Commit ea17556c authored by shunbo's avatar shunbo
Browse files

Initial commit

parents
const volScalarField& psi = thermo.psi();
const volScalarField& T = thermo.T();
regionModels::surfaceFilmModel& surfaceFilm = tsurfaceFilm();
const label inertIndex(composition.species()[inertSpecie]);
Info<< "Reading thermophysical properties\n" << endl;
autoPtr<psiReactionThermo> pThermo(psiReactionThermo::New(mesh));
psiReactionThermo& thermo = pThermo();
thermo.validate(args.executable(), "h", "e");
SLGThermo slgThermo(mesh, thermo);
basicSpecieMixture& composition = thermo.composition();
PtrList<volScalarField>& Y = composition.Y();
const word inertSpecie(thermo.get<word>("inertSpecie"));
if (!composition.species().found(inertSpecie))
{
FatalIOErrorIn(args.executable().c_str(), thermo)
<< "Inert specie " << inertSpecie << " not found in available species "
<< composition.species()
<< exit(FatalIOError);
}
Info<< "Creating field rho\n" << endl;
volScalarField rho
(
IOobject
(
"rho",
runTime.timeName(),
mesh,
IOobject::NO_READ,
IOobject::AUTO_WRITE
),
thermo.rho()
);
volScalarField& p = thermo.p();
Info<< "\nReading field U\n" << endl;
volVectorField U
(
IOobject
(
"U",
runTime.timeName(),
mesh,
IOobject::MUST_READ,
IOobject::AUTO_WRITE
),
mesh
);
#include "compressibleCreatePhi.H"
#include "createMRF.H"
Info<< "Creating turbulence model\n" << endl;
autoPtr<compressible::turbulenceModel> turbulence
(
compressible::turbulenceModel::New
(
rho,
U,
phi,
thermo
)
);
Info<< "Creating combustion model\n" << endl;
autoPtr<CombustionModel<psiReactionThermo>> combustion
(
CombustionModel<psiReactionThermo>::New(thermo, turbulence())
);
#include "readGravitationalAcceleration.H"
#include "readhRef.H"
#include "gh.H"
#include "readpRef.H"
volScalarField p_rgh
(
IOobject
(
"p_rgh",
runTime.timeName(),
mesh,
IOobject::MUST_READ,
IOobject::AUTO_WRITE
),
mesh
);
mesh.setFluxRequired(p_rgh.name());
#include "phrghEqn.H"
multivariateSurfaceInterpolationScheme<scalar>::fieldTable fields;
forAll(Y, i)
{
fields.add(Y[i]);
}
fields.add(thermo.he());
volScalarField Qdot
(
IOobject
(
"Qdot",
runTime.timeName(),
mesh,
IOobject::READ_IF_PRESENT,
IOobject::AUTO_WRITE
),
mesh,
dimensionedScalar(dimEnergy/dimVolume/dimTime, Zero)
);
#include "createDpdt.H"
#include "createK.H"
#include "createClouds.H"
#include "createSurfaceFilmModel.H"
#include "createPyrolysisModel.H"
#include "createRadiationModel.H"
#include "createFvOptions.H"
Info<< "Creating pyrolysis model" << endl;
regionModels::pyrolysisModels::pyrolysisModelCollection pyrolysis(mesh);
IOdictionary additionalControlsDict
(
IOobject
(
"additionalControls",
runTime.constant(),
mesh,
IOobject::MUST_READ_IF_MODIFIED,
IOobject::NO_WRITE
)
);
bool solvePrimaryRegion
(
additionalControlsDict.getOrDefault("solvePrimaryRegion", true)
);
bool solvePyrolysisRegion
(
additionalControlsDict.getOrDefault("solvePyrolysisRegion", true)
);
scalar maxDi = pyrolysis.maxDiff();
Info<< "\nConstructing surface film model" << endl;
autoPtr<regionModels::surfaceFilmModel> tsurfaceFilm
(
regionModels::surfaceFilmModel::New(mesh, g)
);
/*---------------------------------------------------------------------------*\
========= |
\\ / F ield | OpenFOAM: The Open Source CFD Toolbox
\\ / O peration |
\\ / A nd | www.openfoam.com
\\/ M anipulation |
-------------------------------------------------------------------------------
Copyright (C) 2011-2017 OpenFOAM Foundation
-------------------------------------------------------------------------------
License
This file is part of OpenFOAM.
OpenFOAM is free software: you can redistribute it and/or modify it
under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
OpenFOAM is distributed in the hope that it will be useful, but WITHOUT
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
for more details.
You should have received a copy of the GNU General Public License
along with OpenFOAM. If not, see <http://www.gnu.org/licenses/>.
Application
fireFoam
Group
grpCombustionSolvers
Description
Transient solver for fires and turbulent diffusion flames with reacting
particle clouds, surface film and pyrolysis modelling.
\*---------------------------------------------------------------------------*/
#include "fvCFD.H"
#include "turbulentFluidThermoModel.H"
#include "basicReactingCloud.H"
#include "surfaceFilmModel.H"
#include "pyrolysisModelCollection.H"
#include "radiationModel.H"
#include "SLGThermo.H"
#include "solidChemistryModel.H"
#include "psiReactionThermo.H"
#include "CombustionModel.H"
#include "pimpleControl.H"
#include "fvOptions.H"
// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * //
int main(int argc, char *argv[])
{
argList::addNote
(
"Transient solver for fires and turbulent diffusion flames"
" with reacting particle clouds, surface film and pyrolysis modelling."
);
#include "postProcess.H"
#include "addCheckCaseOptions.H"
#include "setRootCaseLists.H"
#include "createTime.H"
#include "createMesh.H"
#include "createControl.H"
#include "createFields.H"
#include "createFieldRefs.H"
#include "initContinuityErrs.H"
#include "createTimeControls.H"
#include "compressibleCourantNo.H"
#include "setInitialDeltaT.H"
#include "createRegionControls.H"
turbulence->validate();
// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * //
Info<< "\nStarting time loop\n" << endl;
while (runTime.run())
{
#include "readTimeControls.H"
#include "compressibleCourantNo.H"
#include "solidRegionDiffusionNo.H"
#include "setMultiRegionDeltaT.H"
#include "setDeltaT.H"
++runTime;
Info<< "Time = " << runTime.timeName() << nl << endl;
parcels.evolve();
surfaceFilm.evolve();
if(solvePyrolysisRegion)
{
pyrolysis.evolve();
}
if (solvePrimaryRegion)
{
#include "rhoEqn.H"
// --- PIMPLE loop
while (pimple.loop())
{
#include "UEqn.H"
#include "YEEqn.H"
// --- Pressure corrector loop
while (pimple.correct())
{
#include "pEqn.H"
}
if (pimple.turbCorr())
{
turbulence->correct();
}
}
rho = thermo.rho();
}
runTime.write();
runTime.printExecutionTime(Info);
}
Info<< "End\n" << endl;
return 0;
}
// ************************************************************************* //
rho = thermo.rho();
volScalarField rAU(1.0/UEqn.A());
surfaceScalarField rhorAUf("rhorAUf", fvc::interpolate(rho*rAU));
volVectorField HbyA(constrainHbyA(rAU*UEqn.H(), U, p));
surfaceScalarField phig("phig", -rhorAUf*ghf*fvc::snGrad(rho)*mesh.magSf());
surfaceScalarField phiHbyA
(
"phiHbyA",
(
fvc::flux(rho*HbyA)
+ MRF.zeroFilter(rhorAUf*fvc::ddtCorr(rho, U, phi))
)
+ phig
);
MRF.makeRelative(fvc::interpolate(rho), phiHbyA);
// Update the pressure BCs to ensure flux consistency
constrainPressure(p_rgh, rho, U, phiHbyA, rhorAUf, MRF);
while (pimple.correctNonOrthogonal())
{
fvScalarMatrix p_rghEqn
(
fvm::ddt(psi, p_rgh)
+ fvc::ddt(psi, rho)*gh
+ fvc::ddt(psi)*pRef
+ fvc::div(phiHbyA)
- fvm::laplacian(rhorAUf, p_rgh)
==
parcels.Srho()
+ surfaceFilm.Srho()
+ fvOptions(psi, p_rgh, rho.name())
);
p_rghEqn.solve(mesh.solver(p_rgh.select(pimple.finalInnerIter())));
if (pimple.finalNonOrthogonalIter())
{
phi = phiHbyA + p_rghEqn.flux();
U = HbyA + rAU*fvc::reconstruct((p_rghEqn.flux() + phig)/rhorAUf);
U.correctBoundaryConditions();
fvOptions.correct(U);
}
}
p = p_rgh + rho*gh + pRef;
#include "rhoEqn.H"
#include "compressibleContinuityErrs.H"
K = 0.5*magSqr(U);
if (thermo.dpdt())
{
dpdt = fvc::ddt(p);
}
if (pimple.dict().getOrDefault("hydrostaticInitialization", false))
{
volScalarField& ph_rgh = regIOobject::store
(
new volScalarField
(
IOobject
(
"ph_rgh",
"0",
mesh,
IOobject::MUST_READ,
IOobject::NO_WRITE
),
mesh
)
);
if (equal(runTime.value(), 0))
{
p = ph_rgh + rho*gh + pRef;
thermo.correct();
rho = thermo.rho();
label nCorr
(
pimple.dict().getOrDefault<label>("nHydrostaticCorrectors", 5)
);
for (label i=0; i<nCorr; i++)
{
surfaceScalarField rhof("rhof", fvc::interpolate(rho));
surfaceScalarField phig
(
"phig",
-rhof*ghf*fvc::snGrad(rho)*mesh.magSf()
);
// Update the pressure BCs to ensure flux consistency
constrainPressure(ph_rgh, rho, U, phig, rhof);
fvScalarMatrix ph_rghEqn
(
fvm::laplacian(rhof, ph_rgh) == fvc::div(phig)
);
ph_rghEqn.solve();
p = ph_rgh + rho*gh + pRef;
thermo.correct();
rho = thermo.rho();
Info<< "Hydrostatic pressure variation "
<< (max(ph_rgh) - min(ph_rgh)).value() << endl;
}
ph_rgh.write();
p_rgh = ph_rgh;
}
}
/*---------------------------------------------------------------------------*\
========= |
\\ / F ield | OpenFOAM: The Open Source CFD Toolbox
\\ / O peration |
\\ / A nd | www.openfoam.com
\\/ M anipulation |
-------------------------------------------------------------------------------
Copyright (C) 2011-2015 OpenFOAM Foundation
-------------------------------------------------------------------------------
License
This file is part of OpenFOAM.
OpenFOAM is free software: you can redistribute it and/or modify it
under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
OpenFOAM is distributed in the hope that it will be useful, but WITHOUT
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
for more details.
You should have received a copy of the GNU General Public License
along with OpenFOAM. If not, see <http://www.gnu.org/licenses/>.
Global
rhoEqn
Description
Solve the continuity for density.
\*---------------------------------------------------------------------------*/
{
fvScalarMatrix rhoEqn
(
fvm::ddt(rho)
+ fvc::div(phi)
==
parcels.Srho(rho)
+ surfaceFilm.Srho()
+ fvOptions(rho)
);
rhoEqn.solve();
fvOptions.correct(rho);
}
// ************************************************************************* //
/*---------------------------------------------------------------------------*\
========= |
\\ / F ield | OpenFOAM: The Open Source CFD Toolbox
\\ / O peration |
\\ / A nd | www.openfoam.com
\\/ M anipulation |
-------------------------------------------------------------------------------
Copyright (C) 2011 OpenFOAM Foundation
-------------------------------------------------------------------------------
License
This file is part of OpenFOAM.
OpenFOAM is free software: you can redistribute it and/or modify it
under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
OpenFOAM is distributed in the hope that it will be useful, but WITHOUT
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
for more details.
You should have received a copy of the GNU General Public License
along with OpenFOAM. If not, see <http://www.gnu.org/licenses/>.
Global
setMultiRegionDeltaT
Description
Reset the timestep to maintain a constant maximum Courant numbers.
Reduction of time-step is immediate, but increase is damped to avoid
unstable oscillations.
\*---------------------------------------------------------------------------*/
if (adjustTimeStep)
{
if (CoNum == -GREAT)
{
CoNum = SMALL;
}
if (DiNum == -GREAT)
{
DiNum = SMALL;
}
const scalar TFactorFluid = maxCo/(CoNum + SMALL);
const scalar TFactorSolid = maxDi/(DiNum + SMALL);
const scalar TFactorFilm = maxCo/(surfaceFilm.CourantNumber() + SMALL);
const scalar dt0 = runTime.deltaTValue();
runTime.setDeltaT
(
min
(
dt0*min(min(TFactorFluid, min(TFactorFilm, TFactorSolid)), 1.2),
maxDeltaT
)
);
}
// ************************************************************************* //
scalar DiNum = pyrolysis.solidRegionDiffNo();
{
volScalarField& he = thermo.he();
fvScalarMatrix EEqn
(
fvm::ddt(rho, he) + mvConvection->fvmDiv(phi, he)
+ fvc::ddt(rho, K) + fvc::div(phi, K)
+ (
he.name() == "e"
? fvc::div
(
fvc::absolute(phi/fvc::interpolate(rho), U),
p,
"div(phiv,p)"
)
: -dpdt
)
- fvm::laplacian(turbulence->alphaEff(), he)
==
Qdot
+ fvOptions(rho, he)
);
EEqn.relax();
fvOptions.constrain(EEqn);
EEqn.solve();
fvOptions.correct(he);
thermo.correct();
Info<< "min/max(T) = "
<< min(T).value() << ", " << max(T).value() << endl;
}
reactingFoam.C
EXE = $(FOAM_APPBIN)/reactingFoam
EXE_INC = \
-I$(LIB_SRC)/gpufiniteVolume/lnInclude \
-I$(LIB_SRC)/gpuOpenFOAM/lnInclude \
-I$(LIB_SRC)/finiteVolume/lnInclude \
-I$(LIB_SRC)/meshTools/lnInclude \
-I$(LIB_SRC)/sampling/lnInclude \
-I$(LIB_SRC)/TurbulenceModels/turbulenceModels/lnInclude \
-I$(LIB_SRC)/TurbulenceModels/compressible/lnInclude \
-I$(LIB_SRC)/thermophysicalModels/specie/lnInclude \
-I$(LIB_SRC)/thermophysicalModels/reactionThermo/lnInclude \
-I$(LIB_SRC)/transportModels/compressible/lnInclude \
-I$(LIB_SRC)/thermophysicalModels/basic/lnInclude \
-I$(LIB_SRC)/thermophysicalModels/chemistryModel/lnInclude \
-I$(LIB_SRC)/ODE/lnInclude \
-I$(LIB_SRC)/combustionModels/lnInclude
EXE_LIBS = \
-lfiniteVolume \
-lgpuOpenFOAM \
-lgpufiniteVolume \
-lfvOptions \
-lmeshTools \
-lsampling \
-lturbulenceModels \
-lcompressibleTurbulenceModels \
-lreactionThermophysicalModels \
-lspecie \
-lcompressibleTransportModels \
-lfluidThermophysicalModels \
-lchemistryModel \
-lODE \
-lcombustionModels
EXE_INC = \
-I$(LIB_SRC)/finiteVolume/lnInclude \
-I$(LIB_SRC)/meshTools/lnInclude \
-I$(LIB_SRC)/sampling/lnInclude \
-I$(LIB_SRC)/TurbulenceModels/turbulenceModels/lnInclude \
-I$(LIB_SRC)/TurbulenceModels/compressible/lnInclude \
-I$(LIB_SRC)/thermophysicalModels/specie/lnInclude \
-I$(LIB_SRC)/thermophysicalModels/reactionThermo/lnInclude \
-I$(LIB_SRC)/transportModels/compressible/lnInclude \
-I$(LIB_SRC)/thermophysicalModels/basic/lnInclude \
-I$(LIB_SRC)/thermophysicalModels/chemistryModel/lnInclude \
-I$(LIB_SRC)/ODE/lnInclude \
-I$(LIB_SRC)/combustionModels/lnInclude
EXE_LIBS = \
-lfiniteVolume \
-lfvOptions \
-lmeshTools \
-lsampling \
-lturbulenceModels \
-lcompressibleTurbulenceModels \
-lreactionThermophysicalModels \
-lspecie \
-lcompressibleTransportModels \
-lfluidThermophysicalModels \
-lchemistryModel \
-lODE \
-lcombustionModels
// Solve the Momentum equation
MRF.correctBoundaryVelocity(U);
tmp<fvVectorMatrix> tUEqn
(
fvm::ddt(rho, U) + fvm::div(phi, U)
+ MRF.DDt(rho, U)
+ turbulence->divDevRhoReff(U)
==
fvOptions(rho, U)
);
fvVectorMatrix& UEqn = tUEqn.ref();
UEqn.relax();
fvOptions.constrain(UEqn);
if (pimple.momentumPredictor())
{
solve(UEqn == -fvc::grad(p));
fvOptions.correct(U);
K = 0.5*magSqr(U);
}
tmp<fv::convectionScheme<scalar>> mvConvection
(
fv::convectionScheme<scalar>::New
(
mesh,
fields,
phi,
mesh.divScheme("div(phi,Yi_h)")
)
);
{
reaction->correct();
Qdot = reaction->Qdot();
volScalarField Yt(0.0*Y[0]);
forAll(Y, i)
{
if (i != inertIndex && composition.active(i))
{
volScalarField& Yi = Y[i];
fvScalarMatrix YiEqn
(
fvm::ddt(rho, Yi)
+ mvConvection->fvmDiv(phi, Yi)
- fvm::laplacian(turbulence->muEff(), Yi)
==
reaction->R(Yi)
);
YiEqn.relax();
YiEqn.solve(mesh.solver("Yi"));
Yi.max(0.0);
Yt += Yi;
}
}
Y[inertIndex] = scalar(1) - Yt;
Y[inertIndex].max(0.0);
}
const volScalarField& psi = thermo.psi();
const volScalarField& T = thermo.T();
const label inertIndex(composition.species()[inertSpecie]);
#include "createRDeltaT.H"
Info<< "Reading thermophysical properties\n" << endl;
autoPtr<psiReactionThermo> pThermo(psiReactionThermo::New(mesh));
psiReactionThermo& thermo = pThermo();
thermo.validate(args.executable(), "h", "e");
basicSpecieMixture& composition = thermo.composition();
PtrList<volScalarField>& Y = composition.Y();
const word inertSpecie(thermo.get<word>("inertSpecie"));
if (!composition.species().found(inertSpecie))
{
FatalIOErrorIn(args.executable().c_str(), thermo)
<< "Inert specie " << inertSpecie << " not found in available species "
<< composition.species() << exit(FatalIOError);
}
volScalarField rho
(
IOobject
(
"rho",
runTime.timeName(),
mesh
),
thermo.rho()
);
Info<< "Reading field U\n" << endl;
volVectorField U
(
IOobject
(
"U",
runTime.timeName(),
mesh,
IOobject::MUST_READ,
IOobject::AUTO_WRITE
),
mesh
);
volScalarField& p = thermo.p();
#include "compressibleCreatePhi.H"
pressureControl pressureControl(p, rho, pimple.dict(), false);
mesh.setFluxRequired(p.name());
Info << "Creating turbulence model.\n" << nl;
autoPtr<compressible::turbulenceModel> turbulence
(
compressible::turbulenceModel::New
(
rho,
U,
phi,
thermo
)
);
Info<< "Creating reaction model\n" << endl;
autoPtr<CombustionModel<psiReactionThermo>> reaction
(
CombustionModel<psiReactionThermo>::New(thermo, turbulence())
);
multivariateSurfaceInterpolationScheme<scalar>::fieldTable fields;
forAll(Y, i)
{
fields.add(Y[i]);
}
fields.add(thermo.he());
volScalarField Qdot
(
IOobject
(
"Qdot",
runTime.timeName(),
mesh,
IOobject::READ_IF_PRESENT,
IOobject::AUTO_WRITE
),
mesh,
dimensionedScalar(dimEnergy/dimVolume/dimTime, Zero)
);
#include "createDpdt.H"
#include "createK.H"
#include "createMRF.H"
#include "createFvOptions.H"
rho = thermo.rho();
volScalarField rAU(1.0/UEqn.A());
surfaceScalarField rhorAUf("rhorAUf", fvc::interpolate(rho*rAU));
volVectorField HbyA(constrainHbyA(rAU*UEqn.H(), U, p));
if (pimple.nCorrPISO() <= 1)
{
tUEqn.clear();
}
if (pimple.transonic())
{
surfaceScalarField phid
(
"phid",
fvc::interpolate(psi)
*(
fvc::flux(HbyA)
+ MRF.zeroFilter
(
rhorAUf*fvc::ddtCorr(rho, U, phi)/fvc::interpolate(rho)
)
)
);
MRF.makeRelative(fvc::interpolate(psi), phid);
while (pimple.correctNonOrthogonal())
{
fvScalarMatrix pEqn
(
fvm::ddt(psi, p)
+ fvm::div(phid, p)
- fvm::laplacian(rhorAUf, p)
==
fvOptions(psi, p, rho.name())
);
pEqn.solve(mesh.solver(p.select(pimple.finalInnerIter())));
if (pimple.finalNonOrthogonalIter())
{
phi == pEqn.flux();
}
}
}
else
{
surfaceScalarField phiHbyA
(
"phiHbyA",
(
fvc::flux(rho*HbyA)
+ MRF.zeroFilter(rhorAUf*fvc::ddtCorr(rho, U, phi))
)
);
MRF.makeRelative(fvc::interpolate(rho), phiHbyA);
// Update the pressure BCs to ensure flux consistency
constrainPressure(p, rho, U, phiHbyA, rhorAUf, MRF);
while (pimple.correctNonOrthogonal())
{
fvScalarMatrix pEqn
(
fvm::ddt(psi, p)
+ fvc::div(phiHbyA)
- fvm::laplacian(rhorAUf, p)
==
fvOptions(psi, p, rho.name())
);
pEqn.solve(mesh.solver(p.select(pimple.finalInnerIter())));
if (pimple.finalNonOrthogonalIter())
{
phi = phiHbyA + pEqn.flux();
}
}
}
#include "rhoEqn.H"
#include "compressibleContinuityErrs.H"
// Explicitly relax pressure for momentum corrector
p.relax();
U = HbyA - rAU*fvc::grad(p);
U.correctBoundaryConditions();
fvOptions.correct(U);
K = 0.5*magSqr(U);
if (pressureControl.limit(p))
{
p.correctBoundaryConditions();
}
rho = thermo.rho();
if (thermo.dpdt())
{
dpdt = fvc::ddt(p);
}
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment