Commit ea17556c authored by shunbo's avatar shunbo
Browse files

Initial commit

parents
/*---------------------------------------------------------------------------*\
========= |
\\ / F ield | OpenFOAM: The Open Source CFD Toolbox
\\ / O peration |
\\ / A nd | www.openfoam.com
\\/ M anipulation |
-------------------------------------------------------------------------------
Copyright (C) 2011-2017 OpenFOAM Foundation
Copyright (C) 2020 OpenCFD Ltd.
-------------------------------------------------------------------------------
License
This file is part of OpenFOAM.
OpenFOAM is free software: you can redistribute it and/or modify it
under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
OpenFOAM is distributed in the hope that it will be useful, but WITHOUT
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
for more details.
You should have received a copy of the GNU General Public License
along with OpenFOAM. If not, see <http://www.gnu.org/licenses/>.
Application
XiEngineFoam
Description
Solver for internal combustion engines.
Combusting RANS code using the b-Xi two-equation model.
Xi may be obtained by either the solution of the Xi transport
equation or from an algebraic expression. Both approaches are
based on Gulder's flame speed correlation which has been shown
to be appropriate by comparison with the results from the
spectral model.
Strain effects are encorporated directly into the Xi equation
but not in the algebraic approximation. Further work need to be
done on this issue, particularly regarding the enhanced removal rate
caused by flame compression. Analysis using results of the spectral
model will be required.
For cases involving very lean Propane flames or other flames which are
very strain-sensitive, a transport equation for the laminar flame
speed is present. This equation is derived using heuristic arguments
involving the strain time scale and the strain-rate at extinction.
the transport velocity is the same as that for the Xi equation.
\*---------------------------------------------------------------------------*/
#include "fvCFD.H"
#include "engineTime.H"
#include "engineMesh.H"
#include "psiuReactionThermo.H"
#include "turbulentFluidThermoModel.H"
#include "laminarFlameSpeed.H"
#include "ignition.H"
#include "Switch.H"
#include "OFstream.H"
#include "mathematicalConstants.H"
#include "pimpleControl.H"
#include "fvOptions.H"
// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * //
int main(int argc, char *argv[])
{
argList::addNote
(
"Solver for compressible premixed/partially-premixed combustion with"
" turbulence modelling in internal combustion engines."
);
#define CREATE_TIME createEngineTime.H
#define CREATE_MESH createEngineMesh.H
#include "postProcess.H"
#include "setRootCaseLists.H"
#include "createEngineTime.H"
#include "createEngineMesh.H"
#include "createControl.H"
#include "readCombustionProperties.H"
#include "createFields.H"
#include "createFieldRefs.H"
#include "createRhoUf.H"
#include "initContinuityErrs.H"
#include "readEngineTimeControls.H"
#include "compressibleCourantNo.H"
#include "setInitialDeltaT.H"
#include "startSummary.H"
turbulence->validate();
// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * //
Info<< "\nStarting time loop\n" << endl;
while (runTime.run())
{
#include "readEngineTimeControls.H"
#include "compressibleCourantNo.H"
#include "setDeltaT.H"
++runTime;
Info<< "Crank angle = " << runTime.theta() << " CA-deg" << endl;
mesh.move();
#include "rhoEqn.H"
// --- Pressure-velocity PIMPLE corrector loop
while (pimple.loop())
