{ rAU = 1.0/UEqn.A(); surfaceScalarField rAUf("rAUf", fvc::interpolate(rAU)); volVectorField HbyA(constrainHbyA(rAU*UEqn.H(), U, p_rgh)); surfaceScalarField phiHbyA ( "phiHbyA", fvc::flux(HbyA) ); if (ddtCorr) { surfaceScalarField faceMaskOld ( localMin(mesh).interpolate(cellMask.oldTime()) ); phiHbyA += faceMaskOld*fvc::ddtCorr(U, Uf); } if (p_rgh.needReference()) { fvc::makeRelative(phiHbyA, U); adjustPhi(phiHbyA, U, p_rgh); fvc::makeAbsolute(phiHbyA, U); } surfaceScalarField phig ( ( interface.surfaceTensionForce() - ghf*fvc::snGrad(rho) )*faceMask*rAUf*mesh.magSf() ); phiHbyA += phig; // Update the pressure BCs to ensure flux consistency constrainPressure(p_rgh, U, phiHbyA, rAUf); Pair> vDotP = mixture->vDotP(); const volScalarField& vDotcP = vDotP[0](); const volScalarField& vDotvP = vDotP[1](); while (pimple.correctNonOrthogonal()) { fvScalarMatrix p_rghEqn ( fvc::div(phiHbyA) - fvm::laplacian(rAUf, p_rgh) - (vDotvP - vDotcP)*(mixture->pSat() - rho*gh) + fvm::Sp(vDotvP - vDotcP, p_rgh) ); //p_rghEqn.setReference(pRefCell, pRefValue); p_rghEqn.setReference(pRefCell, getRefCellValue(p_rgh, pRefCell)); p_rghEqn.solve(mesh.solver(p_rgh.select(pimple.finalInnerIter()))); if (pimple.finalNonOrthogonalIter()) { phi = phiHbyA + p_rghEqn.flux(); p_rgh.relax(); U = cellMask *(HbyA + rAU*fvc::reconstruct((phig + p_rghEqn.flux())/rAUf)); U.correctBoundaryConditions(); fvOptions.correct(U); } } #include "continuityErrs.H" { Uf = fvc::interpolate(U); surfaceVectorField n(mesh.Sf()/mesh.magSf()); Uf += n*(phi/mesh.magSf() - (n & Uf)); } // Make the fluxes relative to the mesh motion fvc::makeRelative(phi, U); // Zero faces H-I for transport Eq after pEq phi *= faceMask; p == p_rgh + rho*gh; if (p_rgh.needReference()) { p += dimensionedScalar ( "p", p.dimensions(), pRefValue - getRefCellValue(p, pRefCell) ); p_rgh = p - rho*gh; } }