to prevent memory leaks
and optimize memory usage during training.
"""
def
__init__
(
self
):
self
.
buckets
=
{}
def
allocate
(
self
,
bucket_id
:
int
,
size
:
int
,
dtype
:
torch
.
dtype
,
device
:
torch
.
device
,
mem_alloc_context
:
Optional
[
Callable
]
=
None
,
)
->
Bucket
:
"""
allocate a temporary bucket.
"""
if
bucket_id
not
in
self
.
buckets
:
self
.
buckets
[
bucket_id
]
=
Bucket
(
data
=
torch
.
empty
(
size
,
dtype
=
dtype
,
device
=
device
))
return
self
.
buckets
[
bucket_id
]
def
free
(
self
,
bucket_id
:
int
):
"""
free a temporary bucket.
"""
if
bucket_id
in
self
.
buckets
:
_free_storage
(
self
.
buckets
[
bucket_id
].
data
)
del
self
.
buckets
[
bucket_id
]
class
StorageResizeBasedBucketAllocator
(
TemporaryBucketAllocator
):
"""
A specialized temporary bucket allocator that resizes the storage of temporary buckets
based on the required size.
"""
def
__init__
(
self
):
self
.
buckets
=
{}
# {bucket_id: Bucket}
def
allocate
(
self
,
bucket_id
:
int
,
size
:
int
,
dtype
:
torch
.
dtype
,
device
:
torch
.
device
,
mem_alloc_context
:
Optional
[
Callable
]
=
None
,
)
->
Bucket
:
"""
allocate a temporary bucket.
"""
if
bucket_id
not
in
self
.
buckets
:
self
.
buckets
[
bucket_id
]
=
Bucket
(
data
=
torch
.
empty
(
size
,
dtype
=
dtype
,
device
=
device
))
bucket
=
self
.
buckets
[
bucket_id
]
_alloc_storage
(
bucket
.
data
,
torch
.
Size
([
size
]))
return
bucket
def
free
(
self
,
bucket_id
:
int
):
"""
free a temporary bucket.
"""
if
bucket_id
in
self
.
buckets
:
_free_storage
(
self
.
buckets
[
bucket_id
].
data
)
class
RotaryBucketAllocator
(
TemporaryBucketAllocator
):
"""A specialized temporary bucket allocator that implements a circular buffer recycling strategy
to minimize memory fragmentation in FSDP operations.
RotaryBucketAllocator extends TemporaryBucketAllocator by maintaining a limited pool of
pre-allocated buffers that are reused in a circular manner. This approach helps prevent
memory fragmentation that typically occurs with frequent allocation and deallocation of
temporary buffers during FSDP operations.
Key Features:
- Circular buffer recycling strategy for memory efficiency
- Reduced memory fragmentation compared to dynamic allocation
- Pre-allocated buffer pool for faster access
- Automatic buffer reuse without explicit deallocation
Usage:
```python
# Create a rotary allocator
allocator = RotaryBucketAllocator(name="gpt_parameters")
# Get a temporary buffer from the pool
temp_bucket = allocator.allocate(dtype=torch.float32)
# Use the temporary bucket for FSDP operations
# ... perform all-gather or reduce-scatter ...
# Free the bucket when done, make it in idle buffer pool
allocator.free(temp_bucket)
```
"""
def
__init__
(
self
,
name
:
str
):
self
.
name
=
name
self
.
num_global_buffer
=
0
self
.
idle_buffer
=
[]
# [buffer_id]
self
.
using_buffer
=
{}
# {bucket_id: buffer_id}
self
.
buckets
=
{}
def
allocate
(
self
,
bucket_id
:
int
,
size
:
int
,
dtype
:
torch
.
dtype
,
device
:
torch
.
device
,
mem_alloc_context
:
Optional
[
Callable
]
=
None
,
)
->
Bucket
:
"""
allocate a temporary bucket.
"""
def
_get_global_buffer
(
buffer_id
:
int
):
return
parallel_state
.
get_global_memory_buffer
().
get_tensor
(
[
size
],
dtype
=
dtype
,
name
=
self
.
_get_gbuf_name
(
buffer_id
),
mem_alloc_context
=
mem_alloc_context
,
)
if
bucket_id
in
self
.
using_buffer
:
buffer_id
=
self
.
using_buffer
[
bucket_id
]
return
Bucket
(
data
=
_get_global_buffer
(
buffer_id
))
if
len
(
self
.
idle_buffer
)
==
0
:
# allocate new buffer
buffer_id
=
self
.
num_global_buffer
self
.
num_global_buffer
+=
1
self
.
idle_buffer
.
append
(
buffer_id
)
buffer_id
=
self
.
idle_buffer
.
pop
(
0
)
self
.
using_buffer
[
bucket_id
]
=
buffer_id
return
Bucket
(
data
=
_get_global_buffer
(
buffer_id
))
def
_get_gbuf_name
(
self
,
buffer_id
:
int
):
return
f
"
{
self
.
name
}
_
{
buffer_id
}
"
def
free
(
self
,
bucket_id
:
int
):
"""
free a temporary bucket.
"""
if
bucket_id
in
self
.
using_buffer
:
buffer_id
=
self
.
using_buffer
.
pop
(
bucket_id
)
self
.
idle_buffer
.
append
(
buffer_id
)
class
FixedPoolAllocator
(
TemporaryBucketAllocator
):
"""
A specialized temporary bucket allocator that implements a buffer recycling strategy
to minimize memory fragmentation in FSDP operations.
This allocator maintains a fixed pool of pre-allocated buffers, reusing them
to reduce the overhead and fragmentation caused by frequent allocation and
deallocation of temporary buffers during FSDP operations.
"""
def
__init__
(
self
,
name
:
str
,
fsdp_param_groups
:
List
[
"ParameterGroup"
],
size
:
int
=
2
):
self
.
name
=
name
self
.
fsdp_param_groups
=
fsdp_param_groups
self
.
size
=
size
# Number of buffers in the pool (default is 2 for double buffering)
self
.
allocation_tracker
=
{}
# tracking the global buffer allocation status
# Build a mapping from FSDP unit id to its associated bucket ids.
fsdp_unit_buckets
=
defaultdict
(
list
)
for
bucket_id
,
param_group
in
enumerate
(
fsdp_param_groups
):
if
param_group
.
fsdp_unit_id
==
-
1
or
param_group
.
fsdp_unit_id
is
None
:
continue
fsdp_unit_buckets
[
param_group
.
fsdp_unit_id
].
append
(
bucket_id
)
self
.
fsdp_unit_buckets
=
fsdp_unit_buckets
# Identify the largest group of FSDP units that share the same buffer storage.
fsdp_units_to_double_buffer
=
[]
for
fsdp_unit_id
,
bucket_ids
in
fsdp_unit_buckets
.
items
():
same_storage_fsdp_units
=
[]
for
i
in
fsdp_unit_buckets
:
if
self
.
_is_two_bucket_group_equal
(
fsdp_unit_buckets
[
i
],
bucket_ids
):
same_storage_fsdp_units
.
append
(
i
)
# Track the largest group of FSDP units sharing the same buffer storage
if
len
(
same_storage_fsdp_units
)
>
len
(
fsdp_units_to_double_buffer
):
fsdp_units_to_double_buffer
=
same_storage_fsdp_units
# --- Fixed Pool Buffering Check ---
# Ensure there is at least one group of FSDP units eligible for fixed pool buffering.
# If not, the allocator cannot provide its intended memory recycling benefits.
assert
(
len
(
fsdp_units_to_double_buffer
)
>
0
),
"Found no FSDP units to use fixed-size buffering"
self
.
fsdp_double_buffer_units
=
fsdp_units_to_double_buffer
# Initialize buffer group status.
# Each buffer group represents a set of buffers associated with an FSDP unit's bucket group.
self
.
idle_buffer
=
[]
# List of available (buf_group_id, offset) tuples.
self
.
using_buffer
=
{}
# Map from bucket_id to (buf_group_id, offset) in use.
# Populate the idle buffer pool with all buffer group and bucket offset combinations.
for
buf_group_id
in
range
(
self
.
size
):
# Iterate over each buffer group in the pool.
num_bucket
=
len
(
self
.
fsdp_unit_buckets
[
self
.
fsdp_double_buffer_units
[
0
]])
for
bucket_offset
in
range
(
num_bucket
):
self
.
idle_buffer
.
append
((
buf_group_id
,
bucket_offset
))
# Fallback allocator used if the fixed pool allocator cannot fulfill a request.
self
.
backup_allocator
=
TemporaryBucketAllocator
()
def
_is_two_bucket_group_equal
(
self
,
group_a
,
group_b
):
# Check if two bucket groups are equivalent in dtype and size.
if
len
(
group_a
)
!=
len
(
group_b
):
return
False
for
a
,
b
in
zip
(
group_a
,
group_b
):
pg_a
=
self
.
fsdp_param_groups
[
a
]
pg_b
=
self
.
fsdp_param_groups
[
b
]
a_size
=
sum
(
p
.
numel
()
for
p
in
pg_a
.
params
)
b_size
=
sum
(
p
.
numel
()
for
p
in
pg_b
.
params
)
if
pg_a
.
dtype
!=
pg_b
.
dtype
or
a_size
!=
b_size
:
return
False
return
True
def
allocate
(
self
,
bucket_id
:
int
,
size
:
int
,
dtype
:
torch
.
dtype
,
device
:
torch
.
device
,
mem_alloc_context
:
Optional
[
Callable
]
=
None
,
)
->
Bucket
:
"""
allocate a temporary bucket.
"""
fsdp_unit_id
=
self
.
fsdp_param_groups
[
bucket_id
].
fsdp_unit_id
if
fsdp_unit_id
in
self
.
fsdp_double_buffer_units
:
# Try to allocate from the buffer pool.
bucket_offset
=
self
.
fsdp_unit_buckets
[
fsdp_unit_id
].
index
(
bucket_id
)
buffer_name
=
None
if
bucket_id
in
self
.
using_buffer
:
# If this bucket is already using a buffer, reuse it.
buf_group_id
,
bucket_offset
=
self
.
using_buffer
[
bucket_id
]
buffer_name
=
self
.
_get_gbuf_name
(
buf_group_id
,
bucket_offset
)
else
:
# Otherwise, find an available buffer group for this bucket offset.
for
buf_group_id
in
range
(
self
.
size
):
if
(
buf_group_id
,
bucket_offset
)
in
self
.
idle_buffer
:
self
.
using_buffer
[
bucket_id
]
=
(
buf_group_id
,
bucket_offset
)
buffer_name
=
self
.
_get_gbuf_name
(
buf_group_id
,
bucket_offset
)
self
.
idle_buffer
.
remove
((
buf_group_id
,
bucket_offset
))
break
assert
buffer_name
is
not
None
,
(
f
"[FSDP][Rank
{
torch
.
distributed
.
get_rank
()
}
][
{
self
.
name
}
]"
f
"No buffer found for bucket_id:
{
bucket_id
}
, fsdp_unit_id:
{
fsdp_unit_id
}
, "
f
"bucket_offset:
{
bucket_offset
}
\n
"
f
"current using_buffer:
{
self
.
using_buffer
}
\n
"
f
"current idle_buffer:
{
self
.
idle_buffer
}
"
)
# Synchronization is required before the allocation for the user buffer
if
mem_alloc_context
is
not
None
and
mem_alloc_context
!=
nullcontext
:
# Check if a new buffer allocation is required
if
(
self
.
allocation_tracker
.
get
((
buffer_name
,
dtype
),
None
)
is
None
or
self
.
allocation_tracker
[(
buffer_name
,
dtype
)]
<
size
):
# Requires synchronization for new buffer allocation
self
.
allocation_tracker
[(
buffer_name
,
dtype
)]
=
size
torch
.
cuda
.
synchronize
()
return
Bucket
(
data
=
parallel_state
.
get_global_memory_buffer
().
get_tensor
(
[
size
],
dtype
=
dtype
,
name
=
buffer_name
,
mem_alloc_context
=
mem_alloc_context
)
)
# If the bucket is not eligible for fixed pool buffering, or no buffer is available,
# fall back to dynamic allocation via the backup allocator. This means that we
# will do dynamic memory allocation.
logging
.
debug
(
f
"[FSDP] Using backup allocator for
{
bucket_id
}
{
fsdp_unit_id
}
"
)
return
self
.
backup_allocator
.
allocate
(
bucket_id
=
bucket_id
,
size
=
size
,
dtype
=
dtype
,
device
=
device
)
def
_get_gbuf_name
(
self
,
buf_group_id
:
int
,
bucket_index
:
int
):
return
f
"
{
self
.
name
}
_
{
buf_group_id
}
_
{
bucket_index
}
"
def
free
(
self
,
bucket_id
:
int
):
"""
free a temporary bucket.
"""
fsdp_unit_id
=
self
.
fsdp_param_groups
[
bucket_id
].
fsdp_unit_id
if
fsdp_unit_id
in
self
.
fsdp_double_buffer_units
:
if
bucket_id
not
in
self
.
using_buffer
:
# This bucket is not allocated by fixed pool allocator.
return
# Return the buffer to the idle pool.
self
.
idle_buffer
.
append
(
self
.
using_buffer
[
bucket_id
])
del
self
.
using_buffer
[
bucket_id
]
return
# If not managed by fixed pool allocator, delegate to the backup allocator.
logging
.
debug
(
f
"[FSDP] Free from the backup allocator for
{
bucket_id
}
{
fsdp_unit_id
}
"
)
self
.
backup_allocator
.
free
(
bucket_id
)
class
DataParallelBuffer
:
"""
A class that manages the data parallel buffer for Fully Sharded Data Parallel (FSDP) training.
"""
def
__init__
(
self
,
ddp_config
:
DistributedDataParallelConfig
,
params
:
List
[
torch
.
nn
.
Parameter
],
is_data_distributed
:
bool
,
bucket_id
:
int
,
dtype
:
Optional
[
torch
.
dtype
]
=
None
,
device
:
Optional
[
torch
.
device
]
=
None
,
data_parallel_group
:
Optional
[
torch
.
distributed
.
ProcessGroup
]
=
None
,
inter_data_parallel_group
:
Optional
[
torch
.
distributed
.
ProcessGroup
]
=
None
,
temporary_bucket_allocator
:
Optional
[
TemporaryBucketAllocator
]
=
None
,
init_meta_only
:
bool
=
False
,
is_dtype_float8
:
bool
=
False
,
gradient_scaling_factor
:
Optional
[
float
]
=
None
,
mem_alloc_context
:
Optional
[
Callable
]
=
None
,
)
->
None
:
self
.
ddp_config
=
ddp_config
self
.
params
=
params
_param_dtype
=
{
p
.
dtype
for
p
in
self
.
params
}
assert
len
(
_param_dtype
)
==
1
,
f
'params have different dtypes:
{
_param_dtype
}
'
self
.
is_data_distributed
=
is_data_distributed
self
.
bucket_id
=
bucket_id
self
.
dtype
=
dtype
if
dtype
else
next
(
iter
(
_param_dtype
))
self
.
device
=
device
self
.
data_parallel_group
=
data_parallel_group
self
.
inter_data_parallel_group
=
inter_data_parallel_group
self
.
dp_rank
=
self
.
data_parallel_group
.
rank
()
self
.
dp_world_size
=
self
.
data_parallel_group
.
size
()
self
.
temporary_bucket_allocator
=
(
temporary_bucket_allocator
if
temporary_bucket_allocator
else
TemporaryBucketAllocator
()
)
self
.
is_dtype_float8
=
is_dtype_float8
self
.
gradient_scaling_factor
=
gradient_scaling_factor
self
.
mem_alloc_context
=
mem_alloc_context
if
mem_alloc_context
else
nullcontext
(
self
.
item_index_map
,
self
.
bucket_index
,
self
.
shard_bucket_index
)
=
(
build_data_parallel_buffer_index
(
[
p
.
shape
for
p
in
self
.
params
],
self
.
dp_rank
,
self
.
dp_world_size
,
is_data_distributed
,
ddp_config
,
bucket_id
=
bucket_id
,
)
)
self
.
data_size
=
(
self
.
bucket_index
.
size
if
not
is_data_distributed
else
self
.
shard_bucket_index
.
size
)
if
init_meta_only
:
self
.
data
=
None
else
:
self
.
data
=
torch
.
empty
(
self
.
data_size
,
dtype
=
self
.
dtype
,
device
=
device
)
self
.
param_idx
=
{
p
:
i
for
i
,
p
in
enumerate
(
self
.
params
)}
self
.
placeholder_bucket
=
None
self
.
placeholder_items
=
{}
def
fetch_bucket
(
self
,
dtype
:
Optional
[
torch
.
dtype
]
=
None
,
and_allocate_params_data
:
bool
=
False
)
->
Bucket
:
"""
Fetch a communication buffer for data-parallel operations.
The size of the bucket is defined by the `DataParallelBuffer` instance.
If `and_allocate_params_data` is True, this method resets the parameter
data stored in the `DataParallelBuffer` instance.
Args:
dtype (Optional[torch.dtype], optional): The data type of the tensor
to fetch a buffer for. Defaults to None.
and_allocate_params_data (bool, optional): Whether to allocate and
reset parameter data. Defaults to False.
Returns:
Bucket: The communication buffer for the specified data type.
"""
if
dtype
is
None
:
dtype
=
self
.
dtype
bucket_index
=
self
.
bucket_index
if
not
self
.
is_data_distributed
and
dtype
==
self
.
dtype
:
bucket
=
Bucket
(
data
=
self
.
data
[
bucket_index
.
global_data_index
:
bucket_index
.
global_data_index
+
bucket_index
.
size
]
)
else
:
bucket
=
self
.
temporary_bucket_allocator
.
allocate
(
bucket_id
=
bucket_index
.
bucket_id
,
size
=
bucket_index
.
size
,
dtype
=
dtype
,
device
=
self
.
device
,
mem_alloc_context
=
self
.
mem_alloc_context
,
)
if
and_allocate_params_data
:
for
p
in
self
.
params
:
item_id
=
self
.
param_idx
[
p
]
if
is_float8tensor
(
p
):
p
.
_data
=
self
.
get_item_from_bucket
(
bucket
,
item_id
).
view
(
p
.
shape
)
else
:
p
.
data
=
self
.
get_item_from_bucket
(
bucket
,
item_id
).
view
(
p
.
shape
)
return
bucket
def
free_bucket_storage
(
self
,
and_free_params_data
:
bool
=
False
):
"""
Release the storage of a temporary communication bucket.
If the bucket is temporary, this method frees its storage.
If `and_free_params_data` is True, this method also releases the storage
of the parameter data stored in the `DataParallelBuffer` instance.
Args:
and_free_params_data (bool, optional): Whether to also release the
storage of the parameter data. Defaults to False.
Returns:
None
"""
if
not
self
.
is_data_distributed
:
return
self
.
temporary_bucket_allocator
.
free
(
self
.
bucket_index
.
bucket_id
)
if
and_free_params_data
:
if
self
.
placeholder_bucket
is
None
:
self
.
placeholder_bucket
=
Bucket
(
data
=
torch
.
empty
(
self
.
bucket_index
.
size
,
dtype
=
self
.
dtype
,
device
=
self
.
device
)
)
for
p
in
self
.
params
:
item_id
=
self
.
param_idx
[
p
]
self
.
placeholder_items
[
item_id
]
=
self
.
get_item_from_bucket
(
self
.
placeholder_bucket
,
item_id
).
view
(
p
.
shape
)
_free_storage
(
self
.
placeholder_bucket
.
data
)
for
p
in
self
.
params
:
item_id
=
self
.
param_idx
[
p
]
if
is_float8tensor
(
p
):
p
.
_data
=
self
.
placeholder_items
[
item_id
]
else
:
p
.
data
=
self
.
placeholder_items
[
item_id
]
def
_get_item_slice_in_shard
(
self
,
item_id
:
int
)
->
Tuple
[
int
,
int
]:
item_index
=
self
.
item_index_map
[
item_id
]
shard_bucket_index
=
self
.
shard_bucket_index
item_global_start
=
item_index
.
global_data_index
item_global_end
=
item_index
.
global_data_index
+
item_index
.
size
shard_bucket_start
=
shard_bucket_index
.
global_data_index
shard_bucket_end
=
shard_bucket_index
.
global_data_index
+
shard_bucket_index
.
size
if
item_global_start
>
shard_bucket_end
or
item_global_end
<
shard_bucket_start
:
return
(
0
,
0
)
start
=
max
(
item_global_start
,
shard_bucket_start
)
-
item_global_start
end
=
min
(
item_global_end
,
shard_bucket_end
)
-
item_global_start
return
(
start
,
end
)
# pylint: disable=missing-function-docstring
def
locate_item_in_global_item
(
self
,
item_id
:
int
)
->
Tuple
[
int
,
int
]:
item_index
=
self
.
item_index_map
[
item_id
]
if
not
self
.
is_data_distributed
:
return
(
0
,
item_index
.
size
)
slice_start
,
slice_end
=
self
.
_get_item_local_shard_index
(
item_id
)
if
slice_start
==
slice_end
:
return
(
0
,
0
)
local_shard_index_to_global_index_offset
=
(
self
.
shard_bucket_index
.
global_data_index
-
self
.
shard_bucket_index
.
local_data_index
)
slice_start
+=
local_shard_index_to_global_index_offset
slice_end
+=
local_shard_index_to_global_index_offset
return
(
slice_start
-
item_index
.
global_data_index
,
slice_end
-
item_index
.
global_data_index
,
)
def
_get_item_local_shard_index
(
self
,
item_id
:
int
)
->
Tuple
[
int
,
int
]:
slice_start
,
slice_end
=
self
.
_get_item_slice_in_shard
(
item_id
)
if
slice_start
==
slice_end
:
return
(
0
,
0
)
item_index
=
self
.
item_index_map
[
item_id
]
shard_bucket_index
=
self
.
shard_bucket_index
offset
=
(
item_index
.
global_data_index
-
shard_bucket_index
.
global_data_index
+
shard_bucket_index
.
local_data_index
)
return
(
offset
+
slice_start
,
offset
+
slice_end
)
def
_get_item_local_index
(
self
,
item_id
:
int
)
->
Tuple
[
int
,
int
]:
if
not
self
.
is_data_distributed
:
item_index
=
self
.
item_index_map
[
item_id
]
return
(
item_index
.
global_data_index
,
item_index
.
global_data_index
+
item_index
.
size
)
return
self
.
_get_item_local_shard_index
(
item_id
)
def
set_item
(
self
,
item_id
:
int
,
item
:
torch
.
Tensor
)
->
None
:
"""
Update a tensor item managed by the `DataParallelBuffer` instance.
The storage of the item is mapped to the communication bucket.
This method updates the item data and ensures consistency with the bucket.
Args:
item_id (int): The ID of the tensor item to update.
item (torch.Tensor): The original tensor to be put into the buffer.
Returns:
None
"""
if
is_float8tensor
(
item
):
item_data
=
item
.
_data
else
:
item_data
=
item
.
data
if
self
.
is_data_distributed
:
slice_start
,
slice_end
=
self
.
_get_item_slice_in_shard
(
item_id
)
item_data
=
item_data
.
flatten
()[
slice_start
:
slice_end
]
local_index_start
,
local_index_end
=
self
.
_get_item_local_index
(
item_id
)
shard
=
self
.
data
[
local_index_start
:
local_index_end
]
if
shard
.
numel
()
>
0
:
shard
.
data
.
copy_
(
item_data
.
flatten
())
def
get_item
(
self
,
item_id
:
int
,
only_shard
:
bool
=
False
)
->
torch
.
Tensor
:
"""
Retrieve a tensor item managed by the `DataParallelBuffer` instance.
The storage of the item is mapped to the communication bucket.
If `only_shard` is True, returns only the shard of the item corresponding
to the current process.
Otherwise, returns the entire item.
Args:
item_id (int): The ID of the tensor item to retrieve.
only_shard (bool, optional): Whether to return only the shard of the
item. Defaults to False.
Returns:
torch.Tensor: The retrieved tensor item.
"""
if
only_shard
:
start
,
end
=
self
.
_get_item_local_shard_index
(
item_id
)
else
:
start
,
end
=
self
.
_get_item_local_index
(
item_id
)
return
self
.
data
[
start
:
end
]
def
get_item_from_bucket
(
self
,
bucket
:
Bucket
,
item_id
:
int
):
"""get item from bucket."""
item_index
=
self
.
item_index_map
[
item_id
]
bucket_index
=
self
.
bucket_index
start_index
=
item_index
.
global_data_index
-
bucket_index
.
global_data_index
end_index
=
start_index
+
item_index
.
size
item
=
bucket
.
data
[
start_index
:
end_index
]
return
item
def
get_shard_from_bucket
(
self
,
bucket
:
Bucket
):
"""Get the local sharding of the bucket."""
shard_bucket_index
=
self
.
shard_bucket_index
offset
=
shard_bucket_index
.
bucket_data_index
shard_size
=
shard_bucket_index
.
size
shard
=
bucket
.
data
[
offset
:
offset
+
shard_size
]
return
shard
def
get_shard_from_local_buffer
(
self
)
->
torch
.
Tensor
:
"""Get the local sharding of the bucket."""
index
=
self
.
shard_bucket_index
return
self
.
data
[
index
.
local_data_index
:
index
.
local_data_index
+
index
.
size
]
@
dataclasses
.
dataclass
class
ParameterGroup
:
"""
A group of model parameters with associated metadata for data-parallel training.
This dataclass encapsulates a list of PyTorch parameters and additional information
necessary for managing data-parallel operations, such as data type, gradient requirements,
and buffer assignments.
"""
params
:
List
[
torch
.
nn
.
Parameter
]
dtype
:
Optional
[
torch
.
dtype
]
=
None
is_expert_param
:
bool
=
False
requires_grad
:
Optional
[
bool
]
=
None
fsdp_unit_id
:
Optional
[
int
]
=
None
data_parallel_world_size
:
Optional
[
int
]
=
None
model_weight_buffer
:
Optional
[
DataParallelBuffer
]
=
None
main_weight_buffer
:
Optional
[
DataParallelBuffer
]
=
None
main_grad_buffer
:
Optional
[
DataParallelBuffer
]
=
None
def
_get_parameter_groups
(
module
:
torch
.
nn
.
Module
,
policy
:
BucketingPolicy
,
meta_device_init_fp8_params
:
dict
,
bucket_group_by_fsdp_unit
:
bool
=
True
,
):
"""
Get the parameter group for the given module and parameters.
"""
param_to_name
=
{
p
:
name
for
name
,
p
in
module
.
named_parameters
()}
fsdp_units
=
[]
if
policy
.
fsdp_unit_modules
:
param_to_id
=
{}
for
i
,
p
in
enumerate
(
module
.
parameters
()):
param_to_id
[
p
]
=
i
fsdp_modules
=
[]
for
m
in
module
.
modules
():
# Skip nested FSDP module.
if
any
(
is_submodule
(
module
,
fsdp_module
)
for
fsdp_module
in
fsdp_modules
):
continue
if
isinstance
(
m
,
tuple
(
policy
.
fsdp_unit_modules
)):
fsdp_units
.
append
([
param_to_name
[
p
]
for
p
in
m
.
parameters
()])
fsdp_modules
.
append
(
m
)
def
_does_param_require_new_bucket
(
param
):
"""
Split shared embedding parameters into separate bucket if using distributed
optimizer that makes use of reduce-scatters instead of all-reduces.
This ensures that the first and last pipeline stage partition optimizer state
for the shared embedding parameters the same way across DP replicas, allowing
the DP reduce-scatter to be before the embedding all-reduce.
"""
return
(
getattr
(
param
,
"shared_embedding"
,
False
)
and
policy
.
data_parallel_sharding_strategy
!=
"no_shard"
)
is_expert_parameter
=
lambda
p
:
not
getattr
(
p
,
'allreduce'
,
True
)
# Step 1: Group the parameters according to their execution order and attributes.
parameter_groups
=
[]
for
name
,
param
in
module
.
named_parameters
():
param_attrs
=
dict
(
dtype
=
(
"float8"
if
is_float8tensor
(
param
)
or
meta_device_init_fp8_params
.
get
(
name
,
False
)
else
param
.
dtype
),
is_expert_param
=
is_expert_parameter
(
param
),
requires_grad
=
param
.
requires_grad
,
fsdp_unit_id
=
None
,
)
for
fsdp_unit_id
,
fsdp_unit
in
enumerate
(
fsdp_units
):
if
name
in
fsdp_unit
:
param_attrs
[
"fsdp_unit_id"
]
=
fsdp_unit_id
break
found_group
=
False
for
param_group
in
parameter_groups
:
group_attrs
=
{
key
:
value
for
key
,
value
in
param_group
.
__dict__
.
items
()
if
key
in
param_attrs
}
if
group_attrs
==
param_attrs
:
param_group
.
params
.
append
(
param
)
found_group
=
True
break
if
not
found_group
:
parameter_groups
.
append
(
ParameterGroup
([
param
],
**
param_attrs
))
# Step 2: Bucket the parameters based on the guide bucket size.
suggested_bucket_size
=
policy
.
suggested_bucket_size
bucket_groups
=
[]
for
group
in
parameter_groups
:
bucket
=
[]
basic_attrs
=
{
key
:
value
for
key
,
value
in
group
.
__dict__
.
items
()
if
key
in
[
'dtype'
,
'is_expert_param'
,
'requires_grad'
,
'fsdp_unit_id'
]
}
for
param
in
group
.
params
:
if
_does_param_require_new_bucket
(
param
):
if
len
(
bucket
)
>
0
:
bucket_groups
.
append
(
ParameterGroup
(
bucket
,
**
basic_attrs
))
bucket_groups
.
append
(
ParameterGroup
([
param
],
**
basic_attrs
))
bucket
=
[]
continue
bucket
.
append
(
param
)
if
(
group
.
fsdp_unit_id
is
None
and
suggested_bucket_size
and
sum
([
p
.
numel
()
for
p
in
bucket
])
>=
suggested_bucket_size
):
bucket_groups
.
append
(
ParameterGroup
(
bucket
,
**
basic_attrs
))
bucket
=
[]
continue
if
bucket
:
bucket_groups
.
append
(
ParameterGroup
(
bucket
,
**
basic_attrs
))
param_to_param_group
=
{}
for
group_id
,
group
in
enumerate
(
bucket_groups
):
for
param
in
group
.
params
:
param_to_param_group
[
param
]
=
group_id
# Generate the groups of collective buckets, where each group aggregates
# the collectives per FSDP unit. This improves performance by reducing
# the number of collective calls and increasing per-collective efficiency.
#
# Set default aggregate buckets of bucket.
bucket_to_bucket_group
=
{}
for
bucket_id
in
range
(
len
(
bucket_groups
)):
bucket_to_bucket_group
[
bucket_id
]
=
[
bucket_id
]
# Set aggregate buckets by FSDP units.
if
bucket_group_by_fsdp_unit
:
bucket_group_map
=
{}
for
bucket_id
,
param_group
in
enumerate
(
bucket_groups
):
if
param_group
.
fsdp_unit_id
is
None
:
continue
id
=
(
param_group
.
fsdp_unit_id
,
param_group
.
is_expert_param
)
if
id
not
in
bucket_group_map
:
bucket_group_map
[
id
]
=
[]
bucket_group_map
[
id
].
append
(
bucket_id
)
for
bucket_group
in
bucket_group_map
.
values
():
for
bucket_id
in
bucket_group
:
bucket_to_bucket_group
[
bucket_id
]
=
bucket_group
return
(
bucket_groups
,
param_to_param_group
,
bucket_to_bucket_group
)
class
ParamAndGradBuffer
:
"""A class that manages parameter grouping, buffer allocation, and
communication operations for data-parallel distributed training.
This class provides functionality to:
1. Group parameters based on their data types and communication group sizes
2. Create contiguous buffers for model weights, gradients, and high-precision
main weights
3. Handle parameter unsharding, gradient reduction, and weight
synchronization operations
Key Features:
- Efficient parameter grouping based on data types and communication patterns
- Memory-efficient contiguous buffer allocation
- Support for mixed-precision training with main weights
- Distributed operations including parameters all-gather and gradients
reduce-scatter/all-reduce
- Synchronized weight updates between model and main weights
Note:
This class is designed for distributed training scenarios where efficient
parameter management and communication are crucial for performance.
Args:
ddp_config (DistributedDataParallelConfig): The distributed data parallel
configuration.
module (torch.nn.Module): The module whose parameters are to be grouped
and flatten.
bucketing_policy (BucketingPolicy): The bucketing policy.
data_parallel_group (torch.distributed.ProcessGroup): The data parallel group.
expert_data_parallel_group (Optional[torch.distributed.ProcessGroup]):
The expert data parallel group.
preserve_fp32_weights (bool): Whether to preserve FP32 weights.
grad_reduce_in_fp32 (bool): Whether to reduce gradients in FP32.
gradient_scaling_factor (Optional[float]): The gradient scaling factor.
expert_gradient_scaling_factor (Optional[float]): The expert gradient
scaling factor.
device (torch.device): The parameter and gradient buffer device.
only_create_grad_buffer_and_main_weight_buffer_for_param_requires_grad (bool):
Whether to only create the gradient buffer and main weight buffer
for parameters that require gradients. Default is True.
"""
def
__init__
(
self
,
ddp_config
:
DistributedDataParallelConfig
,
module
:
torch
.
nn
.
Module
,
bucketing_policy
:
BucketingPolicy
,
data_parallel_group
:
torch
.
distributed
.
ProcessGroup
,
expert_data_parallel_group
:
Optional
[
torch
.
distributed
.
ProcessGroup
]
=
None
,
inter_data_parallel_group
:
Optional
[
torch
.
distributed
.
ProcessGroup
]
=
None
,
preserve_fp32_weights
:
bool
=
True
,
grad_reduce_in_fp32
:
bool
=
True
,
gradient_scaling_factor
:
Optional
[
float
]
=
None
,
expert_gradient_scaling_factor
:
Optional
[
float
]
=
None
,
device
:
torch
.
device
=
torch
.
device
(
'cuda'
),
only_create_grad_buffer_and_main_weight_buffer_for_param_requires_grad
:
bool
=
True
,
reset_parameters_for_meta_device_init_module
:
bool
=
False
,
):
self
.
ddp_config
=
ddp_config
self
.
module
=
module
self
.
bucketing_policy
=
bucketing_policy
self
.
param_to_name
=
{
p
:
name
for
name
,
p
in
self
.
module
.
named_parameters
()}
self
.
preserve_fp32_weights
=
preserve_fp32_weights
self
.
grad_reduce_in_fp32
=
grad_reduce_in_fp32
self
.
data_parallel_group
=
data_parallel_group
self
.
expert_data_parallel_group
=
expert_data_parallel_group
self
.
inter_data_parallel_group
=
inter_data_parallel_group
self
.
params
=
list
(
module
.
parameters
())
self
.
gradient_scaling_factor
=
gradient_scaling_factor
self
.
expert_gradient_scaling_factor
=
expert_gradient_scaling_factor
self
.
device
=
device
self
.
only_create_grad_buffer_and_main_weight_buffer_for_param_requires_grad
=
(
only_create_grad_buffer_and_main_weight_buffer_for_param_requires_grad
)
self
.
reset_parameters_for_meta_device_init_module
=
(
reset_parameters_for_meta_device_init_module
)
# User buffer registration related settings
if
self
.
ddp_config
.
nccl_ub
:
# Since the user buffer registration requires (non-dynamic) persistent memory,
# it always uses fsdp double buffer.
self
.
ddp_config
.
fsdp_double_buffer
=
True
# Initialize the NCCL memory pool.
global
NCCL_MEMORY_POOL
NCCL_MEMORY_POOL
=
nccl_allocator
.
create_nccl_mem_pool
()
if
torch
.
distributed
.
get_rank
()
==
0
:
logging
.
info
(
f
"[Rank
{
torch
.
distributed
.
get_rank
()
}
] Created NCCL memory pool for
\
UserBuffer Registration"
)
logging
.
info
(
f
"[Rank
{
torch
.
distributed
.
get_rank
()
}
] FSDP double buffer is enabled."
)
# If using nccl_ub, it returns a function that registers buffers to the NCCL memory pool
# Buffer is registered to data_parallel_group and expert_data_parallel_group if it exists
# In the case of not using nccl_ub, it returns a nullcontext
self
.
mem_alloc_context
=
self
.
get_mem_alloc_context
(
group
=
self
.
data_parallel_group
,
additional_group
=
self
.
expert_data_parallel_group
)
# Mark fp8 param.
meta_device_init_fp8_params
=
{}
if
reset_parameters_for_meta_device_init_module
:
for
m
in
module
.
modules
():
if
not
isinstance
(
m
,
TransformerEngineBaseModule
):
continue
for
name
,
param
in
m
.
named_parameters
(
recurse
=
False
):
# The fp8 param initialized from the meta device may NOT be
# an fp8 tensor, according to the internal logic of the TE
# to determine whether this parameter is fp8 or not.
fp8_meta_index
=
m
.
param_init_meta
[
name
].
fp8_meta_index
if
m
.
primary_weights_in_fp8
and
fp8_meta_index
is
not
None
:
meta_device_init_fp8_params
[
self
.
param_to_name
[
param
]]
=
True
# Get the parameter groups.
(
self
.
parameter_groups
,
self
.
param_to_param_group
,
self
.
bucket_to_bucket_group
)
=
(
_get_parameter_groups
(
module
,
bucketing_policy
,
meta_device_init_fp8_params
)
)
self
.
_init_each_parameter_group_buffers
(
meta_device_init_fp8_params
)
# Initialize the optimizer named parameters.
self
.
optimizer_named_parameters
=
self
.
_init_optimizer_named_parameters
()
self
.
_log_parameter_groups
()
def
get_mem_alloc_context
(
self
,
group
=
None
,
additional_group
=
None
):
"""
Get the memory allocation context for the parameter and gradient buffers.
"""
if
self
.
ddp_config
.
nccl_ub
:
assert
nccl_allocator
is
not
None
,
"NCCL allocator is not available."
global
NCCL_MEMORY_POOL
if
group
is
None
:
# data parallel group is a default group for user buffer registration
group
=
self
.
data_parallel_group
if
additional_group
is
None
:
# register buffers to the default group directly using apex memory allocator
mem_alloc_context
=
functools
.
partial
(
nccl_allocator
.
nccl_mem
,
NCCL_MEMORY_POOL
,
group
=
group
)
else
:
# In case of MoE, we need to register buffer to both DP and EP communicator groups.
# Custom DualUBRAllocator class is used to register buffers to both groups.
# Register buffers to the data_parallel_group using apex memory allocator
# and register buffers to the expert_data_parallel_group.
assert
group
!=
additional_group
,
"Group and additional group must be different."
mem_alloc_context
=
functools
.
partial
(
DualUBRAllocator
,
NCCL_MEMORY_POOL
,
group
=
group
,
additional_group
=
additional_group
,
)
return
mem_alloc_context
else
:
return
nullcontext
def
_log_parameter_groups
(
self
):
"""
Log the parameter groups for all pipeline stages.
"""
# Log buckets for all PP stages.
if
(
parallel_state
.
get_data_parallel_rank
(
with_context_parallel
=
True
)
==
0
and
parallel_state
.
get_tensor_model_parallel_rank
()
==
0
):
bucket_groups
=
self
.
parameter_groups
param_to_name
=
self
.
param_to_name
log_strs
=
[]
log_strs
.
append
(
f
'Number of parameter groups for FSDP:
{
len
(
bucket_groups
)
}
'
)
for
index
,
group
in
enumerate
(
bucket_groups
):
numel
=
0
for
param
in
group
.
params
:
numel
+=
param
.
numel
()
log_strs
.
append
(
f
"Params for group
{
index
+
1
}
(
{
numel
}
elements, dtype:
{
group
.
dtype
}
, "
f
"fsdp_unit_id:
{
group
.
fsdp_unit_id
}
, "
f
"has_weight_buffer:
{
group
.
model_weight_buffer
is
not
None
}
, "
f
"has_grad_buffer:
{
group
.
main_grad_buffer
is
not
None
}
, "
f
"has_main_weight_buffer:
{
group
.
main_weight_buffer
is
not
None
}
):"
)
for
param
in
group
.
params
:
log_strs
.
append
(
f
'
\t
{
param_to_name
[
param
]
}
'
)
log_on_each_pipeline_stage
(
logger
,
logging
.
INFO
,
'
\n
'
.
join
(
log_strs
))
def
_init_each_parameter_group_buffers
(
self
,
meta_device_init_fp8_params
):
"""
Initialize the buffers for each parameter group.
"""
data_parallel_sharding_strategy
=
self
.
ddp_config
.
data_parallel_sharding_strategy
if
data_parallel_sharding_strategy
==
'no_shard'
:
is_model_weight_buffer_distributed
=
False
is_main_weight_buffer_distributed
=
False
is_grad_buffer_distributed
=
False
elif
data_parallel_sharding_strategy
==
'optim'
:
is_model_weight_buffer_distributed
=
False
is_main_weight_buffer_distributed
=
True
is_grad_buffer_distributed
=
False
elif
data_parallel_sharding_strategy
==
'optim_grads'
:
is_model_weight_buffer_distributed
=
False
is_main_weight_buffer_distributed
=
True
is_grad_buffer_distributed
=
True
elif
data_parallel_sharding_strategy
==
'optim_grads_params'
:
is_model_weight_buffer_distributed
=
True
is_main_weight_buffer_distributed
=
True
is_grad_buffer_distributed
=
True
else
:
raise
ValueError
(
f
'Invalid data_parallel_sharding_strategy:
{
data_parallel_sharding_strategy
}
'
)
if
self
.
ddp_config
.
nccl_ub
:
assert
self
.
ddp_config
.
fsdp_double_buffer
,
(
"NCCL UB is only supported with FSDP double buffer. "
"Please set fsdp_double_buffer=True in the ddp config."
)
if
self
.
ddp_config
.
fsdp_double_buffer
:
UB_BUFFER_NUM
=
2
self
.
weight_alloc
=
FixedPoolAllocator
(
name
=
"fsdp_params"
,
fsdp_param_groups
=
self
.
parameter_groups
,
size
=
UB_BUFFER_NUM
)
self
.
main_grad_alloc
=
FixedPoolAllocator
(
name
=
"fsdp_grads"
,
fsdp_param_groups
=
self
.
parameter_groups
,
size
=
UB_BUFFER_NUM
)
self
.
double_buf_units
=
self
.
weight_alloc
.
fsdp_double_buffer_units
else
:
self
.
weight_alloc
=
StorageResizeBasedBucketAllocator
()
self
.
main_grad_alloc
=
None
self
.
buffer_all_in_one
=
True
preserve_fp32_weights
=
self
.
preserve_fp32_weights
grad_reduce_in_fp32
=
self
.
grad_reduce_in_fp32
buffer_size
=
{
torch
.
float32
:
0
,
torch
.
float16
:
0
,
torch
.
bfloat16
:
0
,
"float8"
:
0
}
for
group_id
,
group
in
enumerate
(
self
.
parameter_groups
):
dp_group
=
(
self
.
data_parallel_group
if
not
group
.
is_expert_param
else
self
.
expert_data_parallel_group
)
group
.
data_parallel_world_size
=
dp_group
.
size
()
gradient_scaling_factor
=
(
self
.
gradient_scaling_factor
if
not
group
.
is_expert_param
else
self
.
expert_gradient_scaling_factor
)
one_param
=
group
.
params
[
0
]
is_dtype_float8
=
is_float8tensor
(
one_param
)
or
meta_device_init_fp8_params
.
get
(
self
.
param_to_name
[
one_param
],
False
)
if
is_dtype_float8
:
param_dtype
=
torch
.
uint8
grad_dtype
=
torch
.
bfloat16
else
:
param_dtype
=
group
.
params
[
0
].
dtype
grad_dtype
=
param_dtype
should_create_grad_buffer_or_main_weight_buffer
=
(
not
self
.
only_create_grad_buffer_and_main_weight_buffer_for_param_requires_grad
or
group
.
requires_grad
)
# Initialize the model weight buffer.
if
data_parallel_sharding_strategy
!=
'no_shard'
:
group
.
model_weight_buffer
=
DataParallelBuffer
(
self
.
ddp_config
,
group
.
params
,
is_data_distributed
=
is_model_weight_buffer_distributed
and
group
.
data_parallel_world_size
>
1
,
dtype
=
param_dtype
,
device
=
self
.
device
,
data_parallel_group
=
dp_group
,
inter_data_parallel_group
=
self
.
inter_data_parallel_group
,
init_meta_only
=
True
,
is_dtype_float8
=
is_dtype_float8
,
temporary_bucket_allocator
=
self
.
weight_alloc
,
bucket_id
=
group_id
,
mem_alloc_context
=
self
.
mem_alloc_context
,
)
# Initialize the main weight buffer.
if
should_create_grad_buffer_or_main_weight_buffer
and
preserve_fp32_weights
:
group
.
main_weight_buffer
=
DataParallelBuffer
(
self
.
ddp_config
,
group
.
params
,
is_data_distributed
=
is_main_weight_buffer_distributed
and
group
.
data_parallel_world_size
>
1
,
dtype
=
torch
.
float32
,
device
=
self
.
device
,
data_parallel_group
=
dp_group
,
inter_data_parallel_group
=
self
.
inter_data_parallel_group
,
init_meta_only
=
True
,
bucket_id
=
group_id
,
mem_alloc_context
=
self
.
mem_alloc_context
,
)
# Initialize the main grad buffer.
if
should_create_grad_buffer_or_main_weight_buffer
:
group
.
main_grad_buffer
=
DataParallelBuffer
(
self
.
ddp_config
,
group
.
params
,
is_data_distributed
=
is_grad_buffer_distributed
and
group
.
data_parallel_world_size
>
1
,
dtype
=
torch
.
float32
if
grad_reduce_in_fp32
else
grad_dtype
,
device
=
self
.
device
,
data_parallel_group
=
dp_group
,
inter_data_parallel_group
=
self
.
inter_data_parallel_group
,
init_meta_only
=
True
,
is_dtype_float8
=
not
grad_reduce_in_fp32
and
grad_dtype
is
torch
.
uint8
,
temporary_bucket_allocator
=
self
.
main_grad_alloc
,
gradient_scaling_factor
=
gradient_scaling_factor
,
bucket_id
=
group_id
,
mem_alloc_context
=
self
.
mem_alloc_context
,
)
if
grad_reduce_in_fp32
:
buffer_size
[
torch
.
float32
]
+=
group
.
main_grad_buffer
.
data_size
elif
group
.
main_grad_buffer
.
is_dtype_float8
:
buffer_size
[
"float8"
]
+=
group
.
main_grad_buffer
.
data_size
else
:
buffer_size
[
group
.
main_grad_buffer
.
dtype
]
+=
group
.
main_grad_buffer
.
data_size
reset_context_args
=
{
"init_param_with_fp8"
:
self
.
ddp_config
.
fp8_param_gather
}
module_reset_flag
=
{}
if
self
.
reset_parameters_for_meta_device_init_module
:
self
.
param_to_direct_module
=
{}
for
name
,
m
in
self
.
module
.
named_modules
():
for
p
in
m
.
parameters
(
recurse
=
False
):
self
.
param_to_direct_module
[
p
]
=
(
name
,
m
)
meta_params_numel
=
0
cuda_params_numel
=
0
cpu_params_numel
=
0
for
group
in
self
.
parameter_groups
:
for
p
in
group
.
params
:
if
p
.
is_meta
:
meta_params_numel
+=
p
.
numel
()
elif
p
.
device
.
type
==
'cuda'
:
cuda_params_numel
+=
p
.
numel
()
else
:
cpu_params_numel
+=
p
.
numel
()
log_str
=
(
f
"Meta params numel:
{
meta_params_numel
/
1_000_000
:.
2
f
}
M, "
f
"CUDA params numel:
{
cuda_params_numel
/
1_000_000
:.
2
f
}
M, "
f
"CPU params numel:
{
cpu_params_numel
/
1_000_000
:.
2
f
}
M"
)
log_on_each_pipeline_stage
(
logger
,
logging
.
INFO
,
log_str
)
# Initialize the model weight buffer data of each parameter group.
for
group
in
self
.
parameter_groups
:
wbuf
=
group
.
model_weight_buffer
if
wbuf
:
with
self
.
mem_alloc_context
():
wbuf
.
data
=
torch
.
empty
(
wbuf
.
data_size
,
dtype
=
wbuf
.
dtype
,
device
=
self
.
device
)
bucket
=
wbuf
.
fetch_bucket
()
mbuf
=
group
.
main_weight_buffer
if
mbuf
:
mbuf
.
data
=
torch
.
empty
(
mbuf
.
data_size
,
dtype
=
mbuf
.
dtype
,
device
=
self
.
device
)
for
item_id
,
p
in
enumerate
(
group
.
params
):
if
wbuf
:
if
self
.
reset_parameters_for_meta_device_init_module
and
p
.
is_meta
:
m_name
,
m
=
self
.
param_to_direct_module
[
p
]
if
not
module_reset_flag
.
get
(
m_name
,
False
)
and
hasattr
(
m
,
"reset_parameters"
):
old_params
=
list
(
m
.
parameters
(
recurse
=
False
))
# If the GPU memory over threshold, empty cache to leave
# some memory for initialization of the model on the
# CUDA device.
if
check_gpu_memory
(
threshold
=
0.5
):
gc
.
collect
()
torch
.
cuda
.
empty_cache
()
m
.
to_empty
(
device
=
self
.
device
,
recurse
=
False
)
if
is_te_min_version
(
"0.9.0"
)
and
not
isinstance
(
m
,
TransformerEngineBaseModule
):
reset_context_args
[
"with_cuda_rng_tracker"
]
=
True
with
ResetParametersContext
(
**
reset_context_args
):
m
.
reset_parameters
()
module_reset_flag
[
m_name
]
=
True
new_params
=
list
(
m
.
parameters
(
recurse
=
False
))
self
.
_reset_parameters
(
old_params
,
new_params
)
p
=
group
.
params
[
item_id
]
# After resetting parameters, delete fp8 transpose cache
# if we do not need keep cache.
if
not
self
.
ddp_config
.
keep_fp8_transpose_cache_when_using_custom_fsdp
:
for
_param
in
m
.
parameters
(
recurse
=
False
):
if
is_float8tensor
(
_param
):
_param
.
_transpose_invalid
=
True
_param
.
_transpose
=
None
assert
not
p
.
is_meta
,
(
self
.
param_to_name
[
p
],
module_reset_flag
)
wbuf
.
set_item
(
item_id
,
p
)
# reset the parameter data to the buffer
new_param_data
=
wbuf
.
get_item_from_bucket
(
bucket
,
item_id
).
view
(
p
.
shape
)
if
is_float8tensor
(
p
):
modify_underlying_storage
(
p
,
new_param_data
)
else
:
old_param_data
=
p
.
data
p
.
data
=
new_param_data
assert
old_param_data
.
_base
is
None
p
.
data
.
detach
().
copy_
(
old_param_data
)
del
old_param_data
if
mbuf
:
if
hasattr
(
p
,
'get_high_precision_init_val'
):
mbuf
.
set_item
(
item_id
,
p
.
get_high_precision_init_val
())
p
.
clear_high_precision_init_val
()
else
:
mbuf
.
set_item
(
item_id
,
p
)
if
wbuf
and
wbuf
.
is_data_distributed
:
"""
When MCore Custom FSDP `optim_grads_params` is enabled,
it is necessary to save the tensor local shard. This local shard is
accessible through the `fully_shard_param_local_shard`
attribute of the tensor.
This attribute contains the local shard of the fully
sharded parameter, which is essential for correctly
saving and loading the model state when using
`optim_grads_params` with FSDP.
Example:
>>> # Assuming `tensor` is a fully sharded parameter
>>> local_shard = tensor.fully_shard_param_local_shard
>>> # Save the local shard as needed
"""
local_shard
=
wbuf
.
get_item
(
item_id
,
only_shard
=
True
)
local_shard
.
fsdp_shard_orig_param
=
p
p
.
fully_shard_param_local_shard
=
local_shard
p
.
fully_shard_param_local_index
=
wbuf
.
locate_item_in_global_item
(
item_id
)
if
self
.
ddp_config
.
num_distributed_optimizer_instances
>
1
:
p
.
fsdp_instance_id
=
torch
.
distributed
.
get_rank
(
self
.
inter_data_parallel_group
)
else
:
p
.
fsdp_instance_id
=
0
if
wbuf
and
wbuf
.
is_data_distributed
:
wbuf
.
free_bucket_storage
()
# Allocate the main_weight buffer and main_grad buffer data in one buffer.
if
self
.
buffer_all_in_one
:
with
self
.
mem_alloc_context
():
self
.
buffer
=
{
torch
.
float32
:
torch
.
empty
(
buffer_size
[
torch
.
float32
],
dtype
=
torch
.
float32
,
device
=
self
.
device
),
torch
.
float16
:
torch
.
empty
(
buffer_size
[
torch
.
float16
],
dtype
=
torch
.
float16
,
device
=
self
.
device
),
torch
.
bfloat16
:
torch
.
empty
(
buffer_size
[
torch
.
bfloat16
],
dtype
=
torch
.
bfloat16
,
device
=
self
.
device
),
"float8"
:
torch
.
empty
(
buffer_size
[
"float8"
],
dtype
=
torch
.
uint8
,
device
=
self
.
device
),
}
offset
=
{
torch
.
float32
:
0
,
torch
.
float16
:
0
,
torch
.
bfloat16
:
0
,
"float8"
:
0
}
def
_alloc
(
dtype
,
size
):
if
self
.
buffer_all_in_one
:
if
dtype
==
torch
.
uint8
:
dtype
=
"float8"
data
=
self
.
buffer
[
dtype
][
offset
[
dtype
]
:
offset
[
dtype
]
+
size
]
offset
[
dtype
]
+=
size
return
data
return
torch
.
empty
(
size
,
dtype
=
dtype
,
device
=
self
.
device
)
# Initialize the main grad buffer data of each parameter group.
for
group
in
self
.
parameter_groups
:
gbuf
=
group
.
main_grad_buffer
if
not
gbuf
:
continue
with
self
.
mem_alloc_context
():
gbuf
.
data
=
_alloc
(
gbuf
.
dtype
,
gbuf
.
data_size
)
gbuf
.
data
.
zero_
()
for
item_id
,
p
in
enumerate
(
group
.
params
):
p
.
fsdp_managed_main_grad
=
gbuf
.
get_item
(
item_id
)
p
.
_gbuf
=
gbuf
p
.
_item_id
=
item_id
def
main_grad_getter
(
p
):
# Make sure main_grad memory storage ready.
bucket
=
p
.
_gbuf
.
fetch_bucket
()
gbuf
=
p
.
_gbuf
item_id
=
p
.
_item_id
return
gbuf
.
get_item_from_bucket
(
bucket
,
item_id
).
view
(
p
.
shape
)
setattr
(
p
.
__class__
,
'main_grad'
,
property
(
main_grad_getter
))
if
gbuf
.
is_data_distributed
:
gbuf
.
free_bucket_storage
()
gc
.
collect
()
torch
.
cuda
.
empty_cache
()
def
_reset_parameters
(
self
,
old_params
,
new_params
):
assert
len
(
old_params
)
==
len
(
new_params
)
param_map
=
{}
for
old_param
,
new_param
in
zip
(
old_params
,
new_params
):
param_map
[
old_param
]
=
new_param
self
.
param_to_name
[
new_param
]
=
self
.
param_to_name
[
old_param
]
del
self
.
param_to_name
[
old_param
]
self
.
param_to_param_group
[
new_param
]
=
self
.
param_to_param_group
[
old_param
]
del
self
.
param_to_param_group
[
old_param
]
self
.
param_to_direct_module
[
new_param
]
=
self
.
param_to_direct_module
[
old_param
]
del
self
.
param_to_direct_module
[
old_param
]
for
item_id
,
p
in
enumerate
(
self
.
params
):
if
p
in
param_map
:
new_p
=
param_map
[
p
]
self
.
params
[
item_id
]
=
new_p
for
group
in
self
.
parameter_groups
:
for
item_id
,
p
in
enumerate
(
group
.
params
):
if
p
not
in
param_map
:
continue
new_p
=
param_map
[
p
]
group
.
params
[
item_id
]
=
new_p
for
buf
in
[
group
.
model_weight_buffer
,
group
.
main_weight_buffer
,
group
.
main_grad_buffer
,
]:
if
buf
is
None
:
continue
buf
.
param_idx
[
new_p
]
=
buf
.
param_idx
[
p
]
del
buf
.
param_idx
[
p
]
def
scale_gradients
(
self
,
scaling_factor
:
float
)
->
None
:
"""Scale the gradient data by `scaling_factor`."""
for
group
in
self
.
parameter_groups
:
if
group
.
main_grad_buffer
is
None
:
continue
group
.
main_grad_buffer
.
data
*=
scaling_factor
self
.
update_main_grads
()
def
zero_grad
(
self
):
"""
Zero out the underlying grad_buffer and reset all buckets in preparation
for the next iteration of training.
"""
for
_
,
param
in
self
.
optimizer_named_parameters
:
if
param
.
grad
is
not
None
and
param
.
grad
.
_base
is
None
:
# For tensors that are not referenced, trying to use storage
# resize to make memory free immediately.
_free_storage
(
param
.
grad
)
param
.
grad
=
None
for
group
in
self
.
parameter_groups
:
if
group
.
main_grad_buffer
is
None
:
continue
group
.
main_grad_buffer
.
data
.
zero_
()
def
_init_optimizer_named_parameters
(
self
)
->
List
[
Tuple
[
str
,
torch
.
nn
.
Parameter
]]:
named_parameters
=
[]
for
pg
in
self
.
parameter_groups
:
if
pg
.
main_grad_buffer
is
None
:
continue
optimizer_state_is_shard
=
pg
.
main_grad_buffer
.
is_data_distributed
or
(
pg
.
main_weight_buffer
and
pg
.
main_weight_buffer
.
is_data_distributed
)
for
item_id
,
orig_param
in
enumerate
(
pg
.
params
):
if
pg
.
main_weight_buffer
:
param
=
pg
.
main_weight_buffer
.
get_item
(
item_id
,
only_shard
=
optimizer_state_is_shard
)
elif
pg
.
model_weight_buffer
:
param
=
pg
.
model_weight_buffer
.
get_item
(
item_id
,
only_shard
=
optimizer_state_is_shard
)
else
:
param
=
orig_param
def
set_param_attribute_closure
(
param
,
orig_param
):
def
set_param_attribute
():
for
attr_name
in
[
'requires_grad'
,
'sequence_parallel'
,
'shared'
,
'tensor_model_parallel'
,
'partition_dim'
,
'partition_stride'
,
'is_embedding_or_output_parameter'
,
]:
if
hasattr
(
orig_param
,
attr_name
):
setattr
(
param
,
attr_name
,
getattr
(
orig_param
,
attr_name
))
return
set_param_attribute
setattr
(
param
,
'reset_attribute'
,
set_param_attribute_closure
(
param
,
orig_param
))
setattr
(
param
,
'orig_param'
,
orig_param
)
param
.
reset_attribute
()
named_parameters
.
append
((
self
.
param_to_name
[
orig_param
],
param
))
return
named_parameters
def
update_main_grads
(
self
):
"""Update the main gradients for preparing the optimizer step."""
update_shard_main_grad
=
self
.
ddp_config
.
data_parallel_sharding_strategy
in
[
'optim'
,
'optim_grads'
,
'optim_grads_params'
,
]
for
_
,
param
in
self
.
optimizer_named_parameters
:
param
.
reset_attribute
()
orig_param
=
param
.
orig_param
group
=
self
.
parameter_groups
[
self
.
param_to_param_group
[
orig_param
]]
item_id
=
group
.
main_grad_buffer
.
param_idx
[
orig_param
]
optimizer_grad
=
group
.
main_grad_buffer
.
get_item
(
item_id
,
only_shard
=
update_shard_main_grad
)
# The presence of main_grad_buffer but no main_weight_buffer means
# that a precision-aware optimizer is used.
if
group
.
main_weight_buffer
is
None
:
setattr
(
param
,
'decoupled_grad'
,
optimizer_grad
if
optimizer_grad
.
numel
()
>
0
else
None
)
else
:
setattr
(
param
,
'grad'
,
optimizer_grad
.
to
(
param
.
dtype
)
if
optimizer_grad
.
numel
()
>
0
else
None
,
)
@
property
def
num_buckets
(
self
):
"""Return the number of buckets."""
return
len
(
self
.
parameter_groups
)
@
torch
.
no_grad
()
def
copy_main_weights_to_model_weights
(
self
):
"""Update the model weights from the main weights."""
for
pg
in
self
.
parameter_groups
:
mbuf
=
pg
.
main_weight_buffer
wbuf
=
pg
.
model_weight_buffer
if
mbuf
is
None
:
continue
fp8_params
=
[]
shard_fp32_from_fp8
=
[]
shard_offsets_in_fp8
=
[]
shard_model_params
=
[]
for
param
in
pg
.
params
:
item_id
=
mbuf
.
param_idx
[
param
]
if
wbuf
:
if
wbuf
.
is_data_distributed
or
mbuf
.
is_data_distributed
:
model_param
=
wbuf
.
get_item
(
item_id
,
only_shard
=
True
)
main_weight
=
mbuf
.
get_item
(
item_id
,
only_shard
=
True
)
else
:
model_param
=
wbuf
.
get_item
(
item_id
)
main_weight
=
mbuf
.
get_item
(
item_id
)
else
:
assert
not
mbuf
.
is_data_distributed
model_param
=
param
main_weight
=
pg
.
main_weight_buffer
.
get_item
(
item_id
)
if
is_float8tensor
(
param
):
fp8_params
.
append
(
param
)
if
model_param
.
numel
()
==
0
:
shard_fp32_from_fp8
.
append
(
None
)
shard_offsets_in_fp8
.
append
(
None
)
shard_model_params
.
append
(
None
)
else
:
shard_fp32_from_fp8
.
append
(
main_weight
)
shard_offsets_in_fp8
.
append
(
wbuf
.
locate_item_in_global_item
(
item_id
)[
0
])
shard_model_params
.
append
(
model_param
)
continue
if
model_param
.
numel
()
>
0
:
model_param
.
data
.
copy_
(
main_weight
.
view
(
model_param
.
shape
))
quantize_param_shard
(
fp8_params
,
shard_fp32_from_fp8
,
shard_offsets_in_fp8
,
wbuf
.
data_parallel_group
,
shard_model_params
,
)
@
torch
.
no_grad
()
def
copy_model_weights_to_main_weights
(
self
):
"""Copy the model weights to the main weights."""
for
group
in
self
.
parameter_groups
:
mbuf
=
group
.
main_weight_buffer
if
mbuf
is
None
:
continue
wbuf
=
group
.
model_weight_buffer
if
mbuf
.
is_data_distributed
:
copyin_data
=
wbuf
.
get_shard_from_local_buffer
()
else
:
copyin_data
=
wbuf
.
data
assert
mbuf
.
data
.
numel
()
==
copyin_data
.
numel
(),
(
f
"Master weight buffer size
{
mbuf
.
data
.
numel
()
}
does not match "
f
"model weight buffer size
{
copyin_data
.
numel
()
}
"
)
mbuf
.
data
.
copy_
(
copyin_data
.
data
)
def
all_gather_parameters
(
self
,
async_op
:
bool
=
True
):
"""All gather the parameters.
Args:
async_op (bool, optional): Whether to do the all-reduce
asynchronously. Defaults to False.
"""
assert
all
(
[
not
g
.
model_weight_buffer
.
is_data_distributed
for
g
in
self
.
parameter_groups
]
),
'all_gather_parameters() should only be called when parameters are not sharded.'
all_gather_ops
=
[]
for
g
in
self
.
parameter_groups
:
shard
=
g
.
model_weight_buffer
.
get_shard_from_local_buffer
()
all_gather_handler
=
torch
.
distributed
.
all_gather_into_tensor
(
output_tensor
=
g
.
model_weight_buffer
.
data
,
input_tensor
=
shard
,
group
=
g
.
model_weight_buffer
.
data_parallel_group
,
async_op
=
async_op
,
)
if
async_op
:
all_gather_ops
.
append
(
all_gather_handler
)
for
op
in
all_gather_ops
:
op
.
wait
()
def
reduce_scatter_gradients
(
self
,
async_op
:
bool
=
True
):
"""Reduce scatter the gradients.
Args:
async_op (bool, optional): Whether to do the all-reduce
asynchronously. Defaults to False.
"""
assert
all
(
[
not
g
.
main_grad_buffer
.
is_data_distributed
for
g
in
self
.
parameter_groups
]
),
'reduce_scatter_gradients() should only be called when gradients are not sharded.'
reduce_scatter_ops
=
[]
for
g
in
self
.
parameter_groups
:
gbuf
=
g
.
main_grad_buffer
if
gbuf
is
None
:
continue
scaling_factor
=
gbuf
.
gradient_scaling_factor
reduce_op
=
gradient_reduce_preprocessing
(
gbuf
.
data
,
scaling_factor
,
self
.
ddp_config
)
reduce_scatter_handler
=
torch
.
distributed
.
reduce_scatter_tensor
(
output
=
gbuf
.
get_shard_from_local_buffer
(),
input
=
gbuf
.
data
,
op
=
reduce_op
,
group
=
g
.
main_grad_buffer
.
data_parallel_group
,
async_op
=
async_op
,
)
if
async_op
:
reduce_scatter_ops
.
append
(
reduce_scatter_handler
)
for
op
in
reduce_scatter_ops
:
op
.
wait
()
def
all_reduce_gradients
(
self
,
async_op
:
bool
=
False
):
"""All reduce the gradients.
Args:
async_op (bool, optional): Whether to do the all-reduce
asynchronously. Defaults to False.
"""
assert
all
(
[
not
g
.
main_grad_buffer
.
is_data_distributed
for
g
in
self
.
parameter_groups
if
g
.
main_grad_buffer
]
),
'all_reduce_gradients() should only be called when gradients are not sharded.'
all_reduce_ops
=
[]
for
g
in
self
.
parameter_groups
:
gbuf
=
g
.
main_grad_buffer
if
gbuf
is
None
:
continue
scaling_factor
=
gbuf
.
gradient_scaling_factor
reduce_op
=
gradient_reduce_preprocessing
(
gbuf
.
data
,
scaling_factor
,
self
.
ddp_config
)
all_reduce_handler
=
torch
.
distributed
.
all_reduce
(
gbuf
.
data
,
op
=
reduce_op
,
group
=
gbuf
.
data_parallel_group
,
async_op
=
async_op
)
if
async_op
:
all_reduce_ops
.
append
(
all_reduce_handler
)
for
op
in
all_reduce_ops
:
op
.
wait
()
class
BucketStatus
(
Enum
):
"""
An enumeration of possible statuses for a data-parallel communication bucket.
Attributes:
EMPTY (int): The bucket is empty and not in use.
COMMUNICATING (int): The bucket is currently being used for communication.
READY_TO_USE (int): The bucket is filled with data and ready for use.
"""
EMPTY
=
1
COMMUNICATING
=
2
READY_TO_USE
=
3
class
GradReducePipeline
:
"""
Pipeline for reducing gradients.
"""
def
__init__
(
self
,
param_and_grad_buffer
:
ParamAndGradBuffer
,
rs_stream
:
Optional
[
torch
.
cuda
.
Stream
]
=
None
,
check_nans
:
bool
=
False
,
inter_fsdp_group_grad_reduce
:
bool
=
False
,
)
->
None
:
self
.
buffer
=
param_and_grad_buffer
self
.
grad_reduce_queue
=
[]
self
.
bucket_status
=
{
i
:
BucketStatus
.
EMPTY
for
i
in
range
(
self
.
buffer
.
num_buckets
)
if
self
.
buffer
.
parameter_groups
[
i
].
main_grad_buffer
}
self
.
bucket_grad_ready_params
=
[
set
()
for
_
in
range
(
self
.
buffer
.
num_buckets
)]
self
.
rs_stream
=
rs_stream
self
.
check_nans
=
check_nans
self
.
inter_fsdp_group_grad_reduce
=
inter_fsdp_group_grad_reduce
if
inter_fsdp_group_grad_reduce
:
self
.
hsdp_all_reduce_stream
=
torch
.
cuda
.
Stream
()
@
property
def
num_buckets
(
self
):
"""Return the number of buckets."""
return
self
.
buffer
.
num_buckets
def
reset
(
self
):
"""Handle the processing tasks and reset the pipeline."""
self
.
wait_for_previous_grad_reduce
(
0
)
for
bucket_id
,
grad_ready_params
in
enumerate
(
self
.
bucket_grad_ready_params
):
param_list
=
self
.
buffer
.
parameter_groups
[
bucket_id
].
params
n_params
=
len
(
param_list
)
param_to_name
=
self
.
buffer
.
param_to_name
assert
len
(
grad_ready_params
)
==
0
,
(
f
"Found
{
len
(
grad_ready_params
)
}
out of
{
n_params
}
parameters that are ready for "
f
"reduce-scatter/all-reduce, but the pipeline is being reset. "
f
"grad_ready_params:
{
[
param_to_name
[
p
]
for
p
in
grad_ready_params
]
}
"
f
"param_list:
{
[
param_to_name
[
p
]
for
p
in
param_list
]
}
"
)
for
bucket_id
,
_
in
self
.
bucket_status
.
items
():
gbuf
=
self
.
buffer
.
parameter_groups
[
bucket_id
].
main_grad_buffer
gbuf
.
free_bucket_storage
()
self
.
bucket_status
[
bucket_id
]
=
BucketStatus
.
EMPTY
def
reduce_gradients
(
self
,
params
:
List
[
torch
.
Tensor
],
suggested_queue_capacity
:
Optional
[
int
]
=
None
,
inter_fsdp_group_grad_reduce
:
bool
=
False
,
async_grad_reduce
:
bool
=
True
,
):
"""Reduce the gradients for the given parameters.
Args:
params (List[torch.Tensor]): The parameters.
suggested_queue_capacity (int, optional): The suggested queue capacity.
Defaults to None.
inter_fsdp_group_grad_reduce (bool, optional): Whether to use inter-group
gradient reduction. Defaults to False.
async_grad_reduce (bool, optional): Whether to do the gradient-reduce
asynchronously. Defaults to True.
"""
for
param
in
params
:
bucket_id
=
self
.
buffer
.
param_to_param_group
[
param
]
param_group
=
self
.
buffer
.
parameter_groups
[
bucket_id
]
if
not
param
.
requires_grad
:
assert
param_group
.
requires_grad
is
False
,
(
f
"Param
{
self
.
buffer
.
param_to_name
[
param
]
}
has requires_grad=False, "
f
"but it is in a parameter group with requires_grad=True."
)
continue
assert
param_group
.
requires_grad
,
(
f
"Param
{
self
.
buffer
.
param_to_name
[
param
]
}
has requires_grad=True, "
f
"but it is in a parameter group with requires_grad=False."
)
# Mark grad as ready for reduce-scatter/all-reduce.
self
.
bucket_grad_ready_params
[
bucket_id
].
add
(
param
)
if
len
(
self
.
bucket_grad_ready_params
[
bucket_id
])
==
len
(
param_group
.
params
):
self
.
wait_for_previous_grad_reduce
(
suggested_queue_capacity
=
suggested_queue_capacity
)
self
.
mark_bucket_ready
(
bucket_id
,
inter_fsdp_group_grad_reduce
,
async_op
=
async_grad_reduce
)
def
wait_for_previous_grad_reduce
(
self
,
suggested_queue_size
:
int
=
1
,
suggested_queue_capacity
:
Optional
[
int
]
=
None
):
"""
Wait for the previous reduce-scatter/all-reduce to finish.
Args:
suggested_queue_size (int, optional): The recommended queue size. Defaults to 1.
suggested_queue_capacity (Optional[int], optional): The recommended queue capacity.
Defaults to None.
"""
if
suggested_queue_capacity
is
not
None
:
queue_space
=
sum
(
[
self
.
buffer
.
parameter_groups
[
bucket_id
].
main_grad_buffer
.
bucket_index
.
size
for
_
,
_
,
bucket_id
in
self
.
grad_reduce_queue
]
)
while
queue_space
>
suggested_queue_capacity
:
grad_reduce_event
,
free_up_grad_bucket
,
bucket_id
=
self
.
grad_reduce_queue
.
pop
(
0
)
grad_reduce_event
.
wait
()
free_up_grad_bucket
()
queue_space
-=
self
.
buffer
.
parameter_groups
[
bucket_id
].
main_grad_buffer
.
bucket_index
.
size
else
:
suggested_queue_size
=
max
(
0
,
min
(
suggested_queue_size
,
self
.
buffer
.
num_buckets
-
1
))
while
len
(
self
.
grad_reduce_queue
)
>
suggested_queue_size
:
grad_reduce_event
,
free_up_grad_bucket
,
_
=
self
.
grad_reduce_queue
.
pop
(
0
)
grad_reduce_event
.
wait
()
free_up_grad_bucket
()
if
suggested_queue_size
==
0
and
self
.
inter_fsdp_group_grad_reduce
:
torch
.
cuda
.
current_stream
().
wait_stream
(
self
.
hsdp_all_reduce_stream
)
def
_enforce_double_buffer_limit
(
self
,
add_buckets
):
if
not
self
.
buffer
.
ddp_config
.
fsdp_double_buffer
:
return
param_groups
=
self
.
buffer
.
parameter_groups
double_buf_units
=
set
()
for
bucket_id
in
add_buckets
:
fsdp_unit_id
=
param_groups
[
bucket_id
].
fsdp_unit_id
if
fsdp_unit_id
in
self
.
buffer
.
double_buf_units
:
double_buf_units
.
add
(
fsdp_unit_id
)
assert
len
(
double_buf_units
)
<=
2
,
(
f
"Double buffer limit exceeded. "
f
"Current double_buf_units:
{
double_buf_units
}
."
)
keep_n
=
len
(
self
.
grad_reduce_queue
)
for
_
,
_
,
bucket_id
in
reversed
(
self
.
grad_reduce_queue
):
fsdp_unit_id
=
param_groups
[
bucket_id
].
fsdp_unit_id
double_buf_units
.
add
(
fsdp_unit_id
)
if
len
(
double_buf_units
)
>
2
:
keep_n
-=
1
self
.
wait_for_previous_grad_reduce
(
keep_n
)
def
_bucket_group_gradient_reduce
(
self
,
bucket_group
:
List
[
int
],
async_op
:
bool
=
False
,
inter_fsdp_group_grad_reduce
:
bool
=
False
,
):
"""Mark the bucket ready for reduce-scatter/all-reduce, if all bucket in
the bucket group are ready, then do the reduce-scatter/all-reduce.
Args:
bucket_id (int): The bucket to be marked.
async_rs (bool, optional): Whether to do the reduce-scatter/all-reduce
asynchronously. Defaults to False.
Returns:
bool: True if the bucket is go for reduce-scatter/all-reduce.
"""
# When using FSDP double buffer, waiting for the necessary bucket to be
# released ensures that our double buffer will not explode due to too
# many empty bucket requests.
if
self
.
buffer
.
ddp_config
.
fsdp_double_buffer
:
self
.
_enforce_double_buffer_limit
(
bucket_group
)
current_stream
=
torch
.
cuda
.
current_stream
()
reduce_scatter_stream
=
(
self
.
rs_stream
if
self
.
rs_stream
is
not
None
else
torch
.
cuda
.
current_stream
()
)
reduce_scatter_stream
.
wait_stream
(
current_stream
)
dp_group
=
self
.
buffer
.
parameter_groups
[
bucket_group
[
0
]
].
main_grad_buffer
.
data_parallel_group
with
torch
.
cuda
.
stream
(
reduce_scatter_stream
):
with
_coalescing_manager
(
dp_group
,
async_ops
=
async_op
)
as
coalescing_event
:
grad_shards
=
{}
for
bucket_id
in
bucket_group
:
gbuf
=
self
.
buffer
.
parameter_groups
[
bucket_id
].
main_grad_buffer
bucket
=
gbuf
.
fetch_bucket
()
scaling_factor
=
gbuf
.
gradient_scaling_factor
reduce_op
=
gradient_reduce_preprocessing
(
gbuf
.
data
,
scaling_factor
,
gbuf
.
ddp_config
)
if
gbuf
.
ddp_config
.
data_parallel_sharding_strategy
==
'no_shard'
:
torch
.
distributed
.
all_reduce
(
bucket
.
data
,
op
=
reduce_op
,
group
=
gbuf
.
data_parallel_group
)
else
:
grad_shard
=
gbuf
.
get_shard_from_bucket
(
bucket
)
# pylint: disable=C0301
# The `grad_shard`` is part of `bucket.data`` and the following
# new empty is important for memory safety, when using
# TORCH_NCCL_AVOID_RECORD_STREAMS=1.
# For reference: https://dev-discuss.pytorch.org/t/fsdp-cudacachingallocator-an-outsider-newb-perspective/1486
if
not
self
.
buffer
.
ddp_config
.
fsdp_double_buffer
:
grad_shard
=
torch
.
empty_like
(
grad_shard
)
torch
.
distributed
.
reduce_scatter_tensor
(
output
=
grad_shard
,
input
=
bucket
.
data
,
op
=
reduce_op
,
group
=
gbuf
.
data_parallel_group
,
)
grad_shards
[
bucket_id
]
=
grad_shard
self
.
bucket_status
[
bucket_id
]
=
BucketStatus
.
COMMUNICATING
coalescing_event
.
wait
()
for
bucket_id
in
bucket_group
:
# Local gradient accumulate
gbuf
=
self
.
buffer
.
parameter_groups
[
bucket_id
].
main_grad_buffer
if
gbuf
.
ddp_config
.
data_parallel_sharding_strategy
!=
'no_shard'
:
# Gradient accumulate on local buffer
local_buffer
=
gbuf
.
get_shard_from_local_buffer
()
local_buffer
+=
grad_shards
[
bucket_id
]
reduce_scatter_view_out_event
=
reduce_scatter_stream
.
record_event
()
# Gradient reduction within the model replication domain
if
inter_fsdp_group_grad_reduce
:
ddp_config
=
self
.
buffer
.
ddp_config
assert
ddp_config
.
data_parallel_sharding_strategy
!=
'no_shard'
self
.
hsdp_all_reduce_stream
.
wait_stream
(
reduce_scatter_stream
)
inter_data_parallel_group
=
self
.
buffer
.
parameter_groups
[
bucket_group
[
0
]
].
main_grad_buffer
.
inter_data_parallel_group
with
torch
.
cuda
.
stream
(
self
.
hsdp_all_reduce_stream
):
with
_coalescing_manager
(
inter_data_parallel_group
):
for
bucket_id
in
bucket_group
:
gbuf
=
self
.
buffer
.
parameter_groups
[
bucket_id
].
main_grad_buffer
grad_local_buffer
=
gbuf
.
get_shard_from_local_buffer
()
if
ddp_config
.
average_in_collective
:
reduce_op
=
torch
.
distributed
.
ReduceOp
.
AVG
else
:
reduce_op
=
torch
.
distributed
.
ReduceOp
.
SUM
torch
.
distributed
.
all_reduce
(
grad_local_buffer
,
group
=
gbuf
.
inter_data_parallel_group
,
op
=
reduce_op
)
free_up_grad_bucket_func
=
{}
for
bucket_id
in
bucket_group
:
def
get_closure
(
bucket_id
):
def
free_up_grad_bucket
():
self
.
bucket_grad_ready_params
[
bucket_id
]
=
set
()
gbuf
=
self
.
buffer
.
parameter_groups
[
bucket_id
].
main_grad_buffer
if
gbuf
.
is_data_distributed
:
gbuf
.
free_bucket_storage
()
self
.
bucket_status
[
bucket_id
]
=
BucketStatus
.
EMPTY
return
free_up_grad_bucket
free_up_grad_bucket_func
[
bucket_id
]
=
get_closure
(
bucket_id
)
if
async_op
:
for
bucket_id
,
free_up_grad_bucket
in
free_up_grad_bucket_func
.
items
():
self
.
grad_reduce_queue
.
append
(
(
reduce_scatter_view_out_event
,
free_up_grad_bucket
,
bucket_id
)
)
return
reduce_scatter_view_out_event
.
wait
()
for
free_up_grad_bucket
in
free_up_grad_bucket_func
.
values
():
free_up_grad_bucket
()
def
mark_bucket_ready
(
self
,
bucket_id
:
int
,
inter_fsdp_group_grad_reduce
:
bool
=
False
,
async_op
:
bool
=
True
)
->
bool
:
"""Mark the bucket ready for gradient reduce, if all bucket in the bucket group
are ready, reduce-scatter or all-reduce gradient bucket, in the case of HSDP,
there is an additional all-reduce in the model replication domain.
Args:
bucket_id (int): The bucket to be marked ready to reduce-scatter or
all-reduce.
inter_fsdp_group_grad_reduce (bool, optional): Whether to use inter-group
gradient reduction. Defaults to False.
async_op (bool, optional): Whether to do the gradient-reduce
asynchronously. Defaults to True.
Returns:
bool: True if the bucket is go for reduce-scatter/all-reduce.
"""
# Prepare bucket group for gradient reduce. Note that the
# some bucket parameters do not require grad, so we need to
# remove them from the bucket group.
bucket_group
=
self
.
buffer
.
bucket_to_bucket_group
[
bucket_id
]
bucket_group
=
[
i
for
i
in
bucket_group
if
self
.
buffer
.
parameter_groups
[
i
].
main_grad_buffer
]
# If any bucket in the bucket group is not ready, skip the gradient reduce
# waiting for the bucket group to be all ready before executing.
for
bucket_id
in
bucket_group
:
param_group
=
self
.
buffer
.
parameter_groups
[
bucket_id
]
if
len
(
self
.
bucket_grad_ready_params
[
bucket_id
])
!=
len
(
param_group
.
params
):
return
False
self
.
_bucket_group_gradient_reduce
(
bucket_group
,
async_op
=
async_op
,
inter_fsdp_group_grad_reduce
=
inter_fsdp_group_grad_reduce
,
)
return
True
class
PrefetchOrder
(
Enum
):
"""
An enumeration of possible prefetch orders for data-parallel operations.
Attributes:
FORWARD_PASS_ORDER (int): Prefetch in the order of forward pass computation.
BACKWARD_PASS_ORDER (int): Prefetch in the order of backward pass computation.
"""
FORWARD_PASS_ORDER
=
0
BACKWARD_PASS_ORDER
=
1
class
AllGatherPipeline
:
"""
Pipeline for all-gathering parameters.
"""
def
__init__
(
self
,
param_and_grad_buffer
:
ParamAndGradBuffer
)
->
None
:
self
.
buffer
=
param_and_grad_buffer
self
.
param_gather_event_map
=
{}
self
.
bucket_status
=
{
i
:
BucketStatus
.
EMPTY
for
i
in
range
(
self
.
buffer
.
num_buckets
)}
self
.
bucket_can_be_released
=
{
i
:
False
for
i
in
range
(
self
.
buffer
.
num_buckets
)}
self
.
bucket_to_bucket_group
=
{}
group_id
=
0
for
bucket_group
in
self
.
buffer
.
bucket_to_bucket_group
.
values
():
new_group
=
False
for
bucket_id
in
bucket_group
:
if
bucket_id
not
in
self
.
bucket_to_bucket_group
:
new_group
=
True
break
if
new_group
:
group_id
+=
1
for
bucket_id
in
bucket_group
:
self
.
bucket_to_bucket_group
[
bucket_id
]
=
group_id
@
property
def
num_buckets
(
self
):
"""Return the number of buckets."""
return
self
.
buffer
.
num_buckets
def
reset
(
self
):
"""Reset the pipeline state."""
if
len
(
self
.
param_gather_event_map
)
>
0
:
warnings
.
warn
(
"There are still pending all-gather tasks, process them. "
f
"Bucket status:
{
self
.
bucket_status
}
."
,
UserWarning
,
)
while
len
(
self
.
param_gather_event_map
)
>
0
:
bucket_id
=
next
(
iter
(
self
.
param_gather_event_map
))
self
.
wait_bucket_ready
(
bucket_id
)
for
bucket_id
in
self
.
bucket_can_be_released
:
self
.
bucket_can_be_released
[
bucket_id
]
=
True
self
.
recycle_unused_buckets
()
assert
all
([
status
is
BucketStatus
.
EMPTY
for
status
in
self
.
bucket_status
.
values
()]),
(
f
"There are still working buckets, it is not safe to reset. "
f
"bucket_status:
{
self
.
bucket_status
}
."
)
assert
all
(
[
not
can_be_released
for
can_be_released
in
self
.
bucket_can_be_released
.
values
()]
),
(
f
"The bucket can be released table is in an abnormal state, not safe to reset. "
f
"bucket_can_be_released:
{
self
.
bucket_can_be_released
}
."
)
def
all_gather_params
(
self
,
params
:
List
[
torch
.
Tensor
],
prefetch
:
bool
=
False
,
prefetch_order
:
PrefetchOrder
=
PrefetchOrder
.
FORWARD_PASS_ORDER
,
suggested_AG_prefetch_size
:
Optional
[
int
]
=
None
,
async_param_gather
:
bool
=
True
,
):
"""All-gather the params. If prefetch is enabled, prefetch next buckets
in the order of `prefetch_order`.
Args:
params (List[torch.Tensor]): The list of params to be all-gathered.
prefetch (bool, optional): Whether to prefetch the next bucket. Defaults to False.
prefetch_order (PrefetchOrder, optional): The order of prefetching.
Defaults to PrefetchOrder.FORWARD_PASS_ORDER.
suggested_AG_prefetch_size (Optional[int], optional):
The suggested prefetch size for all-gathering. Defaults to None.
"""
if
len
(
params
)
==
0
:
return
ag_buckets
=
[
self
.
buffer
.
param_to_param_group
[
item
]
for
item
in
params
]
ag_buckets
=
list
(
sorted
(
set
(
ag_buckets
)))
parameter_groups
=
self
.
buffer
.
parameter_groups
if
self
.
buffer
.
ddp_config
.
fsdp_double_buffer
:
double_buf_units
=
set
()
for
bucket_id
in
ag_buckets
:
fsdp_unit_id
=
parameter_groups
[
bucket_id
].
fsdp_unit_id
if
fsdp_unit_id
in
self
.
buffer
.
double_buf_units
:
double_buf_units
.
add
(
fsdp_unit_id
)
if
len
(
double_buf_units
)
>
2
:
raise
ValueError
(
f
"
{
double_buf_units
}
FSDP units were requested, "
"but double buffers can support no more than 2 FSDP units."
)
# If prefetch is enabled, we will add prefetch buckets to ag_buckets.
if
prefetch
:
def
next_bucket_id
(
ag_buckets
):
if
prefetch_order
==
PrefetchOrder
.
FORWARD_PASS_ORDER
:
bucket_id
=
ag_buckets
[
0
]
+
1
for
i
in
ag_buckets
[
1
:]:
if
i
!=
bucket_id
:
break
bucket_id
+=
1
else
:
bucket_id
=
ag_buckets
[
-
1
]
-
1
for
i
in
reversed
(
ag_buckets
[:
-
1
]):
if
i
!=
bucket_id
:
break
bucket_id
-=
1
if
bucket_id
<
0
or
bucket_id
>=
self
.
buffer
.
num_buckets
:
return
None
return
bucket_id
def
need_skip_prefetch
(
bucket_id
):
# If use double buffer, we need to check if the next bucket
# is exceeding the coverage of the double buffer.
if
self
.
buffer
.
ddp_config
.
fsdp_double_buffer
:
fsdp_unit_id
=
parameter_groups
[
bucket_id
].
fsdp_unit_id
double_buf_units
.
add
(
fsdp_unit_id
)
if
len
(
double_buf_units
)
>
2
:
# Prefetching the next bucket will exceed the coverage of
# the double buffer, so we need to stop prefetching.
return
True
return
False
if
suggested_AG_prefetch_size
is
not
None
:
bucket_id
=
next_bucket_id
(
ag_buckets
)
while
bucket_id
is
not
None
:
all_gather_size
=
sum
(
[
parameter_groups
[
i
].
model_weight_buffer
.
bucket_index
.
size
for
i
in
ag_buckets
]
)
if
all_gather_size
>=
suggested_AG_prefetch_size
:
break
if
need_skip_prefetch
(
bucket_id
):
break
ag_buckets
.
extend
(
self
.
buffer
.
bucket_to_bucket_group
[
bucket_id
])
ag_buckets
=
list
(
sorted
(
set
(
ag_buckets
)))
bucket_id
=
next_bucket_id
(
ag_buckets
)
else
:
bucket_id
=
next_bucket_id
(
ag_buckets
)
if
need_skip_prefetch
(
bucket_id
):
bucket_id
=
None
if
bucket_id
is
not
None
:
ag_buckets
.
extend
(
self
.
buffer
.
bucket_to_bucket_group
[
bucket_id
])
ag_buckets
=
list
(
sorted
(
set
(
ag_buckets
)))
ag_buckets
=
[
i
for
i
in
ag_buckets
if
self
.
bucket_status
[
i
]
==
BucketStatus
.
EMPTY
]
if
len
(
ag_buckets
)
==
0
:
return
# Divide buckets into aggregate groups
bucket_group_to_buckets
=
{}
for
bucket_id
in
ag_buckets
:
group_id
=
self
.
bucket_to_bucket_group
[
bucket_id
]
if
group_id
not
in
bucket_group_to_buckets
:
bucket_group_to_buckets
[
group_id
]
=
[]
bucket_group_to_buckets
[
group_id
].
append
(
bucket_id
)
# Coalesce all-gather operations for all buckets in the same data-parallel-group
for
_
,
buckets
in
bucket_group_to_buckets
.
items
():
param_group
=
parameter_groups
[
buckets
[
0
]]
dp_group
=
param_group
.
model_weight_buffer
.
data_parallel_group
with
_coalescing_manager
(
dp_group
,
async_ops
=
async_param_gather
)
as
coalescing_event
:
for
bucket_id
in
buckets
:
self
.
async_bucket_gather
(
bucket_id
)
# reset param gather event with coalescing event
for
bucket_id
in
buckets
:
_
,
mark_bucket_ready_to_use
=
self
.
param_gather_event_map
[
bucket_id
]
self
.
param_gather_event_map
[
bucket_id
]
=
(
coalescing_event
,
mark_bucket_ready_to_use
,
)
# Wait for all-gather to finish
if
not
async_param_gather
:
for
bucket_id
in
buckets
:
self
.
wait_bucket_ready
(
bucket_id
)
def
wait_bucket_ready
(
self
,
bucket_id
,
empty_ok
=
False
):
"""Wait for the bucket to be ready."""
if
self
.
bucket_status
[
bucket_id
]
==
BucketStatus
.
READY_TO_USE
:
return
if
self
.
bucket_status
[
bucket_id
]
==
BucketStatus
.
EMPTY
:
if
empty_ok
:
return
raise
ValueError
(
f
"Bucket
{
bucket_id
}
is empty."
)
param_gather_event
,
mark_bucket_ready_to_use
=
self
.
param_gather_event_map
.
pop
(
bucket_id
)
param_gather_event
.
wait
()
mark_bucket_ready_to_use
()
@
torch
.
no_grad
()
def
release_bucket
(
self
,
bucket_id
:
int
):
"""Release the bucket."""
if
self
.
bucket_status
[
bucket_id
]
==
BucketStatus
.
EMPTY
:
return
if
self
.
bucket_status
[
bucket_id
]
==
BucketStatus
.
COMMUNICATING
:
raise
ValueError
(
f
"Bucket
{
bucket_id
}
is communicating."
)
wbuf
=
self
.
buffer
.
parameter_groups
[
bucket_id
].
model_weight_buffer
wbuf
.
free_bucket_storage
()
self
.
bucket_status
[
bucket_id
]
=
BucketStatus
.
EMPTY
def
recycle_unused_buckets
(
self
):
"""Recycle the unused buckets."""
for
bucket_id
,
can_be_released
in
self
.
bucket_can_be_released
.
items
():
if
can_be_released
:
self
.
release_bucket
(
bucket_id
)
self
.
bucket_can_be_released
[
bucket_id
]
=
False
@
torch
.
no_grad
()
def
async_bucket_gather
(
self
,
bucket_id
:
int
)
->
None
:
"""All-gather the bucket and set the items."""
self
.
bucket_can_be_released
[
bucket_id
]
=
False
if
self
.
bucket_status
[
bucket_id
]
!=
BucketStatus
.
EMPTY
:
return
self
.
bucket_status
[
bucket_id
]
=
BucketStatus
.
COMMUNICATING
wbuf
=
self
.
buffer
.
parameter_groups
[
bucket_id
].
model_weight_buffer
# Lazy release the unused buckets.
self
.
recycle_unused_buckets
()
bucket
=
wbuf
.
fetch_bucket
(
and_allocate_params_data
=
True
)
param_gather_event
=
torch
.
distributed
.
all_gather_into_tensor
(
output_tensor
=
bucket
.
data
,
input_tensor
=
wbuf
.
get_shard_from_local_buffer
(),
group
=
wbuf
.
data_parallel_group
,
async_op
=
True
,
)
def
get_closure
(
bucket_id
):
@
torch
.
no_grad
()
def
mark_bucket_ready_to_use
():
self
.
bucket_status
[
bucket_id
]
=
BucketStatus
.
READY_TO_USE
return
mark_bucket_ready_to_use
mark_bucket_ready_to_use
=
get_closure
(
bucket_id
)
self
.
param_gather_event_map
[
bucket_id
]
=
(
param_gather_event
,
mark_bucket_ready_to_use
)
@
torch
.
no_grad
()
def
gradient_reduce_preprocessing
(
grad_data
,
scaling_factor
,
ddp_config
):
"""
Gradient reduce preprocessing for gradient averaging and gradient scaling.
"""
if
scaling_factor
is
None
:
reduce_op
=
torch
.
distributed
.
ReduceOp
.
SUM
elif
ddp_config
.
average_in_collective
:
reduce_op
=
torch
.
distributed
.
ReduceOp
.
AVG
elif
ddp_config
.
gradient_reduce_div_fusion
and
grad_data
.
dtype
!=
torch
.
bfloat16
:
reduce_op
=
torch
.
distributed
.
_make_nccl_premul_sum
(
scaling_factor
)
else
:
grad_data
.
mul_
(
scaling_factor
)
reduce_op
=
torch
.
distributed
.
ReduceOp
.
SUM
return
reduce_op
def
check_gpu_memory
(
threshold
=
0.9
):
"""
Check if the GPU memory is over the threshold.
Args:
threshold (float, optional): The threshold to check if the GPU memory is over.
Defaults to 0.9.
Returns:
bool: True if the GPU memory is over the threshold.
"""
if
not
torch
.
cuda
.
is_available
():
return
False
device
=
torch
.
cuda
.
current_device
()
allocated
=
torch
.
cuda
.
memory_allocated
(
device
)
reserved
=
torch
.
cuda
.
memory_reserved
(
device
)
total
=
torch
.
cuda
.
get_device_properties
(
device
).
total_memory
allocated_ratio
=
allocated
/
total
reserved_ratio
=
reserved
/
total
near_full
=
allocated_ratio
>=
threshold
or
reserved_ratio
>=
threshold
if
near_full
:
log_on_each_pipeline_stage
(
logger
,
logging
.
INFO
,
f
"GPU Memory: Allocated:
{
allocated_ratio
:.
2
%
}
, Reserved:
{
reserved_ratio
:.
2
%
}
"
,
)
return
near_full
class
ResetParametersContext
:
"""
Context manager for resetting parameters for meta device initialization module.
"""
def
__init__
(
self
,
init_param_with_fp8
=
False
,
with_cuda_rng_tracker
=
False
):
self
.
init_param_with_fp8
=
init_param_with_fp8
self
.
with_cuda_rng_tracker
=
with_cuda_rng_tracker
def
__enter__
(
self
):
self
.
stack
=
ExitStack
()
if
self
.
init_param_with_fp8
:
args
=
{
"enabled"
:
True
}
if
"preserve_high_precision_init_val"
in
inspect
.
signature
(
fp8_model_init
).
parameters
:
args
[
"preserve_high_precision_init_val"
]
=
True
self
.
stack
.
enter_context
(
fp8_model_init
(
**
args
))
if
self
.
with_cuda_rng_tracker
:
self
.
stack
.
enter_context
(
get_cuda_rng_tracker
().
fork
())
return
self
def
__exit__
(
self
,
*
exc_details
):
self
.
stack
.
__exit__
(
*
exc_details
)
def
override_sharded_param_methods_with_safety_checks
(
params
,
all_gather_pipeline
):
"""
Override the methods of the parameters to prevent undefined behavior.
Args:
params (List[torch.Tensor]): The parameters to add hint on shard to functions.
all_gather_pipeline (AllGatherPipeline): The all-gather pipeline.
"""
for
p
in
params
:
to_function
=
p
.
to
cpu_function
=
p
.
cpu
def
override_sharded_param_to_function_closure
(
p
,
to_function
):
def
override_sharded_param_to_function
(
*
args
,
**
kwargs
):
bucket_id
=
all_gather_pipeline
.
buffer
.
param_to_param_group
[
p
]
status
=
all_gather_pipeline
.
bucket_status
[
bucket_id
]
if
status
==
BucketStatus
.
READY_TO_USE
:
return
to_function
(
*
args
,
**
kwargs
)
raise
RuntimeError
(
"This parameter is already shard by MCore FSDP and the "
"shared-state parameter does not support 'to' function."
"please define the dtype and device of the parameter before FSDP wrap."
)
return
override_sharded_param_to_function
setattr
(
p
,
'to'
,
override_sharded_param_to_function_closure
(
p
,
to_function
))
def
override_sharded_param_cpu_function_closure
(
p
,
cpu_function
):
def
override_sharded_param_cpu_function
(
*
args
,
**
kwargs
):
bucket_id
=
all_gather_pipeline
.
buffer
.
param_to_param_group
[
p
]
status
=
all_gather_pipeline
.
bucket_status
[
bucket_id
]
if
status
==
BucketStatus
.
READY_TO_USE
:
return
cpu_function
(
*
args
,
**
kwargs
)
warnings
.
warn
(
"The parameters are sharded by MCore FSDP, and no actual "
"cpu operation is performed."
)
return
torch
.
empty
([],
device
=
'cpu'
)
return
override_sharded_param_cpu_function
setattr
(
p
,
'cpu'
,
override_sharded_param_cpu_function_closure
(
p
,
cpu_function
))
Megatron-LM/megatron/core/distributed/data_parallel_base.py
0 → 100644
View file @
1106877d
# Copyright (c) 2024, NVIDIA CORPORATION. All rights reserved.
from
contextlib
import
contextmanager
import
torch
from
..transformer.module
import
MegatronModule
from
..transformer.transformer_config
import
TransformerConfig
class
_BaseDataParallel
(
MegatronModule
):
"""A template class for DistributedDataParallel implementations."""
def
__init__
(
self
,
config
:
TransformerConfig
,
module
:
torch
.
nn
.
Module
):
super
().
__init__
(
config
=
config
)
self
.
module
=
module
def
forward
(
self
,
*
inputs
,
**
kwargs
):
"""
Calls the wrapped module's forward() method.
"""
return
self
.
module
(
*
inputs
,
**
kwargs
)
@
contextmanager
def
no_sync
(
self
):
"""
Context manager that turns off gradient synchronization.
"""
try
:
yield
finally
:
pass
def
start_grad_sync
(
self
,
*
unused
):
"""
Initiates grad sync (all-reduce or reduce-scatter) communication operations
for all model gradients.
When overlap_grad_reduce is set to True, dispatches asynchronous communication
calls. When overlap_grad_reduce is set to False, calls synchronous
communication ops.
"""
pass
def
scale_gradients
(
self
,
scaling_factor
:
float
)
->
None
:
"""Scale all gradients inside the buffers by `scaling_factor`."""
pass
def
finish_grad_sync
(
self
):
"""
Finishes grad sync (all-reduce or reduce-scatter) communication operations
for all model gradients.
When overlap_grad_reduce is set to True, waits for asynchronous communication
calls to complete. When overlap_grad_reduce is set to False, calls synchronous
communication ops.
"""
pass
def
zero_grad_buffer
(
self
):
"""
Zeros out all grad buffers. Needs to be called at the beginning of each
training iteration.
"""
pass
def
broadcast_params
(
self
):
"""
Syncs parameters across all DP ranks.
"""
pass
def
state_dict
(
self
,
prefix
=
''
,
keep_vars
=
False
,
destination
=
None
):
"""
Returns a dictionary containing references to the whole state of the
wrapped module.
Both parameters and persistent buffers (e.g. running averages) are included.
Keys are corresponding parameter and buffer names. Parameters and buffers
set to None are not included.
"""
return
self
.
module
.
state_dict
(
prefix
=
prefix
,
keep_vars
=
keep_vars
,
destination
=
destination
)
def
state_dict_for_save_checkpoint
(
self
,
prefix
=
''
,
keep_vars
=
False
):
"""
Returns wrapped module's state_dict for checkpoint saving.
"""
return
self
.
module
.
state_dict_for_save_checkpoint
(
prefix
=
prefix
,
keep_vars
=
keep_vars
)
def
load_state_dict
(
self
,
state_dict
,
strict
=
True
):
"""
Copies parameters and buffers from state_dict into the wrapped module and its
descendants. If strict is True, then the keys of state_dict must exactly match
the keys returned by this module’s state_dict() function.
"""
self
.
module
.
load_state_dict
(
state_dict
,
strict
=
strict
)
Megatron-LM/megatron/core/distributed/distributed_data_parallel.py
0 → 100644
View file @
1106877d
# Copyright (c) 2024, NVIDIA CORPORATION. All rights reserved.
import
logging
from
contextlib
import
contextmanager
from
typing
import
Optional
import
torch
from
..
import
parallel_state
from
..config_logger
import
has_config_logger_enabled
,
log_config_to_disk
from
..fp8_utils
import
is_float8tensor
from
..process_groups_config
import
GradCommProcessGroups
,
ModelCommProcessGroups
from
..transformer.cuda_graphs
import
is_graph_capturing
from
..transformer.transformer_config
import
TransformerConfig
from
..utils
import
log_single_rank
from
.data_parallel_base
import
_BaseDataParallel
from
.distributed_data_parallel_config
import
DistributedDataParallelConfig
from
.param_and_grad_buffer
import
_ParamAndGradBuffer
,
partition_buckets
logger
=
logging
.
getLogger
(
__name__
)
class
DistributedDataParallel
(
_BaseDataParallel
):
"""
DDP wrapper which stores grads in contiguous buffers. Also has option of overlapping
communication with backprop computation by breaking up full model's gradients into smaller
buckets and running all-reduce / reduce-scatter on each bucket asynchronously. This class
also provides the option to do the gradient accumulation in a type other than the param type
(e.g., fp32 for a bf16 model).
Args:
config: Transformer config object.
ddp_config: DistributedDataParallel config object.
module: Underlying model.
disable_bucketing: If true, force assign all parameters to a single bucket. If false,
use standard bucketing policy: assign parameters to smaller buckets and all-reduce
per bucket _if_ overlap_grad_reduce is True and pp_rank is 0.
grad_comm_pgs: Optional gradient communication process groups.
model_comm_pgs: Optional model parallel communication process groups.
"""
def
__init__
(
self
,
config
:
TransformerConfig
,
ddp_config
:
DistributedDataParallelConfig
,
module
:
torch
.
nn
.
Module
,
disable_bucketing
:
bool
=
False
,
grad_comm_pgs
:
Optional
[
GradCommProcessGroups
]
=
None
,
model_comm_pgs
:
Optional
[
ModelCommProcessGroups
]
=
None
,
):
super
().
__init__
(
config
=
config
,
module
=
module
)
if
has_config_logger_enabled
(
config
):
log_config_to_disk
(
config
,
locals
(),
prefix
=
type
(
self
).
__name__
)
self
.
module
=
module
# If bucket_size is not provided as an input, use sane default.
# If using very large dp_sizes, make buckets larger to ensure that chunks used in NCCL
# ring-reduce implementations are large enough to remain bandwidth-bound rather than
# latency-bound.
if
ddp_config
.
bucket_size
is
None
:
ddp_config
.
bucket_size
=
max
(
40000000
,
1000000
*
parallel_state
.
get_data_parallel_world_size
()
)
# Set bucket_size to infinity if overlap_grad_reduce is False.
if
not
ddp_config
.
overlap_grad_reduce
:
ddp_config
.
bucket_size
=
None
self
.
ddp_config
=
ddp_config
log_single_rank
(
logger
,
logging
.
INFO
,
f
'Setting up DistributedDataParallel with config
{
self
.
ddp_config
}
'
,
)
if
grad_comm_pgs
is
None
and
model_comm_pgs
is
None
:
self
.
dp_group
=
parallel_state
.
get_data_parallel_group
(
with_context_parallel
=
False
,
partial_data_parallel
=
False
)
self
.
dp_cp_group
=
parallel_state
.
get_data_parallel_group
(
with_context_parallel
=
True
,
partial_data_parallel
=
False
)
self
.
intra_dp_cp_group
=
parallel_state
.
get_data_parallel_group
(
with_context_parallel
=
True
,
partial_data_parallel
=
True
)
self
.
expt_dp_group
=
parallel_state
.
get_expert_data_parallel_group
()
self
.
intra_expt_dp_group
=
parallel_state
.
get_expert_data_parallel_group
(
partial_expert_data_parallel
=
True
)
if
self
.
ddp_config
.
num_distributed_optimizer_instances
>
1
:
self
.
inter_dist_opt_group
=
(
parallel_state
.
get_inter_distributed_optimizer_instance_group
()
)
self
.
pp_group
=
parallel_state
.
get_pipeline_model_parallel_group
()
self
.
ep_group
=
parallel_state
.
get_expert_model_parallel_group
()
elif
grad_comm_pgs
is
not
None
and
model_comm_pgs
is
not
None
:
# 1. dp group - this is always required
if
not
hasattr
(
grad_comm_pgs
,
'dp'
):
raise
ValueError
(
"dp process group is required but not provided in grad_comm_pgs"
)
self
.
dp_group
=
grad_comm_pgs
.
dp
# 2. dp_cp group:
# - If provided in grad_comm_pgs, use it
# - Otherwise check context_parallel_size
# - If cp_size is 1, use same as dp
# - If cp_size > 1, raise error as dp_cp is needed
if
hasattr
(
grad_comm_pgs
,
'dp_cp'
):
self
.
dp_cp_group
=
grad_comm_pgs
.
dp_cp
else
:
cp_size
=
getattr
(
config
,
'context_parallel_size'
,
1
)
if
cp_size
==
1
:
# If no context parallelism, dp_cp is same as dp
self
.
dp_cp_group
=
self
.
dp_group
else
:
raise
ValueError
(
"dp_cp process group is required when context_parallel_size > 1 "
"but not provided in grad_comm_pgs"
)
# 3. Handle expert data parallel group
if
hasattr
(
grad_comm_pgs
,
'expt_dp'
):
self
.
expt_dp_group
=
grad_comm_pgs
.
expt_dp
else
:
# Create a new group with just the current rank
log_single_rank
(
logger
,
logging
.
WARNING
,
"No expert data parallel group provided in grad_comm_pgs, "
"creating a new one with just the current rank"
,
)
# Ideally we dont want any expt_dp_group if not using expt_dp
# but downstream code expects.
# this is used to check size and calculate scaling factor.
self
.
expt_dp_group
=
torch
.
distributed
.
new_group
(
ranks
=
[
torch
.
distributed
.
get_rank
()]
)
# 4. Handle intra_dp_cp, intra_expt_dp, and inter_dist_opt
# based on optimizer instances:
if
self
.
ddp_config
.
num_distributed_optimizer_instances
==
1
:
# With a single optimizer instance:
# - intra_dp_cp is same as dp_cp
# - intra_expt_dp is same as expt_dp
# - inter_dist_opt is not needed
self
.
intra_dp_cp_group
=
self
.
dp_cp_group
self
.
intra_expt_dp_group
=
self
.
expt_dp_group
else
:
# With multiple optimizer instances, both groups must be provided
if
not
(
hasattr
(
grad_comm_pgs
,
'intra_dp_cp'
)
and
hasattr
(
grad_comm_pgs
,
'intra_expt_dp'
)
and
hasattr
(
grad_comm_pgs
,
'inter_dist_opt'
)
):
raise
ValueError
(
"intra_dp_cp, intra_expt_dp, and inter_dist_opt "
"process groups are required when using multiple optimizer "
"instances (>1) but not provided in grad_comm_pgs"
)
self
.
intra_dp_cp_group
=
grad_comm_pgs
.
intra_dp_cp
self
.
intra_expt_dp_group
=
grad_comm_pgs
.
intra_expt_dp
self
.
inter_dist_opt_group
=
grad_comm_pgs
.
inter_dist_opt
# 5. pp and ep group
if
not
all
([
hasattr
(
model_comm_pgs
,
'pp'
),
hasattr
(
model_comm_pgs
,
'ep'
)]):
raise
ValueError
(
"pp and ep process groups are required but not provided in model_comm_pgs"
)
self
.
pp_group
=
model_comm_pgs
.
pp
self
.
ep_group
=
model_comm_pgs
.
ep
else
:
raise
ValueError
(
"Grad and model comm process groups must be provided or both must be None"
)
# Turn off bucketing if we are on a pipeline stage that is not the first (since
# data-parallel communication on these stages is not on the critical path), or if
# disable_bucketing is True (e.g., we might not want to break up model parameters
# into buckets for model chunks after the first in the interleaved schedule).
self
.
bucket_size
=
self
.
ddp_config
.
bucket_size
if
isinstance
(
self
.
pp_group
,
list
):
pp_rank
=
self
.
pp_group
[
0
].
rank
()
else
:
pp_rank
=
self
.
pp_group
.
rank
()
if
pp_rank
>
0
:
self
.
bucket_size
=
None
if
disable_bucketing
:
self
.
bucket_size
=
None
self
.
param_to_bucket_group
=
{}
# Group parameters by their gradient type.
param_to_name
=
{}
dense_params
=
[]
expert_parallel_params
=
[]
self
.
params_with_grad
=
[]
for
name
,
param
in
self
.
module
.
named_parameters
():
if
not
param
.
requires_grad
:
continue
# Track params with grad to enable direct setting
# of param.grad_added_to_main_grad
self
.
params_with_grad
.
append
(
param
)
param
.
grad_added_to_main_grad
=
False
param_to_name
[
param
]
=
name
if
getattr
(
param
,
'allreduce'
,
True
):
dense_params
.
append
(
param
)
else
:
expert_parallel_params
.
append
(
param
)
def
_allocate_buffers_for_parameters
(
input_params
,
data_parallel_group
,
gradient_scaling_factor
):
param_and_grad_dtype_to_params
=
{}
param_and_grad_dtype_to_offsets
=
{}
param_and_grad_dtype_to_indices
=
{}
# Group parameters by their gradient type.
for
param
in
input_params
:
assert
param
.
requires_grad
param_dtype
=
param
.
dtype
if
is_float8tensor
(
param
):
# Currently TE's Float8Tensor is a wrapper of torch.Tensor. It has a "fake"
# dtype (usually a higher precision dtype such as bfloat16), but its actual
# data is stored in the form of a torch uint8 tensor within the Float8Tensor's
# ".data" attribute. Therefore, when creating the param buffer for fp8 params,
# it is necessary to use torch.uint8, not the "fake" dtype got from
# "param.dtype".
param_dtype
=
torch
.
uint8
grad_dtype
=
torch
.
float
if
self
.
ddp_config
.
grad_reduce_in_fp32
else
param
.
dtype
params
=
param_and_grad_dtype_to_params
.
get
((
param_dtype
,
grad_dtype
),
[])
params
.
append
(
param
)
param_and_grad_dtype_to_params
[(
param_dtype
,
grad_dtype
)]
=
params
# Get the index of each param among the params with same dtype, if a param is fp8,
# use its "fake" high precision dtype to find which params have same dtype with it.
# For example:
# Case 1:
# params = [p1(bf16), p2(bf16), p3(bf16), p4(bf16)]
# param_and_grad_dtype_to_indices = {
# (torch.bfloat16, torch.float32): [0, 1, 2, 3],
# }
# Case 2:
# params = [p1(bf16), p2(fp8), p3(fp8), p4(bf16)]
# param_and_grad_dtype_to_indices = {
# (torch.bfloat16, torch.float32): [0, 3],
# (torch.uint8, torch.float32): [1, 2],
# }
# We need these indices to load a non-native-fp8 checkpoint in native-fp8 mode.
offset
=
param_and_grad_dtype_to_offsets
.
get
((
param
.
dtype
,
grad_dtype
),
0
)
param_and_grad_dtype_to_offsets
[(
param
.
dtype
,
grad_dtype
)]
=
offset
+
1
indices
=
param_and_grad_dtype_to_indices
.
get
((
param_dtype
,
grad_dtype
),
[])
indices
.
append
(
offset
)
param_and_grad_dtype_to_indices
[(
param_dtype
,
grad_dtype
)]
=
indices
if
not
config
.
calculate_per_token_loss
:
target_gradient_scaling_factor
=
1.0
/
self
.
dp_cp_group
.
size
()
if
self
.
ddp_config
.
average_in_collective
:
if
self
.
ddp_config
.
num_distributed_optimizer_instances
==
1
:
# Collective is averaging gradients in collective with data_parallel_group.
assert
(
gradient_scaling_factor
/
data_parallel_group
.
size
()
==
target_gradient_scaling_factor
)
else
:
# For non-expert parameters, gradient_scaling_factor is 1.
# For expert parameters, gradient_scaling_factor is edp_size/dp_size.
assert
(
gradient_scaling_factor
==
1
)
or
(
gradient_scaling_factor
==
(
self
.
expt_dp_group
.
size
()
/
self
.
dp_cp_group
.
size
())
)
else
:
assert
gradient_scaling_factor
==
target_gradient_scaling_factor
# Allocate the grad buffers and map the grads.
buffers
=
[]
for
(
param_dtype
,
grad_dtype
),
params
in
param_and_grad_dtype_to_params
.
items
():
buffers
.
append
(
_ParamAndGradBuffer
(
self
.
ddp_config
,
param_dtype
,
grad_dtype
,
params
,
data_parallel_group
,
self
.
bucket_size
,
param_to_name
,
gradient_scaling_factor
,
param_and_grad_dtype_to_indices
[(
param_dtype
,
grad_dtype
)],
self
.
ddp_config
.
nccl_ub
,
)
)
# In some scenarios, we want to put buckets from different buffers into a group so that
# their communication can be aggregated. For example, when there are both fp8 buffers
# and bf16 buffers in the model and vpp is enabled, each model chunk will have an fp8
# bucket and a bf16 bucket, which doubles the number of communication kernels, and
# because of the use of CUDA_DEVICE_MAX_CONNECTIONS=1, having multiple back-to-back
# communications will prevent the overlap of the communication kernels with computation
# kernels.
# If bucketing is explicitly disabled, then put all buckets in a buffer into a single
# bucket group.
bucket_groups
=
partition_buckets
(
buffers
,
force_single_bucket_group
=
disable_bucketing
)
if
self
.
ddp_config
.
num_distributed_optimizer_instances
>
1
:
assert
(
self
.
ddp_config
.
use_distributed_optimizer
),
'Partial DistOpt cannot be used without DistOpt'
communication_stream
=
torch
.
cuda
.
Stream
(
device
=
torch
.
cuda
.
current_device
())
for
bucket_group
in
bucket_groups
:
bucket_group
.
inter_distributed_optimizer_instance_group
=
(
self
.
inter_dist_opt_group
)
bucket_group
.
communication_stream
=
communication_stream
# Set `next_param_gather_bucket_group` for different bucket groups by iterating through
# buckets in reverse order (since all-gathers happen in reverse order of buckets).
if
self
.
ddp_config
.
use_distributed_optimizer
and
self
.
ddp_config
.
overlap_param_gather
:
num_bucket_groups
=
len
(
bucket_groups
)
for
i
in
range
(
1
,
num_bucket_groups
):
bucket_groups
[
num_bucket_groups
-
i
].
next_param_gather_bucket_group
=
(
bucket_groups
[
num_bucket_groups
-
i
-
1
]
)
# Create map from param to bucket group, used in pre_hook.
for
bucket_group
in
bucket_groups
:
for
bucket
in
bucket_group
.
buckets
:
for
param
in
bucket
.
params_list
:
self
.
param_to_bucket_group
[
param
]
=
bucket_group
return
buffers
,
bucket_groups
if
config
.
calculate_per_token_loss
:
assert
(
not
self
.
ddp_config
.
average_in_collective
),
"Cannot average in collective when calculating per-token loss!"
gradient_scaling_factor
=
1.0
expert_gradient_scaling_factor
=
1.0
else
:
# The goal is to scale reduced gradients by 1/dp_size.
# This can be achieved in two ways:
#
# Case 1: average_in_collective=True
# - Non-expert parameters:
# 1. No pre-scaling (gradient_scaling_factor=1.0)
# 2. Do average reduction over dp group (equals to sum then divide by dp_size)
# 3. Final result is scaled by 1/dp_size as desired
#
# - Expert parameters:
# 1. Scale by edp_size/dp_size before reduction
# 2. Do average reduction over edp group (equals to sum then divide by edp_size)
# 3. Resulted scaling: (edp_size/dp_size) * (1/edp_size) = 1/dp_size as desired
# (edp_size = expert data parallel world size)
#
# Case 2: average_in_collective=False
# - Both expert and non-expert parameters:
# 1. Scale gradients by 1/dp_size before reduction
# 2. Do sum reduction across data parallel ranks
# 3. Final result is scaled by 1/dp_size as desired
if
self
.
ddp_config
.
average_in_collective
:
gradient_scaling_factor
=
1.0
expert_gradient_scaling_factor
=
self
.
expt_dp_group
.
size
()
/
self
.
dp_cp_group
.
size
()
else
:
data_parallel_world_size
=
self
.
dp_cp_group
.
size
()
gradient_scaling_factor
=
1.0
/
data_parallel_world_size
expert_gradient_scaling_factor
=
1.0
/
data_parallel_world_size
# Allocate the param+grad buffers for dense params' grads.
self
.
buffers
,
self
.
bucket_groups
=
_allocate_buffers_for_parameters
(
dense_params
,
self
.
intra_dp_cp_group
,
gradient_scaling_factor
=
gradient_scaling_factor
)
# Allocate separate param+grad buffers for expert parallel params' grads.
self
.
expert_parallel_buffers
,
self
.
expert_parallel_bucket_groups
=
(
_allocate_buffers_for_parameters
(
expert_parallel_params
,
self
.
intra_expt_dp_group
,
gradient_scaling_factor
=
expert_gradient_scaling_factor
,
)
)
# Delete references to weight_tensor if they exist since we don't want two parameter copies
# if we re-mapped parameters (which happens when we use the distributed optimizer).
# This is a temporary workaround around a TE bug that is fixed with
# https://github.com/NVIDIA/TransformerEngine/pull/719.
if
self
.
ddp_config
.
use_distributed_optimizer
:
@
torch
.
no_grad
()
def
unmap_weight_tensor
(
m
):
if
hasattr
(
m
,
'weight_tensor'
):
m
.
weight_tensor
=
None
self
.
module
.
apply
(
unmap_weight_tensor
)
# Register backward hook.
# Accumulation function for the gradients need to be stored so they
# don't go out of scope.
self
.
grad_accs
=
[]
for
param
in
self
.
module
.
parameters
():
if
param
.
requires_grad
:
# Expand so we get access to grad_fn.
param_tmp
=
param
.
expand_as
(
param
)
# Get the gradient accumulator function.
grad_acc
=
param_tmp
.
grad_fn
.
next_functions
[
0
][
0
]
grad_acc
.
register_hook
(
self
.
_make_backward_post_hook
(
param
))
self
.
grad_accs
.
append
(
grad_acc
)
self
.
use_forward_hook
=
(
self
.
ddp_config
.
use_distributed_optimizer
and
self
.
ddp_config
.
overlap_param_gather
)
self
.
remove_forward_pre_hook_handles
=
{}
if
self
.
use_forward_hook
:
self
.
enable_forward_pre_hook
()
self
.
overlap_param_gather_with_optimizer_step
=
False
def
enable_forward_pre_hook
(
self
):
"""
Enable forward pre-hooks needed for param all-gather overlap with forward compute.
"""
assert
self
.
use_forward_hook
assert
len
(
self
.
remove_forward_pre_hook_handles
)
==
0
# Register forward pre-hook for all sub-modules.
for
module
in
self
.
module
.
modules
():
self
.
remove_forward_pre_hook_handles
[
module
]
=
module
.
register_forward_pre_hook
(
self
.
_make_forward_pre_hook
()
)
def
disable_forward_pre_hook
(
self
,
param_sync
:
bool
=
True
):
"""
Disable forward pre-hooks needed for param all-gather overlap with forward compute.
Skip synchronous param all-gather if `param_sync` is False.
"""
assert
self
.
use_forward_hook
# De-register forward pre-hook for all sub-modules.
for
module
in
self
.
module
.
modules
():
assert
self
.
remove_forward_pre_hook_handles
[
module
]
is
not
None
self
.
remove_forward_pre_hook_handles
[
module
].
remove
()
del
self
.
remove_forward_pre_hook_handles
[
module
]
assert
len
(
self
.
remove_forward_pre_hook_handles
)
==
0
# Force synchronize parameters.
if
param_sync
:
self
.
start_param_sync
(
force_sync
=
True
)
def
_make_forward_pre_hook
(
self
):
"""
Create a forward pre-hook to wait on all-gather handles when necessary (i.e.,
when a module uses a parameter in a bucket with a still incomplete all-gather).
"""
def
hook
(
module
,
*
unused
):
assert
(
self
.
use_forward_hook
),
"Should use pre-hook only when overlap_param_gather is True"
if
is_graph_capturing
():
return
# Make sure all parameters in this module have been all-gathered as necessary.
for
param
in
module
.
parameters
(
recurse
=
False
):
# Skip parameters without an associated buffer (such parameters have a
# .requires_grad field equal to False).
if
param
not
in
self
.
param_to_bucket_group
:
continue
assert
param
.
requires_grad
# If aligning param all-gather across pipeline stages, all-gather is dispatched
# by start_param_sync calls in core/pipeline_parallelism/schedules.py.
# If overlapping param all-gather with optimizer step, then all-gather has
# already been dispatched in optimizer step.
skip_next_bucket_dispatch
=
(
self
.
ddp_config
.
align_param_gather
or
self
.
overlap_param_gather_with_optimizer_step
)
self
.
param_to_bucket_group
[
param
].
finish_param_sync
(
skip_next_bucket_dispatch
=
skip_next_bucket_dispatch
)
return
hook
def
_make_backward_post_hook
(
self
,
param
:
torch
.
nn
.
Parameter
):
"""
Creates a backward post-hook to dispatch an all-reduce / reduce-scatter when
ready (i.e., when all grads in a bucket have been computed in all microbatches
in a batch).
"""
def
hook
(
*
unused
):
if
is_graph_capturing
():
return
if
param
in
self
.
param_to_bucket_group
:
assert
param
.
requires_grad
if
self
.
ddp_config
.
overlap_grad_reduce
:
assert
(
param
.
grad
is
not
None
),
'param.grad being None is not safe when overlap_grad_reduce is True'
if
param
.
grad
is
not
None
and
(
not
param
.
grad_added_to_main_grad
or
getattr
(
param
,
'zero_out_wgrad'
,
False
)
):
param
.
main_grad
.
add_
(
param
.
grad
.
data
)
param
.
grad
=
None
if
self
.
ddp_config
.
overlap_grad_reduce
:
self
.
param_to_bucket_group
[
param
].
register_grad_ready
(
param
)
return
hook
@
contextmanager
def
no_sync
(
self
):
"""
Context manager that turns off gradient synchronization.
"""
for
bucket_group
in
self
.
bucket_groups
+
self
.
expert_parallel_bucket_groups
:
bucket_group
.
is_last_microbatch
=
False
try
:
yield
finally
:
for
bucket_group
in
self
.
bucket_groups
+
self
.
expert_parallel_bucket_groups
:
bucket_group
.
is_last_microbatch
=
True
def
start_param_sync
(
self
,
*
unused
,
force_sync
:
bool
=
False
,
force_dispatch
:
bool
=
False
):
"""
Initiates param sync (all-gather) communication operations for all model parameters.
By default, when overlap_param_gather is set to True, dispatches asynchronous communication
calls; when overlap_param_gather is set to False, calls synchronous communication
ops. Can override this default behavior using flags below.
Args:
force_sync (bool, optional): force synchronous collective regardless of
other settings.
force_dispatch (bool, optional): force dispatch regardless of other settings.
"""
if
not
force_sync
:
# If overlapping param AG with optimizer step, AG should not be dispatched again
# in forward_backward_step.
if
self
.
overlap_param_gather_with_optimizer_step
and
not
force_dispatch
:
return
for
bucket_group
in
self
.
bucket_groups
+
self
.
expert_parallel_bucket_groups
:
bucket_group
.
start_param_sync
(
force_sync
=
force_sync
)
# For MXFP8 params, we need to copy the all-gathered param data from the buffer to
# the param.data, since param buffer is not mapped to model params for MXFP8 case.
# The paramaters are cast from bf16 to MXFP8 during copy.
if
self
.
ddp_config
.
reuse_grad_buf_for_mxfp8_param_ag
:
assert
(
not
self
.
ddp_config
.
overlap_param_gather
),
"MXFP8 param currently does not support DP AG overlap."
for
bucket
in
bucket_group
.
buckets
:
for
param
in
bucket
.
params
:
param_start
,
param_end
=
bucket
.
param_to_index
[
param
]
param_slice
=
bucket
.
param_data
.
view
(
-
1
)[
param_start
:
param_end
]
param
.
data
.
copy_
(
param_slice
.
view
(
param
.
data
.
shape
))
# All-gathered params are not needed after being copied to param.data.
# Zero out the grad buffer (shared with param buffer) for gradient accumulation.
bucket
.
grad_data
.
zero_
()
def
start_grad_sync
(
self
,
*
unused
):
"""
Initiates grad sync (all-reduce or reduce-scatter) communication operations
for all model gradients.
When overlap_grad_reduce is set to True, dispatches asynchronous communication
calls. When overlap_grad_reduce is set to False, calls synchronous
communication ops.
"""
for
bucket_group
in
self
.
bucket_groups
+
self
.
expert_parallel_bucket_groups
:
bucket_group
.
start_grad_sync
()
def
finish_grad_sync
(
self
):
"""
Finishes grad sync (all-reduce or reduce-scatter) communication operations
for all model gradients.
When overlap_grad_reduce is set to True, waits for asynchronous communication
calls to complete. When overlap_grad_reduce is set to False, calls synchronous
communication ops.
"""
for
bucket_group
in
self
.
bucket_groups
+
self
.
expert_parallel_bucket_groups
:
bucket_group
.
finish_grad_sync
()
def
scale_gradients
(
self
,
scaling_factor
:
float
):
"""Scale all gradients inside the buffers by `scaling_factor`."""
for
buffer
in
self
.
buffers
+
self
.
expert_parallel_buffers
:
buffer
.
scale_gradients
(
scaling_factor
)
def
zero_grad_buffer
(
self
):
"""
Zeros out all grad buffers. Needs to be called at the beginning of each
training iteration.
"""
if
not
getattr
(
self
.
config
,
'external_cuda_graph'
,
False
):
# Don't reset grad_added_to_main_grad when CUDA Graph is used.
# Because in CUDA Graph it no longer has the opportunity to set it back
# to True, and there will be a double-GA.
for
param
in
self
.
params_with_grad
:
param
.
grad_added_to_main_grad
=
False
for
buffer
in
self
.
buffers
+
self
.
expert_parallel_buffers
:
buffer
.
reset
()
for
bucket_group
in
self
.
bucket_groups
+
self
.
expert_parallel_bucket_groups
:
bucket_group
.
reset
()
def
broadcast_params
(
self
):
"""
Syncs parameters across all DP ranks.
"""
for
param
in
self
.
module
.
parameters
():
is_expert_parallel
=
not
getattr
(
param
,
'allreduce'
,
True
)
if
is_expert_parallel
:
data_parallel_group
=
self
.
expt_dp_group
else
:
data_parallel_group
=
self
.
dp_cp_group
torch
.
distributed
.
broadcast
(
param
.
data
,
src
=
torch
.
distributed
.
get_global_rank
(
data_parallel_group
,
0
),
group
=
data_parallel_group
,
)
Megatron-LM/megatron/core/distributed/distributed_data_parallel_config.py
0 → 100644
View file @
1106877d
# Copyright (c) 2024, NVIDIA CORPORATION. All rights reserved.
from
dataclasses
import
dataclass
from
typing
import
Optional
@
dataclass
class
DistributedDataParallelConfig
:
"""Configuration for DistributedDataParallel."""
grad_reduce_in_fp32
:
bool
=
False
"""If true, reduce grads in fp32."""
overlap_grad_reduce
:
bool
=
False
"""If true, overlap grad all-reduce / reduce-scatter with backward compute."""
overlap_param_gather
:
bool
=
False
"""If true, overlap param all-gather with forward compute."""
align_param_gather
:
bool
=
False
"""If true, all PP stages will launch param all-gathers simultaneously. Otherwise, each
PP stage will independently launch as needed.
"""
use_distributed_optimizer
:
bool
=
False
"""If true, issue reduce-scatter collectives to aggregate gradients and clean up
originally allocated model parameters, otherwise issue all-reduce collectives.
"""
num_distributed_optimizer_instances
:
int
=
1
"""Sets the factor by which the DP domain is sharded to have the partial DistOpt
enabled. Defaults to 1, which means DistOpt is across entire DP domain.
"""
check_for_nan_in_grad
:
bool
=
False
"""If true, check for NaNs and Infs in gradients _before_ communication collective."""
check_for_large_grads
:
bool
=
False
"""If true, check for unexpectedly large gradients _before_ communication collective."""
bucket_size
:
Optional
[
int
]
=
None
"""Maximum number of parameters in each bucket. If unspecified, MCore uses a default
value of max(40000000, 1000000 * dp_size) parameters (larger DP sizes need larger
buckets to ensure collectives do not become latency-bound)."""
pad_buckets_for_high_nccl_busbw
:
bool
=
False
"""If true, make sure the bucket size is divisible by a large power of 2 (2^16) to
ensure NCCL collectives have high bus bandwidth at large DP counts, since NCCL
message size (which for ring algorithms is bucket_size / dp_size) apparently needs
to be divisible by a power of 2 for high busbw."""
average_in_collective
:
bool
=
False
"""If true, compute average in collective directly, as opposed to dividing by the
dp_size first and then computing sum in the collective."""
fp8_param_gather
:
bool
=
False
"""If true, keep the compute param in fp8 (do not use any other intermediate dtype) and
perform the param all-gather in fp8."""
reuse_grad_buf_for_mxfp8_param_ag
:
bool
=
False
"""If true, reuse the grad buffer for param AG when using mxfp8 recipe. Should be
set to True only when fp8_recipe is mxfp8 and fp8_param_gather is True."""
use_custom_fsdp
:
bool
=
False
"""If true, use the FSDP code path for DDP."""
data_parallel_sharding_strategy
:
str
=
'no_shard'
"""Sharding strategy for FSDP. Valid values are 'no_shard', 'optim',
'optim_grads', 'optim_grads_params'."""
gradient_reduce_div_fusion
:
bool
=
True
"""If true, perform gradient reduce and division fusion."""
suggested_communication_unit_size
:
int
=
None
"""Specifies the number of elements to communicate at once during
FSDP (Fully Sharded Data Parallel) operations.
This flag also affects FSDP all-gather prefetch behavior. Setting a larger
value increases the communication buffer size, while a smaller value
disables prefetching and may degrade performance. Adjust this value
based on your system's memory and performance requirements."""
preserve_fp32_weights
:
bool
=
True
"""If true, preserve fp32 weights in the custom FSDP ParamAndGradBuffer."""
keep_fp8_transpose_cache_when_using_custom_fsdp
:
bool
=
False
"""If true, keep the fp8 transpose cache when using custom FSDP."""
nccl_ub
:
bool
=
False
"""If true, allocate and register NCCL userbuffer for param and grad buffer.
This flag enables SM efficient nccl algorithm that could improve the performance
of FSDP and DP with comm_overlap. This flag will be much more effective when used
together with sharp.
The follwoing will be the expected number of SM usage for various cases.
(Note that this is just a reference number and the number of SM usage could vary
on message size, communication domain size and nccl version.)
----------------------------------------------------------
| Communication domain | use_sharp | SM usage of "AG/RS" |
|----------------------|-----------|---------------------|
| NVL | N/A | 4 / 5 |
| NVL+IB | False | 16 / 16 |
| NVL+IB | True | 6 / 6 |
| IB | False | 1 / 4 |
| IB | True | 1 / 1 |
----------------------------------------------------------
"""
fsdp_double_buffer
:
bool
=
False
"""If true, use persistently allocated double buffers for the
temporary memory needed in the custom FSDP communications.
This option will cause additional memory overhead, however, it is necessary for
to register user buffer (nccl_ub=True) for the custom FSDP.
This option will be automatically set to True when nccl_ub=True.
"""
def
__post_init__
(
self
):
"""Check the validity of the config."""
if
self
.
reuse_grad_buf_for_mxfp8_param_ag
:
assert
self
.
fp8_param_gather
,
"Reuse grad buffer only when keeping params in MXFP8."
Megatron-LM/megatron/core/distributed/finalize_model_grads.py
0 → 100644
View file @
1106877d
# Copyright (c) 2024, NVIDIA CORPORATION. All rights reserved.
from
typing
import
List
,
Optional
,
Union
import
torch
from
torch._utils
import
_flatten_dense_tensors
,
_unflatten_dense_tensors
try
:
from
torch.distributed._tensor
import
DTensor
,
distribute_tensor
HAVE_DTENSOR
=
True
except
ImportError
:
HAVE_DTENSOR
=
False
from
..
import
parallel_state
from
..transformer.moe.moe_utils
import
get_updated_expert_bias
from
..transformer.transformer_config
import
TransformerConfig
from
..utils
import
get_attr_wrapped_model
,
get_model_config
def
_get_main_grad_attr
(
param
:
torch
.
nn
.
Parameter
,
use_custom_fsdp
:
bool
=
False
):
if
use_custom_fsdp
:
return
"fsdp_managed_main_grad"
if
hasattr
(
param
,
"main_grad"
):
return
"main_grad"
return
"grad"
def
_unshard_if_dtensor
(
tensor
:
Union
[
torch
.
Tensor
,
"DTensor"
])
->
torch
.
Tensor
:
"""
Unshards the input tensor if it is a DTensor and otherwise returns the
tensor unmodified.
Args:
tensor (Union[torch.Tensor, DTensor]): The tensor to potentially unshard.
Returns:
An unsharded version of the input tensor if it is a DTensor, or the
input tensor unmodified if it is not a DTensor.
"""
if
HAVE_DTENSOR
and
isinstance
(
tensor
,
DTensor
):
unsharded_tensor
=
tensor
.
full_tensor
()
for
k
,
v
in
vars
(
tensor
).
items
():
setattr
(
unsharded_tensor
,
k
,
v
)
return
unsharded_tensor
return
tensor
def
_reshard_if_dtensor
(
tensor_to_shard
:
torch
.
Tensor
,
reference_tensor
:
Union
[
torch
.
Tensor
,
"DTensor"
]
)
->
Union
[
torch
.
Tensor
,
"DTensor"
]:
"""
Reshards the input tensor to match the sharding configuration of the
reference tensor if the reference tensor is a DTensor. Otherwise, returns
the reference tensor unmodified.
Args:
tensor_to_shard (torch.Tensor): The tensor to be potentially sharded.
reference_tensor (Union[torch.Tensor, DTensor]): The reference tensor
for the sharding configuration.
Returns:
Union[torch.Tensor, DTensor]: The sharded tensor matching the reference tensor's
configuration, or the reference tensor itself if it is not a DTensor.
"""
if
HAVE_DTENSOR
and
isinstance
(
reference_tensor
,
DTensor
):
sharded_tensor
=
distribute_tensor
(
tensor_to_shard
,
device_mesh
=
reference_tensor
.
device_mesh
,
placements
=
reference_tensor
.
placements
,
)
for
k
,
v
in
vars
(
reference_tensor
).
items
():
setattr
(
sharded_tensor
,
k
,
v
)
return
sharded_tensor
return
reference_tensor
def
_allreduce_conditional_embedding_grads
(
model
:
List
[
torch
.
nn
.
Module
],
config
:
TransformerConfig
):
"""
All-reduce conditional embedding grads.
Reduce grads across all the pp stages to ensure that parameters of the conditional embedders
(e.g., timestep embedder, FPS embedder, label embedder) stay in sync.
This is for the models with replicated embedders on each PP / VPP rank, like diffusion models.
"""
if
parallel_state
.
get_pipeline_model_parallel_world_size
()
>
1
and
getattr
(
config
,
"has_cond_embedder"
,
False
):
grads_dict
=
{}
for
model_chunk
in
model
:
for
name
,
param
in
get_attr_wrapped_model
(
model_chunk
,
'named_parameters'
)():
if
param
.
requires_grad
and
getattr
(
param
,
'pipeline_parallel'
,
False
):
grad
=
param
.
main_grad
if
name
in
grads_dict
:
# Add all the virtual PP rank's gradients to
# the first local virtual PP rank.
grads_dict
[
name
][
0
].
add_
(
grad
)
# Append to the end for later update after cross-rank reduce.
grads_dict
[
name
].
append
(
grad
)
else
:
grads_dict
[
name
]
=
[
grad
]
if
grads_dict
:
# All-reduce the gradient on the first VPP rank.
grads
=
[
param_grad
[
0
]
for
_
,
param_grad
in
grads_dict
.
items
()]
coalesced
=
_flatten_dense_tensors
(
grads
)
torch
.
distributed
.
all_reduce
(
coalesced
,
group
=
parallel_state
.
get_pipeline_model_parallel_group
()
)
for
buf
,
synced
in
zip
(
grads
,
_unflatten_dense_tensors
(
coalesced
,
grads
)):
buf
.
copy_
(
synced
)
# Update the gradients on other VPP ranks.
for
grads
in
grads_dict
.
values
():
for
grad
in
grads
[
1
:]:
grad
.
copy_
(
grads
[
0
])
def
_allreduce_word_embedding_grads
(
model
:
List
[
torch
.
nn
.
Module
],
config
:
TransformerConfig
):
"""
All-reduce word embedding grads.
Reduce grads across first and last stages to ensure that word_embeddings parameters stay in
sync.
"""
if
(
parallel_state
.
is_rank_in_embedding_group
(
ignore_virtual
=
True
)
and
parallel_state
.
get_embedding_group
().
size
()
>
1
):
if
parallel_state
.
is_pipeline_first_stage
(
ignore_virtual
=
True
):
model_module
=
model
[
0
]
elif
parallel_state
.
is_pipeline_last_stage
(
ignore_virtual
=
True
):
model_module
=
model
[
-
1
]
else
:
# We do not support an interleaved schedule for models with encoders yet.
model_module
=
model
[
0
]
ddp_config
=
model_module
.
ddp_config
model_module
=
get_attr_wrapped_model
(
model_module
,
'pre_process'
,
return_model_obj
=
True
)
# If share_embeddings_and_output_weights is True, we need to maintain duplicated
# embedding weights in post processing stage. If use Multi-Token Prediction (MTP),
# we also need to maintain duplicated embedding weights in mtp process stage.
# So we need to allreduce grads of embedding in the embedding group in these cases.
if
model_module
.
share_embeddings_and_output_weights
or
getattr
(
config
,
'mtp_num_layers'
,
0
):
weight
=
model_module
.
shared_embedding_or_output_weight
()
grad_attr
=
_get_main_grad_attr
(
weight
,
ddp_config
.
use_custom_fsdp
)
orig_grad
=
getattr
(
weight
,
grad_attr
)
grad
=
_unshard_if_dtensor
(
orig_grad
)
# When the embedding is frozen, the grad is None.
if
grad
is
None
:
return
torch
.
distributed
.
all_reduce
(
grad
,
group
=
parallel_state
.
get_embedding_group
())
setattr
(
weight
,
grad_attr
,
_reshard_if_dtensor
(
grad
,
orig_grad
))
def
_allreduce_position_embedding_grads
(
model
:
List
[
torch
.
nn
.
Module
],
config
:
TransformerConfig
):
"""
All-reduce position_embeddings grad across encoder and decoder stages to ensure that position
embeddings parameters stay in sync.
"""
if
(
parallel_state
.
is_rank_in_position_embedding_group
()
and
parallel_state
.
get_position_embedding_group
().
size
()
>
1
):
if
parallel_state
.
is_pipeline_first_stage
(
ignore_virtual
=
True
):
model_module
=
model
[
0
]
elif
parallel_state
.
is_pipeline_last_stage
(
ignore_virtual
=
True
):
model_module
=
model
[
-
1
]
else
:
# We do not support an interleaved schedule for models with encoders yet.
model_module
=
model
[
0
]
ddp_config
=
model_module
.
ddp_config
model_module
=
get_attr_wrapped_model
(
model_module
,
'pre_process'
,
return_model_obj
=
True
)
assert
hasattr
(
model_module
,
'position_embeddings'
)
weight
=
model_module
.
position_embeddings
.
weight
grad_attr
=
_get_main_grad_attr
(
weight
,
ddp_config
.
use_custom_fsdp
)
orig_grad
=
getattr
(
weight
,
grad_attr
)
grad
=
_unshard_if_dtensor
(
orig_grad
)
torch
.
distributed
.
all_reduce
(
grad
,
group
=
parallel_state
.
get_position_embedding_group
())
setattr
(
weight
,
grad_attr
,
_reshard_if_dtensor
(
grad
,
orig_grad
))
def
_allreduce_embedding_grads
(
model
:
List
[
torch
.
nn
.
Module
],
config
:
TransformerConfig
):
"""
All-reduce both word and position embeddings.
"""
_allreduce_word_embedding_grads
(
model
,
config
)
_allreduce_position_embedding_grads
(
model
,
config
)
def
_update_router_expert_bias
(
model
:
List
[
torch
.
nn
.
Module
],
config
:
TransformerConfig
):
"""
Update the expert bias of the router for a global batch.
This requires all-reduce of local_tokens_per_expert across TPxCPxDP ranks
"""
tokens_per_expert_list
=
[]
expert_bias_list
=
[]
for
model_chunk
in
model
:
for
module
in
get_attr_wrapped_model
(
model_chunk
,
'modules'
)():
if
hasattr
(
module
,
'expert_bias'
):
tokens_per_expert_list
.
append
(
module
.
local_tokens_per_expert
)
expert_bias_list
.
append
(
module
.
expert_bias
)
# For hybrid models with both MoE and Dense layers, this list can be empty.
if
len
(
expert_bias_list
)
==
0
:
return
stacked_tokens_per_expert
=
torch
.
stack
(
tokens_per_expert_list
,
dim
=
0
)
stacked_expert_bias
=
torch
.
stack
(
expert_bias_list
,
dim
=
0
)
stacked_updated_expert_bias
=
get_updated_expert_bias
(
stacked_tokens_per_expert
,
stacked_expert_bias
,
config
.
moe_router_bias_update_rate
)
for
tokens_per_expert
,
expert_bias
,
updated_expert_bias
in
zip
(
tokens_per_expert_list
,
expert_bias_list
,
stacked_updated_expert_bias
):
tokens_per_expert
.
zero_
()
expert_bias
.
copy_
(
updated_expert_bias
)
def
_allreduce_non_tensor_model_parallel_grads
(
model
:
List
[
torch
.
nn
.
Module
],
config
:
TransformerConfig
):
"""
All-reduce both layernorm grads (for sequence parallelism) and
gradients from modules with average_gradients_across_tp_domain=True
across tensor-model-parallel ranks.
"""
if
parallel_state
.
get_tensor_model_parallel_world_size
()
<=
1
:
return
params_sum
=
[]
grads_sum
=
[]
params_avg
=
[]
grads_avg
=
[]
for
model_chunk
in
model
:
ddp_config
=
model_chunk
.
ddp_config
for
name
,
param
in
get_attr_wrapped_model
(
model_chunk
,
'named_parameters'
)():
if
param
.
requires_grad
:
# Check if this param needs average reduction (average_gradients_across_tp_domain)
if
getattr
(
param
,
"average_gradients_across_tp_domain"
,
False
):
params_avg
.
append
(
param
)
grad_attr
=
_get_main_grad_attr
(
param
,
ddp_config
.
use_custom_fsdp
)
grad
=
getattr
(
param
,
grad_attr
)
grad
=
_unshard_if_dtensor
(
grad
)
grads_avg
.
append
(
grad
.
data
)
# Check if this param needs sum reduction (sequence parallel or qk_layernorm)
elif
(
config
.
sequence_parallel
and
getattr
(
param
,
"sequence_parallel"
,
False
))
or
(
config
.
qk_layernorm
and
(
"q_layernorm"
in
name
or
"k_layernorm"
in
name
)
):
params_sum
.
append
(
param
)
grad_attr
=
_get_main_grad_attr
(
param
,
ddp_config
.
use_custom_fsdp
)
grad
=
getattr
(
param
,
grad_attr
)
grad
=
_unshard_if_dtensor
(
grad
)
grads_sum
.
append
(
grad
.
data
)
# Loop grads and perform correct all-reduce
for
params
,
grads
,
all_reduce_op
in
zip
(
[
params_sum
,
params_avg
],
[
grads_sum
,
grads_avg
],
[
torch
.
distributed
.
ReduceOp
.
SUM
,
torch
.
distributed
.
ReduceOp
.
AVG
],
):
if
grads
:
coalesced
=
_flatten_dense_tensors
(
grads
)
torch
.
distributed
.
all_reduce
(
coalesced
,
op
=
all_reduce_op
,
group
=
parallel_state
.
get_tensor_model_parallel_group
()
)
for
param
,
buf
,
synced
in
zip
(
params
,
grads
,
_unflatten_dense_tensors
(
coalesced
,
grads
)
):
buf
.
copy_
(
synced
)
grad_attr
=
_get_main_grad_attr
(
param
,
ddp_config
.
use_custom_fsdp
)
orig_grad
=
getattr
(
param
,
grad_attr
)
setattr
(
param
,
grad_attr
,
_reshard_if_dtensor
(
buf
,
orig_grad
))
"""
This is an alias to _allreduce_non_tensor_model_parallel_grads that we must
maintain for legacy tests. We can remove this proxy in mcore 0.14.
"""
_allreduce_layernorm_grads
=
_allreduce_non_tensor_model_parallel_grads
def
finalize_model_grads
(
model
:
List
[
torch
.
nn
.
Module
],
num_tokens
:
Optional
[
torch
.
Tensor
]
=
None
):
"""
All-reduce all model grads across DP replicas, layernorm grads for sequence parallelism,
embedding grads across first and last pipeline stages (if not tied),
scale gradients by `num_tokens`.
"""
config
=
get_model_config
(
model
[
0
])
# All-reduce / reduce-scatter across DP replicas.
if
config
.
timers
is
not
None
:
config
.
timers
(
'all-grads-sync'
,
log_level
=
1
).
start
(
barrier
=
config
.
barrier_with_L1_time
)
for
model_chunk
in
model
:
model_chunk
.
finish_grad_sync
()
if
config
.
timers
is
not
None
:
config
.
timers
(
'all-grads-sync'
).
stop
()
# All-reduce t_embedder grads (for pp & vpp of DiT).
if
config
.
timers
is
not
None
:
config
.
timers
(
'conditional-embedder-grads-all-reduce'
,
log_level
=
1
).
start
(
barrier
=
config
.
barrier_with_L1_time
)
_allreduce_conditional_embedding_grads
(
model
,
config
)
if
config
.
timers
is
not
None
:
config
.
timers
(
'conditional-embedder-grads-all-reduce'
).
stop
()
# All-reduce layer-norm grads (for sequence parallelism) and non-tensor parallel modules.
if
config
.
timers
is
not
None
:
config
.
timers
(
'non-tensor-parallel-grads-all-reduce'
,
log_level
=
1
).
start
(
barrier
=
config
.
barrier_with_L1_time
)
_allreduce_non_tensor_model_parallel_grads
(
model
,
config
)
if
config
.
timers
is
not
None
:
config
.
timers
(
'non-tensor-parallel-grads-all-reduce'
).
stop
()
# All-reduce embedding grads (for pipeline parallelism).
if
config
.
timers
is
not
None
:
config
.
timers
(
'embedding-grads-all-reduce'
,
log_level
=
1
).
start
(
barrier
=
config
.
barrier_with_L1_time
)
_allreduce_embedding_grads
(
model
,
config
)
if
config
.
timers
is
not
None
:
config
.
timers
(
'embedding-grads-all-reduce'
).
stop
()
if
config
.
moe_router_enable_expert_bias
:
_update_router_expert_bias
(
model
,
config
)
# normalize gradients for per-token loss normalization.
# if we are using by the number of tokens, then we use that as a divisor. this number
# will be the total number of non-padded tokens in the global batch.
if
num_tokens
is
not
None
:
# the number of tokens is only present on the last stage, so broadcast it
# to the other ranks in the pipeline parallel group.
last_rank
=
parallel_state
.
get_pipeline_model_parallel_last_rank
()
pp_group
=
parallel_state
.
get_pipeline_model_parallel_group
()
if
not
isinstance
(
last_rank
,
list
):
assert
not
isinstance
(
last_rank
,
list
)
last_rank
=
[
last_rank
]
assert
not
isinstance
(
pp_group
,
list
)
pp_group
=
[
pp_group
]
# need to do a broadcast for every pp group, even though num_tokens should be the same.
num_tokens_list
=
[]
for
lr
,
group
in
zip
(
last_rank
,
pp_group
):
torch
.
distributed
.
broadcast
(
num_tokens
,
src
=
lr
,
group
=
group
)
num_tokens_list
.
append
(
torch
.
clone
(
num_tokens
))
assert
all
(
x
.
item
()
==
num_tokens_list
[
0
]
for
x
in
num_tokens_list
)
# all-reduce across DP ranks.
torch
.
distributed
.
all_reduce
(
num_tokens
,
group
=
parallel_state
.
get_data_parallel_group
(
with_context_parallel
=
True
)
)
for
model_chunk
in
model
:
if
num_tokens
>
0
:
scaling
=
1.0
/
num_tokens
model_chunk
.
scale_gradients
(
scaling
)
Prev
1
…
13
14
15
16
17
Next
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
.
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment