# Copyright (c) Facebook, Inc. and its affiliates.
#
# This source code is licensed under the MIT license found in the
# LICENSE file in the root directory of this source tree.
import os
import torch.multiprocessing as mp
import numpy as np
import json
import torch
from torch.distributions.categorical import Categorical
from fairseq import checkpoint_utils, options, utils
from fairseq.data.codedataset import CodeDataset, ExpressiveCodeDataConfig
from fairseq.dataclass.utils import convert_namespace_to_omegaconf
from torch.utils.data import DataLoader, DistributedSampler
from fairseq.utils import move_to_cuda
import tqdm
import random
import pathlib
import sys, pathlib
sys.path.append(str(pathlib.Path(__file__).parent.parent))
from inference_dataset import InferenceDataset, explode_batch
from naive_decoder import Naive_F0_Decoder
from truncated_laplace import truncated_laplace
CODETYPE_TO_FRAMETIME = {"cpc_km100": 0.01, "hubert": 0.02} # 10ms # 20ms
class TemperatureDecoder:
def __init__(self, Ts, discrete_dur=False, discrete_f0=False):
self.T_token, self.T_dur, self.T_f0 = Ts
self.discrete_dur = discrete_dur
self.discrete_f0 = discrete_f0
def __call__(self, output):
def sample_multinomial(key, T):
logits = output[key][:, -1, :].float()
return Categorical(logits=logits / T).sample().unsqueeze(-1)
def sample_laplace(key, T, truncate_at_zero):
mean = output[key][:, -1, :].float()
return truncated_laplace(mean=mean, T=T, truncate_by_zero=truncate_at_zero)
if self.T_token > 0:
new_tokens = sample_multinomial("token", self.T_token)
else:
new_tokens = output["token"][:, -1, :].argmax(dim=-1, keepdim=True)
if not self.discrete_dur and self.T_dur == 0:
new_durations = output["duration"][:, -1].round().int()
elif not self.discrete_dur and self.T_dur > 0:
new_durations = (
sample_laplace("duration", self.T_dur, truncate_at_zero=True)
.round()
.int()
)
elif self.discrete_dur and self.T_dur > 0:
new_durations = sample_multinomial("duration", self.T_dur)
elif self.discrete_dur and self.T_dur == 0:
new_durations = output["duration"][:, -1, :].argmax(dim=-1, keepdim=True)
else:
assert False
if not self.discrete_f0 and self.T_f0 == 0:
new_f0 = output["f0"][:, -1]
elif not self.discrete_f0 and self.T_f0 > 0:
new_f0 = sample_laplace("f0", self.T_f0, truncate_at_zero=False)
elif self.discrete_f0 and self.T_f0 > 0:
new_f0 = sample_multinomial("f0", self.T_f0)
elif self.discrete_f0 and self.T_f0 == 0:
new_f0 = output["f0"][:, -1, :].argmax(dim=-1, keepdim=True)
else:
assert False
return new_tokens, new_durations, new_f0
class FilterNamesDataset:
def __init__(self, dataset, fnames_path):
self.dataset = dataset
with open(fnames_path, "r") as fin:
fnames = set((eval(line)["audio"] for line in fin))
print(f"# will retrict the dataset for {len(fnames)} files")
self.indexes = []
for i, datapoint in enumerate(dataset):
if datapoint["filename"] in fnames:
self.indexes.append(i)
assert len(self.indexes) == len(fnames), f"{len(self.indexes)} {len(fnames)}"
self.collater = self.dataset.collater
self.discrete_dur = self.dataset.discrete_dur
self.discrete_f0 = self.dataset.discrete_f0
def __len__(self):
return len(self.indexes)
def __getitem__(self, k):
k = self.indexes[k]
return self.dataset[k]
def size(self, k):
k = self.indexes[k]
return self.dataset.size(k)
@torch.no_grad()
def do_sampling(
model,
batch,
eos_token,
decoder,
autoregressive_steps=100,
teacher_force_tokens=False,
teacher_force_duration=False,
teacher_force_f0=False,
match_duration=False,
):
def autoregressive_step_(output, autoregressive_steps):
new_tokens, new_durations, new_f0 = decoder(output)
n = output["token"].size(1) if output["token"].ndim == 3 else 1
if teacher_force_tokens:
new_tokens = batch["target"][:, n - 1].unsqueeze(-1)
if teacher_force_duration:
new_durations = batch["dur_target"][:, n - 1].unsqueeze(-1)
if teacher_force_f0:
new_f0 = batch["f0_target"][:, n - 1].unsqueeze(-1)
batch["net_input"]["src_tokens"] = torch.cat(
[batch["net_input"]["src_tokens"], new_tokens], dim=1
)
batch["net_input"]["dur_src"] = torch.cat(
[batch["net_input"]["dur_src"], new_durations], dim=1
)
batch["net_input"]["f0_src"] = torch.cat(
[batch["net_input"]["f0_src"], new_f0], dim=1
)
outputs = []
if teacher_force_tokens or teacher_force_duration or teacher_force_f0:
max_time = batch["target"].size(1)
prefix_time = batch["net_input"]["src_tokens"].size(1)
autoregressive_steps = max_time - prefix_time + 1 # should be 0
for _ in range(autoregressive_steps):
output = model(**batch["net_input"])
last_steps = (
output["token"][:, -1, ...],
output["duration"][:, -1, ...],
output["f0"][:, -1, ...],
)
outputs.append(last_steps)
autoregressive_step_(output, autoregressive_steps)
tokens, duration, f0 = (
batch["net_input"]["src_tokens"],
batch["net_input"]["dur_src"],
batch["net_input"]["f0_src"],
)
if (
match_duration
and (batch["dur_target"].sum(dim=-1) < duration.sum(dim=-1)).all()
):
break
return tokens, duration, f0, outputs
def unroll_duration(token_stream, duration_stream):
assert len(token_stream) == len(
duration_stream
), f"{len(token_stream)} != {len(duration_stream)}"
non_positive_durations = sum(d <= 0 for d in duration_stream)
if non_positive_durations > 0:
print(
f"# {non_positive_durations} durations are non-positive, they will be capped to 1"
)
result = []
duration_stream_rounded_capped = [max(1, int(round(x))) for x in duration_stream]
for t, d in zip(token_stream, duration_stream_rounded_capped):
result.extend([t] * d)
return result
def realign_shifted_streams(tokens, durations, F0s, shifts):
"""
Durations are shifted by 1, F0 by 2
>>> tokens = ["", "t1", "t2", "t3", "", "x", "x"]
>>> durations = ["<0>", "<0>", "d1", "d2", "d3", "<0>", "x"]
>>> F0s = ["<0>", "<0>", "<0>", "f1", "f2", "f3", "<0>"]
>>> shifts = [1,2]
>>> realign_shifted_streams(tokens, durations, F0s, shifts)
(['', 't1', 't2', 't3', ''], ['<0>', 'd1', 'd2', 'd3', '<0>'], ['<0>', 'f1', 'f2', 'f3', '<0>'])
"""
max_shift = max(shifts)
if max_shift > 0:
shift_durations, shift_F0s = shifts
tokens = tokens[:-max_shift]
durations = durations[shift_durations:]
if shift_durations < max_shift:
durations = durations[: -(max_shift - shift_durations)]
if F0s is not None:
F0s = F0s[shift_F0s:]
if shift_F0s < max_shift:
F0s = F0s[: -(max_shift - shift_F0s)]
assert len(tokens) == len(durations), f"{len(tokens)} =! {len(durations)}"
if F0s is not None:
assert len(tokens) == len(F0s), f"{len(tokens)} =! {len(F0s)}"
return tokens, durations, F0s
def maybe_cut_eos(produced_tokens, produced_duration, produced_f0, eos_idx):
if eos_idx in produced_tokens:
eos_index = produced_tokens.index(eos_idx)
produced_tokens = produced_tokens[:eos_index]
produced_duration = produced_duration[:eos_index]
produced_f0 = produced_f0[:eos_index]
return produced_tokens, produced_duration, produced_f0
def maybe_filter_pad(produced_tokens, produced_duration, produced_f0, pad_idx):
if pad_idx not in produced_tokens:
return produced_tokens, produced_duration, produced_f0
assert len(produced_tokens) == len(produced_duration) == len(produced_f0)
print(" is detected in the output!")
filtered_tokens, filtered_duration, filtered_f0 = [], [], []
for t, d, f in zip(produced_tokens, produced_duration, produced_f0):
if t != pad_idx:
filtered_tokens.append(t)
filtered_duration.append(d)
filtered_f0.append(f)
return filtered_tokens, filtered_duration, filtered_f0
def match_duration(produced_tokens, produced_duration, produced_f0, target_duration):
"""
>>> tokens = ['t'] * 4
>>> F0s = ['f0'] * 4
>>> produced_duration = [1, 10, 10, 10]
>>> match_duration(tokens, produced_duration, F0s, target_duration=100)
(['t', 't', 't', 't'], [1, 10, 10, 10], ['f0', 'f0', 'f0', 'f0'])
>>> match_duration(tokens, produced_duration, F0s, target_duration=5)
(['t', 't'], [1, 4], ['f0', 'f0'])
"""
if sum(produced_duration) <= target_duration:
return produced_tokens, produced_duration, produced_f0
running_duration = 0
filtered_duration = []
for next_tok_duration in produced_duration:
if running_duration + next_tok_duration < target_duration:
filtered_duration.append(next_tok_duration)
running_duration += next_tok_duration
else:
to_add = target_duration - running_duration
assert to_add <= next_tok_duration
filtered_duration.append(to_add)
break
produced_duration = filtered_duration
assert sum(produced_duration) == target_duration
n_tok = len(filtered_duration)
return produced_tokens[:n_tok], produced_duration, produced_f0[:n_tok]
def main(rank, world_size, args):
if world_size > 1:
torch.distributed.init_process_group(
backend="gloo", init_method="env://", world_size=world_size, rank=rank
)
torch.cuda.set_device(rank)
raw_args = args
args = convert_namespace_to_omegaconf(args)
if args.common.seed is not None:
random.seed(args.common.seed)
np.random.seed(args.common.seed)
utils.set_torch_seed(args.common.seed)
models, model_args, task = checkpoint_utils.load_model_ensemble_and_task(
[raw_args.path], arg_overrides={"data": args.task.data}
)
tgt_dict = task.target_dictionary
for model in models:
model.prepare_for_inference_(args)
model.cuda().eval()
if raw_args.fp16:
model = model.half()
model = models[0]
config = ExpressiveCodeDataConfig(args.task.data)
dataset = CodeDataset(
manifest=config.manifests[raw_args.subset],
dictionary=task.source_dictionary,
dur_dictionary=task.source_duration_dictionary,
f0_dictionary=task.source_f0_dictionary,
config=config,
discrete_dur=task.cfg.discrete_duration,
discrete_f0=task.cfg.discrete_f0,
log_f0=task.cfg.log_f0,
normalize_f0_mean=task.cfg.normalize_f0_mean,
normalize_f0_std=task.cfg.normalize_f0_std,
interpolate_f0=task.cfg.interpolate_f0,
shifts=task.cfg.stream_shifts,
return_filename=True,
strip_filename=False,
)
tgt_dict = task.target_dictionary
shifts = dataset.shifts.dur, dataset.shifts.f0
max_shift = max(shifts)
fname = raw_args.output
if world_size > 1:
fname += f"_{rank}"
output_file = open(fname, "w")
if raw_args.filter_names:
dataset = FilterNamesDataset(dataset, raw_args.filter_names)
dataset = InferenceDataset(dataset, raw_args.prefix_length, filter_short=True)
print(f"Dataset size {len(dataset)}")
sampler = (
None
if world_size == 1
else DistributedSampler(
dataset, num_replicas=world_size, rank=rank, shuffle=False
)
)
dataloader = DataLoader(
dataset,
batch_size=1,
shuffle=False,
collate_fn=dataset.collater,
sampler=sampler,
)
Ts = raw_args.T_token, raw_args.T_duration, raw_args.T_f0
decoder = TemperatureDecoder(
Ts, discrete_dur=task.cfg.discrete_duration, discrete_f0=task.cfg.discrete_f0
)
dataset_size = len(dataset)
f0_decoder = None
if raw_args.f0_discretization_bounds:
assert task.cfg.discrete_f0
f0_decoder = Naive_F0_Decoder(raw_args.f0_discretization_bounds).cuda()
pbar = (
tqdm.tqdm(
total=dataset_size
if raw_args.max_samples is None
else min(raw_args.max_samples, dataset_size)
)
if world_size == 1
else None
)
samples_produced = 0
for batch in dataloader:
if (
raw_args.max_samples is not None
and samples_produced >= raw_args.max_samples
):
break
prefix = batch["prefix"][0]
batch = explode_batch(batch, raw_args.batch_explosion_rate)
batch = move_to_cuda(batch)
if not raw_args.short_curcuit:
produced_tokens, produced_durations, produced_f0, _ = do_sampling(
models[0],
batch,
tgt_dict.eos(),
decoder,
autoregressive_steps=raw_args.max_length - prefix + max_shift,
teacher_force_tokens=raw_args.teacher_force_tokens,
match_duration=raw_args.match_duration,
teacher_force_duration=raw_args.teacher_force_duration,
teacher_force_f0=raw_args.teacher_force_f0,
)
# stip entries corresponding to
produced_tokens = produced_tokens[:, 1:]
produced_durations = produced_durations[:, 1:]
produced_f0 = produced_f0[:, 1:]
else:
max_length = raw_args.max_length + max_shift
produced_tokens, produced_durations, produced_f0 = (
batch["target"][:, :max_length],
batch["dur_target"][:, :max_length],
batch["f0_target"][:, :max_length],
)
if f0_decoder is not None:
produced_f0 = f0_decoder(produced_f0)
produced_tokens, produced_durations, produced_f0 = (
produced_tokens.cpu().tolist(),
produced_durations.cpu().tolist(),
produced_f0.cpu().tolist(),
)
bsz = batch["target"].size(0)
assert bsz == raw_args.batch_explosion_rate
for i in range(bsz):
if (
raw_args.max_samples is not None
and samples_produced >= raw_args.max_samples
):
break
produced_tokens_i = produced_tokens[i]
produced_durations_i = produced_durations[i]
produced_f0_i = produced_f0[i]
(
produced_tokens_i,
produced_durations_i,
produced_f0_i,
) = realign_shifted_streams(
produced_tokens_i, produced_durations_i, produced_f0_i, shifts
)
produced_tokens_i, produced_durations_i, produced_f0_i = maybe_cut_eos(
produced_tokens_i, produced_durations_i, produced_f0_i, tgt_dict.eos()
)
produced_tokens_i, produced_durations_i, produced_f0_i = maybe_filter_pad(
produced_tokens_i, produced_durations_i, produced_f0_i, tgt_dict.pad()
)
if raw_args.match_duration:
# NB: here we cheat a bit and use that padding has duration 0
# so no need to re-align and remove padding
dur_target_i = batch["dur_target"][i, :].sum().item()
produced_tokens_i, produced_durations_i, produced_f0_i = match_duration(
produced_tokens_i, produced_durations_i, produced_f0_i, dur_target_i
)
if raw_args.cut_prompt:
produced_tokens_i, produced_durations_i, produced_f0_i = (
produced_tokens_i[prefix:],
produced_durations_i[prefix:],
produced_f0_i[prefix:],
)
prompt_fname = batch["filename"][0]
fname = str(pathlib.Path(prompt_fname).with_suffix("")) + f"__{i}.wav"
token_stream = unroll_duration(produced_tokens_i, produced_durations_i)
f0_stream = unroll_duration(produced_f0_i, produced_durations_i)
output_line = json.dumps(
{
"audio": fname,
"prompt": prompt_fname,
raw_args.code_type: " ".join(map(str, token_stream)),
"duration": round(
sum(produced_durations_i)
* CODETYPE_TO_FRAMETIME[raw_args.code_type],
3,
),
"raw_duration": produced_durations_i,
"raw_f0": produced_f0_i,
"f0": [round(f0, 3) for f0 in f0_stream],
}
)
print(output_line, file=output_file)
if pbar:
pbar.update(1)
samples_produced += 1
if raw_args.debug:
break
output_file.close()
if world_size > 1:
# important that everything is flushed before aggregating
torch.distributed.barrier()
if world_size > 1 and rank == 0:
with open(raw_args.output, "w") as fout:
for i in range(world_size):
f = raw_args.output + f"_{i}"
with open(f, "r") as fin:
fout.write(fin.read())
os.remove(f)
def cli_main():
parser = options.get_interactive_generation_parser()
parser.add_argument(
"--prefix-length",
type=int,
default=1,
help="Prompt prefix length (including )",
)
parser.add_argument("--output", type=str, default=None, required=True)
parser.add_argument(
"--debug", action="store_true", help="Process only the first batch"
)
parser.add_argument(
"--ignore-durations",
action="store_true",
help="If set, the duration stream is ignored",
)
parser.add_argument(
"--max-length", type=int, default=200, help="Maximal produced length"
)
parser.add_argument(
"--code-type", choices=["cpc_km100", "hubert"], default="cpc_km100"
)
parser.add_argument("--max-samples", type=int, default=None)
parser.add_argument("--prompt-duration-scaler", type=float, default=1.0)
parser.add_argument("--teacher-force-tokens", action="store_true", default=False)
parser.add_argument("--teacher-force-duration", action="store_true", default=False)
parser.add_argument("--teacher-force-f0", action="store_true", default=False)
parser.add_argument("--filter-names", type=str, default=None)
parser.add_argument(
"--match-duration",
action="store_true",
help="Do not produce sequences longer that ground-truth",
)
parser.add_argument(
"--cut-prompt",
action="store_true",
help="Remove prompt from the produced audio",
)
parser.add_argument(
"--short-curcuit", action="store_true", help="Use 'target' as a sample"
)
parser.add_argument("--f0-discretization-bounds", type=str, default=None)
parser.add_argument("--batch-explosion-rate", type=int, default=1)
parser.add_argument("--T-token", type=float, default=1.0)
parser.add_argument("--T-duration", type=float, default=1.0)
parser.add_argument("--T-f0", type=float, default=1.0)
parser.add_argument(
"--subset", type=str, default="valid", choices=["test", "valid"]
)
args = options.parse_args_and_arch(parser)
assert (
args.prefix_length >= 1
), "Prefix length includes bos token , hence the minimum is 1."
assert all(
t >= 0 for t in [args.T_token, args.T_f0, args.T_duration]
), "T must be non-negative!"
world_size = torch.cuda.device_count()
if world_size > 1:
import random
mp.set_start_method("spawn", force=True)
os.environ["MASTER_ADDR"] = "localhost"
os.environ["MASTER_PORT"] = str(random.randint(10_000, 50_000))
print(f"Using {world_size} devices, master port {os.environ['MASTER_PORT']}")
mp.spawn(
main,
nprocs=world_size,
args=(
world_size,
args,
),
join=True,
)
else:
main(rank=0, world_size=world_size, args=args)
if __name__ == "__main__":
cli_main()