# Copyright (c) Facebook, Inc. and its affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. import os import json import collections import argparse import shutil import subprocess import sys import tempfile from multiprocessing import Pool import sentencepiece as spm def preprocess(spm_model_path, train_path, valid_path, test_path, dest_dir, remove_empty=False, output_format='piece', workers=20): with tempfile.TemporaryDirectory() as tmp: # Tokenize with SentencePiece for split, path in ('train', train_path), ('valid', valid_path), ('test', test_path): if path is None: continue if path == '-': path = sys.stdin.fileno() with open(path, encoding='utf-8', errors='surrogateescape') as fin: with open(f'{tmp}/{split}', mode='w', encoding='utf-8', errors='surrogateescape') as fout: encoder = MultiprocessingEncoder(model=spm_model_path, remove_empty=remove_empty, output_format=output_format) pool = Pool(workers, initializer=encoder.initializer) encoded_lines = pool.imap(encoder.encode, fin, 10000) for i, line in enumerate(encoded_lines, start=1): if line is not None: print(line, file=fout) if i % 10000 == 0: print("tokenized {} lines".format(i), file=sys.stderr) # Generate dictionary sp = spm.SentencePieceProcessor(model_file=spm_model_path) if output_format == 'piece': vocab = [sp.id_to_piece(i) for i in range(3, sp.vocab_size())] else: vocab = map(str, range(sp.vocab_size())) with open(f'{tmp}/dict.txt', mode='w', encoding='utf-8', errors='surrogateescape') as f: for word in vocab: print(word, 1, file=f) # Binarize command = [ 'python3', '-m', 'fairseq_cli.preprocess', '--only-source', '--thresholdsrc', '0', '--destdir', dest_dir, '--srcdict', f'{tmp}/dict.txt', '--workers', '20', ] for split, path in ('train', train_path), ('valid', valid_path), ('test', test_path): if path is not None: command += [f'--{split}pref', f'{tmp}/{split}'] subprocess.run(command) # Copy SentencePiece model shutil.copyfile(spm_model_path, f'{dest_dir}/sentencepiece.bpe.model') class MultiprocessingEncoder(object): def __init__(self, model, remove_empty, output_format): self.model = model self.remove_empty = remove_empty self.output_format = output_format def initializer(self): global sp sp = spm.SentencePieceProcessor(model_file=self.model) def encode(self, line): global sp line = line.strip() if len(line) == 0 and self.remove_empty: return None if self.output_format == 'piece': return ' '.join(sp.encode_as_pieces(line)) else: return ' '.join(map(str, sp.encode(line))) def write_lines(lines, path): with open(path, mode='x', encoding='utf-8') as f: for line in lines: print(line, file=f) def read_jsonl(path): with open(path, encoding='utf-8') as f: return [json.loads(line) for line in f.read().splitlines()] def read_nli(path, langs=None): data = read_jsonl(path) if langs is not None: data = [sample for sample in data if sample.get('language') in langs] lang2count = collections.defaultdict(int) for sample in data: lang2count[sample.get('language')] += 1 if langs: assert set(lang2count.keys()) == set(langs) nlangs = len(lang2count) assert nlangs > 0 lens = list(lang2count.values()) assert all([lens[0] == length for length in lens]) print(f'Loaded {lens[0]} samples in {nlangs} languages from {path}', file=sys.stderr) return data def main(): parser = argparse.ArgumentParser(description='Tokenize and binarize NLI data') parser.add_argument('--sentencepiece-model', required=True) parser.add_argument('--train', required=True, help='Training data in jsonl format') parser.add_argument('--valid', required=True, help='Validation data in jsonl format') parser.add_argument('--destdir', required=True) args = parser.parse_args() os.makedirs(args.destdir + '/raw',) os.makedirs(args.destdir + '/bin', ) # Extract input/labels for split, path in ('train', args.train), ('valid', args.valid): data = read_nli(path, langs=None) original_size = len(data) data = [sample for sample in data if sample['gold_label'] != '-'] assert all(sample['gold_label'] in ('contradiction', 'entailment', 'neutral') for sample in data) filtered_size = len(data) if filtered_size != original_size: print(f'Filtered {filtered_size}/{original_size} samples from {path}', file=sys.stderr) for name, field in ('input0', 'sentence1'), ('input1', 'sentence2'), ('label', 'gold_label'): write_lines([sample[field] for sample in data], f'{args.destdir}/raw/{split}.{name}.txt') # Tokenize and binarize input for field in 'input0', 'input1': preprocess( spm_model_path=args.sentencepiece_model, train_path=f'{args.destdir}/raw/train.{field}.txt', valid_path=f'{args.destdir}/raw/valid.{field}.txt', test_path=None, dest_dir=f'{args.destdir}/bin/{field}', workers=20, ) # Binarize labels subprocess.run([ 'python3', '-m', 'fairseq_cli.preprocess', '--trainpref', f'{args.destdir}/raw/train.label.txt', '--validpref', f'{args.destdir}/raw/valid.label.txt', '--only-source', '--thresholdsrc', '0', '--destdir', f'{args.destdir}/bin/label', '--workers', '20', ]) if __name__ == '__main__': main()