{
#include "UEqn.H"
#include "ftEqn.H"
#include "bEqn.H"
#include "EauEqn.H"
#include "EaEqn.H"
if (!ign.ignited())
{
thermo.heu() == thermo.he();
}
// --- Pressure corrector loop
while (pimple.correct())
{
#include "pEqn.H"
}
if (pimple.turbCorr())
{
turbulence->correct();
}
}
#include "logSummary.H"
rho = thermo.rho();
runTime.write();
runTime.printExecutionTime(Info);
}
Info<< "End\n" << endl;
return 0;
}
// ************************************************************************* //
{
const scalar meanP = p.weightedAverage(mesh.V()).value();
const scalar meanT = thermo.T().weightedAverage(mesh.V()).value();
const scalar meanUp =
(sqrt((2.0/3.0)*turbulence->k()))().weightedAverage(mesh.V()).value();
const scalar meanB = b.weightedAverage(mesh.V()).value();
Info<< "Mean pressure:" << meanP << nl
<< "Mean temperature:" << meanT << nl
<< "Mean u':" << meanUp << endl;
if (Pstream::master())
{
logSummaryFile()
<< runTime.theta() << tab
<< meanP << tab
<< meanT << tab
<< meanUp << tab
<< 1 - meanB
<< endl;
}
}
rho = thermo.rho();
volScalarField rAU(1.0/UEqn.A());
surfaceScalarField rhorAUf("rhorAUf", fvc::interpolate(rho*rAU));
volVectorField HbyA(constrainHbyA(rAU*UEqn.H(), U, p));
if (pimple.transonic())
{
surfaceScalarField phid
(
"phid",
fvc::interpolate(psi)
*(
(
fvc::flux(HbyA)
+ MRF.zeroFilter
(
rhorAUf*fvc::ddtCorr(rho, U, rhoUf)/fvc::interpolate(rho)
)
)
)
);
fvc::makeRelative(phid, psi, U);
MRF.makeRelative(fvc::interpolate(psi), phid);
while (pimple.correctNonOrthogonal())
{
fvScalarMatrix pEqn
(
fvm::ddt(psi, p)
+ fvm::div(phid, p)
- fvm::laplacian(rhorAUf, p)
==
fvOptions(psi, p, rho.name())
);
pEqn.solve(mesh.solver(p.select(pimple.finalInnerIter())));
if (pimple.finalNonOrthogonalIter())
{
phi == pEqn.flux();
}
}
}
else
{
surfaceScalarField phiHbyA
(
"phiHbyA",
(
fvc::flux(rho*HbyA)
+ MRF.zeroFilter(rhorAUf*fvc::ddtCorr(rho, U, rhoUf))
)
);
fvc::makeRelative(phiHbyA, rho, U);
MRF.makeRelative(fvc::interpolate(rho), phiHbyA);
// Update the pressure BCs to ensure flux consistency
constrainPressure(p, rho, U, phiHbyA, rhorAUf, MRF);
while (pimple.correctNonOrthogonal())
{
fvScalarMatrix pEqn
(
fvm::ddt(psi, p)
+ fvc::div(phiHbyA)
- fvm::laplacian(rhorAUf, p)
==
fvOptions(psi, p, rho.name())
);
pEqn.solve(mesh.solver(p.select(pimple.finalInnerIter())));
if (pimple.finalNonOrthogonalIter())
{
phi = phiHbyA + pEqn.flux();
}
}
}
#include "rhoEqn.H"
#include "compressibleContinuityErrs.H"
U = HbyA - rAU*fvc::grad(p);
U.correctBoundaryConditions();
fvOptions.correct(U);
K = 0.5*magSqr(U);
{
rhoUf = fvc::interpolate(rho*U);
surfaceVectorField n(mesh.Sf()/mesh.magSf());
rhoUf += n*(fvc::absolute(phi, rho, U)/mesh.magSf() - (n & rhoUf));
}
if (thermo.dpdt())
{
dpdt = fvc::ddt(p) - fvc::div(fvc::meshPhi(rho, U), p);
}
Info<< "Total cylinder mass: " << fvc::domainIntegrate(rho).value() << endl;
autoPtr<OFstream> logSummaryFile;
if (Pstream::master())
{
logSummaryFile.reset
(
new OFstream
(
runTime.globalPath()
/("logSummary." + runTime.timeName() + ".dat")
)
);
logSummaryFile()
<< "# CA" << " p" << " T" << " u'" << " c"
<< endl;
}
/*---------------------------------------------------------------------------*\
========= |
\\ / F ield | OpenFOAM: The Open Source CFD Toolbox
\\ / O peration |
\\ / A nd | www.openfoam.com
\\/ M anipulation |
-------------------------------------------------------------------------------
Copyright (C) 2011-2017 OpenFOAM Foundation
-------------------------------------------------------------------------------
License
This file is part of OpenFOAM.
OpenFOAM is free software: you can redistribute it and/or modify it
under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
OpenFOAM is distributed in the hope that it will be useful, but WITHOUT
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
for more details.
You should have received a copy of the GNU General Public License
along with OpenFOAM. If not, see <http://www.gnu.org/licenses/>.
Application
XiFoam
Group
grpCombustionSolvers
Description
Solver for compressible premixed/partially-premixed combustion with
turbulence modelling.
Combusting RANS code using the b-Xi two-equation model.
Xi may be obtained by either the solution of the Xi transport
equation or from an algebraic expression. Both approaches are
based on Gulder's flame speed correlation which has been shown
to be appropriate by comparison with the results from the
spectral model.
Strain effects are encorporated directly into the Xi equation
but not in the algebraic approximation. Further work need to be
done on this issue, particularly regarding the enhanced removal rate
caused by flame compression. Analysis using results of the spectral
model will be required.
For cases involving very lean Propane flames or other flames which are
very strain-sensitive, a transport equation for the laminar flame
speed is present. This equation is derived using heuristic arguments
involving the strain time scale and the strain-rate at extinction.
the transport velocity is the same as that for the Xi equation.
\*---------------------------------------------------------------------------*/
#include "fvCFD.H"
#include "psiuReactionThermo.H"
#include "turbulentFluidThermoModel.H"
#include "laminarFlameSpeed.H"
#include "ignition.H"
#include "Switch.H"
#include "pimpleControl.H"
#include "fvOptions.H"
// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * //
int main(int argc, char *argv[])
{
argList::addNote
(
"Solver for compressible premixed/partially-premixed combustion with"
" turbulence modelling."
);
#include "postProcess.H"
#include "addCheckCaseOptions.H"
#include "setRootCaseLists.H"
#include "createTime.H"
#include "createMesh.H"
#include "createControl.H"
#include "readCombustionProperties.H"
#include "createFields.H"
#include "createFieldRefs.H"
#include "initContinuityErrs.H"
#include "createTimeControls.H"
#include "compressibleCourantNo.H"
#include "setInitialDeltaT.H"
turbulence->validate();
// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * //
Info<< "\nStarting time loop\n" << endl;
while (runTime.run())
{
#include "readTimeControls.H"
#include "compressibleCourantNo.H"
#include "setDeltaT.H"
++runTime;
Info<< "Time = " << runTime.timeName() << nl << endl;
#include "rhoEqn.H"
// --- Pressure-velocity PIMPLE corrector loop
while (pimple.loop())
{
#include "UEqn.H"
#include "ftEqn.H"
#include "bEqn.H"
#include "EauEqn.H"
#include "EaEqn.H"
if (!ign.ignited())
{
thermo.heu() == thermo.he();
}
// --- Pressure corrector loop
while (pimple.correct())
{
#include "pEqn.H"
}
if (pimple.turbCorr())
{
turbulence->correct();
}
}
rho = thermo.rho();
runTime.write();
runTime.printExecutionTime(Info);
}
Info<< "End\n" << endl;
return 0;
}
// ************************************************************************* //
if (ign.ignited())
{
// progress variable
// ~~~~~~~~~~~~~~~~~
volScalarField c("c", scalar(1) - b);
// Unburnt gas density
// ~~~~~~~~~~~~~~~~~~~
volScalarField rhou(thermo.rhou());
// Calculate flame normal etc.
// ~~~~~~~~~~~~~~~~~~~~~~~~~~~
volVectorField n("n", fvc::grad(b));
volScalarField mgb(mag(n));
dimensionedScalar dMgb = 1.0e-3*
(b*c*mgb)().weightedAverage(mesh.V())
/((b*c)().weightedAverage(mesh.V()) + SMALL)
+ dimensionedScalar("ddMgb", mgb.dimensions(), SMALL);
mgb += dMgb;
surfaceVectorField SfHat(mesh.Sf()/mesh.magSf());
surfaceVectorField nfVec(fvc::interpolate(n));
nfVec += SfHat*(fvc::snGrad(b) - (SfHat & nfVec));
nfVec /= (mag(nfVec) + dMgb);
surfaceScalarField nf((mesh.Sf() & nfVec));
n /= mgb;
#include "StCorr.H"
// Calculate turbulent flame speed flux
// ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
surfaceScalarField phiSt("phiSt", fvc::interpolate(rhou*StCorr*Su*Xi)*nf);
scalar StCoNum = max
(
mesh.surfaceInterpolation::deltaCoeffs()
*mag(phiSt)/(fvc::interpolate(rho)*mesh.magSf())
).value()*runTime.deltaTValue();
Info<< "Max St-Courant Number = " << StCoNum << endl;
// Create b equation
// ~~~~~~~~~~~~~~~~~
fvScalarMatrix bEqn
(
fvm::ddt(rho, b)
+ mvConvection->fvmDiv(phi, b)
+ fvm::div(phiSt, b)
- fvm::Sp(fvc::div(phiSt), b)
- fvm::laplacian(turbulence->alphaEff(), b)
==
fvOptions(rho, b)
);
// Add ignition cell contribution to b-equation
// ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
#include "ignite.H"
// Solve for b
// ~~~~~~~~~~~
bEqn.relax();
fvOptions.constrain(bEqn);
bEqn.solve();
fvOptions.correct(b);
Info<< "min(b) = " << min(b).value() << endl;
// Calculate coefficients for Gulder's flame speed correlation
// ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
volScalarField up(uPrimeCoef*sqrt((2.0/3.0)*turbulence->k()));
//volScalarField up(sqrt(mag(diag(n * n) & diag(turbulence->r()))));
volScalarField epsilon(pow(uPrimeCoef, 3)*turbulence->epsilon());
volScalarField tauEta(sqrt(thermo.muu()/(rhou*epsilon)));
volScalarField Reta
(
up
/ (
sqrt(epsilon*tauEta)
+ dimensionedScalar("1e-8", up.dimensions(), 1e-8)
)
);
//volScalarField l = 0.337*k*sqrt(k)/epsilon;
//Reta *= max((l - dimensionedScalar("dl", dimLength, 1.5e-3))/l, 0.0);
// Calculate Xi flux
// ~~~~~~~~~~~~~~~~~
surfaceScalarField phiXi
(
phiSt
- fvc::interpolate(fvc::laplacian(turbulence->alphaEff(), b)/mgb)*nf
+ fvc::interpolate(rho)*fvc::interpolate(Su*(1.0/Xi - Xi))*nf
);
// Calculate mean and turbulent strain rates
// ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
volVectorField Ut(U + Su*Xi*n);
volScalarField sigmat((n & n)*fvc::div(Ut) - (n & fvc::grad(Ut) & n));
volScalarField sigmas
(
((n & n)*fvc::div(U) - (n & fvc::grad(U) & n))/Xi
+ (
(n & n)*fvc::div(Su*n)
- (n & fvc::grad(Su*n) & n)
)*(Xi + scalar(1))/(2*Xi)
);
// Calculate the unstrained laminar flame speed
// ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
volScalarField Su0(unstrainedLaminarFlameSpeed()());
// Calculate the laminar flame speed in equilibrium with the applied strain
// ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
volScalarField SuInf(Su0*max(scalar(1) - sigmas/sigmaExt, scalar(0.01)));
if (SuModel == "unstrained")
{
Su == Su0;
}
else if (SuModel == "equilibrium")
{
Su == SuInf;
}
else if (SuModel == "transport")
{
// Solve for the strained laminar flame speed
// ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
volScalarField Rc
(
(sigmas*SuInf*(Su0 - SuInf) + sqr(SuMin)*sigmaExt)
/(sqr(Su0 - SuInf) + sqr(SuMin))
);
fvScalarMatrix SuEqn
(
fvm::ddt(rho, Su)
+ fvm::div(phi + phiXi, Su, "div(phiXi,Su)")
- fvm::Sp(fvc::div(phiXi), Su)
==
- fvm::SuSp(-rho*Rc*Su0/Su, Su)
- fvm::SuSp(rho*(sigmas + Rc), Su)
+ fvOptions(rho, Su)
);
SuEqn.relax();
fvOptions.constrain(SuEqn);
SuEqn.solve();
fvOptions.correct(Su);
// Limit the maximum Su
// ~~~~~~~~~~~~~~~~~~~~
Su.min(SuMax);
Su.max(SuMin);
}
else
{
FatalError
<< args.executable() << " : Unknown Su model " << SuModel
<< abort(FatalError);
}
// Calculate Xi according to the selected flame wrinkling model
// ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
if (XiModel == "fixed")
{
// Do nothing, Xi is fixed!
}
else if (XiModel == "algebraic")
{
// Simple algebraic model for Xi based on Gulders correlation
// with a linear correction function to give a plausible profile for Xi
// ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Xi == scalar(1) +
(scalar(1) + (2*XiShapeCoef)*(scalar(0.5) - b))
*XiCoef*sqrt(up/(Su + SuMin))*Reta;
}
else if (XiModel == "transport")
{
// Calculate Xi transport coefficients based on Gulders correlation
// and DNS data for the rate of generation
// with a linear correction function to give a plausible profile for Xi
// ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
volScalarField XiEqStar
(
scalar(1.001) + XiCoef*sqrt(up/(Su + SuMin))*Reta
);
volScalarField XiEq
(
scalar(1.001)
+ (
scalar(1)
+ (2*XiShapeCoef)
*(scalar(0.5) - min(max(b, scalar(0)), scalar(1)))
)*(XiEqStar - scalar(1.001))
);
volScalarField Gstar(0.28/tauEta);
volScalarField R(Gstar*XiEqStar/(XiEqStar - scalar(1)));
volScalarField G(R*(XiEq - scalar(1.001))/XiEq);
//R *= (Gstar + 2*mag(dev(symm(fvc::grad(U)))))/Gstar;
// Solve for the flame wrinkling
// ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
fvScalarMatrix XiEqn
(
fvm::ddt(rho, Xi)
+ fvm::div(phi + phiXi, Xi, "div(phiXi,Xi)")
- fvm::Sp(fvc::div(phiXi), Xi)
==
rho*R
- fvm::Sp(rho*(R - G), Xi)
- fvm::Sp
(
rho*max
(
sigmat - sigmas,
dimensionedScalar(sigmat.dimensions(), Zero)
),
Xi
)
+ fvOptions(rho, Xi)
);
XiEqn.relax();
fvOptions.constrain(XiEqn);
XiEqn.solve();
fvOptions.correct(Xi);
// Correct boundedness of Xi
// ~~~~~~~~~~~~~~~~~~~~~~~~~
Xi.max(1.0);
Info<< "max(Xi) = " << max(Xi).value() << endl;
Info<< "max(XiEq) = " << max(XiEq).value() << endl;
}
else
{
FatalError
<< args.executable() << " : Unknown Xi model " << XiModel
<< abort(FatalError);
}
Info<< "Combustion progress = "
<< 100*(scalar(1) - b)().weightedAverage(mesh.V()).value() << "%"
<< endl;
St = Xi*Su;
}
const volScalarField& psi = thermo.psi();
Info<< "Reading thermophysical properties\n" << endl;
autoPtr<psiuReactionThermo> pThermo
(
psiuReactionThermo::New(mesh)
);
psiuReactionThermo& thermo = pThermo();
thermo.validate(args.executable(), "ha", "ea");
basicSpecieMixture& composition = thermo.composition();
volScalarField rho
(
IOobject
(
"rho",
runTime.timeName(),
mesh,
IOobject::NO_READ,
IOobject::AUTO_WRITE
),
thermo.rho()
);
volScalarField& p = thermo.p();
volScalarField& b = composition.Y("b");
Info<< "min(b) = " << min(b).value() << endl;
Info<< "\nReading field U\n" << endl;
volVectorField U
(
IOobject
(
"U",
runTime.timeName(),
mesh,
IOobject::MUST_READ,
IOobject::AUTO_WRITE
),
mesh
);
#include "compressibleCreatePhi.H"
mesh.setFluxRequired(p.name());
Info<< "Creating turbulence model\n" << endl;
autoPtr<compressible::turbulenceModel> turbulence
(
compressible::turbulenceModel::New
(
rho,
U,
phi,
thermo
)
);
Info<< "Creating field Xi\n" << endl;
volScalarField Xi
(
IOobject
(
"Xi",
runTime.timeName(),
mesh,
IOobject::MUST_READ,
IOobject::AUTO_WRITE
),
mesh
);
Info<< "Creating the unstrained laminar flame speed\n" << endl;
autoPtr<laminarFlameSpeed> unstrainedLaminarFlameSpeed
(
laminarFlameSpeed::New(thermo)
);
Info<< "Reading strained laminar flame speed field Su\n" << endl;
volScalarField Su
(
IOobject
(
"Su",
runTime.timeName(),
mesh,
IOobject::MUST_READ,
IOobject::AUTO_WRITE
),
mesh
);
dimensionedScalar SuMin = 0.01*Su.average();
dimensionedScalar SuMax = 4*Su.average();
Info<< "Calculating turbulent flame speed field St\n" << endl;
volScalarField St
(
IOobject
(
"St",
runTime.timeName(),
mesh,
IOobject::NO_READ,
IOobject::AUTO_WRITE
),
Xi*Su
);
multivariateSurfaceInterpolationScheme<scalar>::fieldTable fields;
if (composition.contains("ft"))
{
fields.add(composition.Y("ft"));
}
fields.add(b);
fields.add(thermo.he());
fields.add(thermo.heu());
#include "createDpdt.H"
#include "createK.H"
#include "createMRF.H"
#include "createFvOptions.H"
tmp<fv::convectionScheme<scalar>> mvConvection
(
fv::convectionScheme<scalar>::New
(
mesh,
fields,
phi,
mesh.divScheme("div(phi,ft_b_ha_hau)")
)
);
if (composition.contains("ft"))
{
volScalarField& ft = composition.Y("ft");
fvScalarMatrix ftEqn
(
fvm::ddt(rho, ft)
+ mvConvection->fvmDiv(phi, ft)
- fvm::laplacian(turbulence->alphaEff(), ft)
==
fvOptions(rho, ft)
);
fvOptions.constrain(ftEqn);
ftEqn.solve();
fvOptions.correct(ft);
}
rho = thermo.rho();
volScalarField rAU(1.0/UEqn.A());
surfaceScalarField rhorAUf("rhorAUf", fvc::interpolate(rho*rAU));
volVectorField HbyA(constrainHbyA(rAU*UEqn.H(), U, p));
if (pimple.transonic())
{
surfaceScalarField phid
(
"phid",
fvc::interpolate(psi)
*(
fvc::flux(HbyA)
+ rhorAUf*fvc::ddtCorr(rho, U, phi)/fvc::interpolate(rho)
)
);
MRF.makeRelative(fvc::interpolate(psi), phid);
while (pimple.correctNonOrthogonal())
{
fvScalarMatrix pEqn
(
fvm::ddt(psi, p)
+ fvm::div(phid, p)
- fvm::laplacian(rhorAUf, p)
==
fvOptions(psi, p, rho.name())
);
pEqn.solve(mesh.solver(p.select(pimple.finalInnerIter())));
if (pimple.finalNonOrthogonalIter())
{
phi == pEqn.flux();
}
}
}
else
{
surfaceScalarField phiHbyA
(
"phiHbyA",
(
fvc::flux(rho*HbyA)
+ rhorAUf*fvc::ddtCorr(rho, U, phi)
)
);
MRF.makeRelative(phiHbyA);
// Update the pressure BCs to ensure flux consistency
constrainPressure(p, rho, U, phiHbyA, rhorAUf, MRF);
while (pimple.correctNonOrthogonal())
{
fvScalarMatrix pEqn
(
fvm::ddt(psi, p)
+ fvc::div(phiHbyA)
- fvm::laplacian(rhorAUf, p)
==
fvOptions(psi, p, rho.name())
);
pEqn.solve(mesh.solver(p.select(pimple.finalInnerIter())));
if (pimple.finalNonOrthogonalIter())
{
phi = phiHbyA + pEqn.flux();
}
}
}
#include "rhoEqn.H"
#include "compressibleContinuityErrs.H"
U = HbyA - rAU*fvc::grad(p);
U.correctBoundaryConditions();
fvOptions.correct(U);
K = 0.5*magSqr(U);
if (thermo.dpdt())
{
dpdt = fvc::ddt(p);
}
Info<< "Reading combustion properties\n" << endl;
IOdictionary combustionProperties
(
IOobject
(
"combustionProperties",
runTime.constant(),
mesh,
IOobject::MUST_READ_IF_MODIFIED,
IOobject::NO_WRITE
)
);
const word SuModel
(
combustionProperties.get<word>("SuModel")
);
dimensionedScalar sigmaExt
(
"sigmaExt", dimless/dimTime, combustionProperties
);
const word XiModel
(
combustionProperties.get<word>("XiModel")
);
dimensionedScalar XiCoef
(
"XiCoef", dimless, combustionProperties
);
dimensionedScalar XiShapeCoef
(
"XiShapeCoef", dimless, combustionProperties
);
dimensionedScalar uPrimeCoef
(
"uPrimeCoef", dimless, combustionProperties
);
ignition ign(combustionProperties, runTime, mesh);
chemFoam.C
EXE = $(FOAM_APPBIN)/chemFoam
EXE_INC = \
-I$(LIB_SRC)/finiteVolume/lnInclude \
-I$(LIB_SRC)/meshTools/lnInclude \
-I$(LIB_SRC)/ODE/lnInclude \
-I$(LIB_SRC)/thermophysicalModels/basic/lnInclude \
-I$(LIB_SRC)/thermophysicalModels/specie/lnInclude \
-I$(LIB_SRC)/thermophysicalModels/reactionThermo/lnInclude \
-I$(LIB_SRC)/transportModels/compressible/lnInclude \
-I$(LIB_SRC)/thermophysicalModels/chemistryModel/lnInclude \
-I$(LIB_SRC)/thermophysicalModels/thermophysicalProperties/lnInclude
EXE_LIBS = \
-lfiniteVolume \
-lmeshTools \
-lfluidThermophysicalModels \
-lreactionThermophysicalModels \
-lchemistryModel \
-lthermophysicalProperties
{
forAll(Y, specieI)
{
volScalarField& Yi = Y[specieI];
solve
(
fvm::ddt(rho, Yi) - chemistry.RR(specieI),
mesh.solver("Yi")
);
}
}
/*---------------------------------------------------------------------------*\
========= |
\\ / F ield | OpenFOAM: The Open Source CFD Toolbox
\\ / O peration |
\\ / A nd | www.openfoam.com
\\/ M anipulation |
-------------------------------------------------------------------------------
Copyright (C) 2011-2017 OpenFOAM Foundation
-------------------------------------------------------------------------------
License
This file is part of OpenFOAM.
OpenFOAM is free software: you can redistribute it and/or modify it
under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
OpenFOAM is distributed in the hope that it will be useful, but WITHOUT
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
for more details.
You should have received a copy of the GNU General Public License
along with OpenFOAM. If not, see <http://www.gnu.org/licenses/>.
Application
chemFoam
Group
grpCombustionSolvers
Description
Solver for chemistry problems, designed for use on single cell cases to
provide comparison against other chemistry solvers, that uses a single cell
mesh, and fields created from the initial conditions.
\*---------------------------------------------------------------------------*/
#include "fvCFD.H"
#include "psiReactionThermo.H"
#include "BasicChemistryModel.H"
#include "reactingMixture.H"
#include "chemistrySolver.H"
#include "OFstream.H"
#include "thermoPhysicsTypes.H"
#include "basicSpecieMixture.H"
#include "hexCellFvMesh.H"
// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * //
int main(int argc, char *argv[])
{
argList::addNote
(
"Solver for chemistry problems, designed for use on single cell cases"
" to provide comparison against other chemistry solvers"
);
argList::noParallel();
#define CREATE_MESH createSingleCellMesh.H
#define NO_CONTROL
#include "postProcess.H"
#include "setRootCaseLists.H"
#include "createTime.H"
#include "createSingleCellMesh.H"
#include "createFields.H"
#include "createFieldRefs.H"
#include "readInitialConditions.H"
#include "createControls.H"
// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * //
Info<< "\nStarting time loop\n" << endl;
while (runTime.run())
{
#include "readControls.H"
#include "setDeltaT.H"
++runTime;
Info<< "Time = " << runTime.timeName() << nl << endl;
#include "solveChemistry.H"
#include "YEqn.H"
#include "hEqn.H"
#include "pEqn.H"
#include "output.H"
runTime.printExecutionTime(Info);
}
Info<< "Number of steps = " << runTime.timeIndex() << nl;
Info<< "End\n" << endl;
return 0;
}
// ************************************************************************* //
// write base thermo fields - not registered since will be re-read by
// thermo package
Info<< "Creating base fields for time " << runTime.timeName() << endl;
{
volScalarField Ydefault
(
IOobject
(
"Ydefault",
runTime.timeName(),
mesh,
IOobject::READ_IF_PRESENT,
IOobject::NO_WRITE,
false
),
mesh,
dimensionedScalar("Ydefault", dimless, 1)
);
Ydefault.write();
volScalarField p
(
IOobject
(
"p",
runTime.timeName(),
mesh,
IOobject::READ_IF_PRESENT,
IOobject::NO_WRITE,
false
),
mesh,
dimensionedScalar("p", dimPressure, p0)
);
p.write();
volScalarField T
(
IOobject
(
"T",
runTime.timeName(),
mesh,
IOobject::READ_IF_PRESENT,
IOobject::NO_WRITE,
false
),
mesh,
dimensionedScalar("T", dimTemperature, T0)
);
T.write();
}
bool adjustTimeStep(runTime.controlDict().get<bool>("adjustTimeStep"));
scalar maxDeltaT(runTime.controlDict().get<scalar>("maxDeltaT"));
BasicChemistryModel<psiReactionThermo>& chemistry = pChemistry();
scalar dtChem = refCast<const BasicChemistryModel<psiReactionThermo>>
(
chemistry
).deltaTChem()[0];
basicSpecieMixture& composition = thermo.composition();
PtrList<volScalarField>& Y = composition.Y();
volScalarField& p = thermo.p();
if (mesh.nCells() != 1)
{
FatalErrorInFunction
<< "Solver only applicable to single cell cases"
<< exit(FatalError);
}
Info<< "Reading initial conditions.\n" << endl;
IOdictionary initialConditions
(
IOobject
(
"initialConditions",
runTime.constant(),
mesh,
IOobject::MUST_READ_IF_MODIFIED,
IOobject::NO_WRITE
)
);
scalar p0 = initialConditions.get<scalar>("p");
scalar T0 = initialConditions.get<scalar>("T");
#include "createBaseFields.H"
Info<< "Reading thermophysical properties\n" << endl;
autoPtr<psiReactionThermo> pThermo(psiReactionThermo::New(mesh));
psiReactionThermo& thermo = pThermo();
thermo.validate(args.executable(), "h");
autoPtr<BasicChemistryModel<psiReactionThermo>> pChemistry
(
BasicChemistryModel<psiReactionThermo>::New(thermo)
);
volScalarField rho
(
IOobject
(
"rho",
runTime.timeName(),
mesh,
IOobject::NO_READ,
IOobject::AUTO_WRITE
),
thermo.rho()
);
volScalarField Rspecific
(
IOobject
(
"Rspecific",
runTime.timeName(),
mesh,
IOobject::NO_READ,
IOobject::AUTO_WRITE
),
mesh,
dimensionedScalar(dimEnergy/dimMass/dimTemperature, Zero)
);
volVectorField U
(
IOobject
(
"U",
runTime.timeName(),
mesh,
IOobject::NO_READ,
IOobject::NO_WRITE
),
mesh,
dimensionedVector(dimVelocity, Zero)
);
#include "createPhi.H"
OFstream post(args.path()/"chemFoam.out");
post<< "# Time" << token::TAB << "Temperature [K]" << token::TAB
<< "Pressure [Pa]" << endl;
Info<< "Constructing single cell mesh" << nl << endl;
Foam::simplifiedMeshes::hexCellFvMesh mesh(runTime);
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment