Commit ea17556c authored by shunbo's avatar shunbo
Browse files

Initial commit

parents
volScalarField::Internal Sp
(
IOobject
(
"Sp",
runTime.timeName(),
mesh
),
mesh,
dimensionedScalar(dgdt.dimensions(), Zero)
);
volScalarField::Internal Su
(
IOobject
(
"Su",
runTime.timeName(),
mesh
),
mesh,
dimensionedScalar(dgdt.dimensions(), Zero)
);
forAll(dgdt, celli)
{
if (dgdt[celli] > 0.0 && alpha1[celli] > 0.0)
{
Sp[celli] -= dgdt[celli]*alpha1[celli];
Su[celli] += dgdt[celli]*alpha1[celli];
}
else if (dgdt[celli] < 0.0 && alpha1[celli] < 1.0)
{
Sp[celli] += dgdt[celli]*(1.0 - alpha1[celli]);
}
}
volScalarField::Internal divU
(
mesh.moving()
? fvc::div(phiCN() + mesh.phi())
: fvc::div(phiCN())
);
/*---------------------------------------------------------------------------*\
========= |
\\ / F ield | OpenFOAM: The Open Source CFD Toolbox
\\ / O peration |
\\ / A nd | www.openfoam.com
\\/ M anipulation |
-------------------------------------------------------------------------------
Copyright (C) 2011-2017 OpenFOAM Foundation
Copyright (C) 2019 OpenCFD Ltd.
-------------------------------------------------------------------------------
License
This file is part of OpenFOAM.
OpenFOAM is free software: you can redistribute it and/or modify it
under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
OpenFOAM is distributed in the hope that it will be useful, but WITHOUT
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
for more details.
You should have received a copy of the GNU General Public License
along with OpenFOAM. If not, see <http://www.gnu.org/licenses/>.
Application
compressibleInterDyMFoam
Description
Solver for two compressible, non-isothermal immiscible fluids using a VOF
(volume of fluid) phase-fraction based interface capturing approach,
with optional mesh motion and mesh topology changes including adaptive
re-meshing.
The momentum and other fluid properties are of the "mixture" and a single
momentum equation is solved.
Turbulence modelling is generic, i.e. laminar, RAS or LES may be selected.
\*---------------------------------------------------------------------------*/
#include "fvCFD.H"
#include "dynamicFvMesh.H"
#include "CMULES.H"
#include "EulerDdtScheme.H"
#include "localEulerDdtScheme.H"
#include "CrankNicolsonDdtScheme.H"
#include "subCycle.H"
#include "compressibleInterPhaseTransportModel.H"
#include "pimpleControl.H"
#include "fvOptions.H"
#include "CorrectPhi.H"
#include "fvcSmooth.H"
// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * //
int main(int argc, char *argv[])
{
argList::addNote
(
"Solver for two compressible, non-isothermal immiscible fluids"
" using VOF phase-fraction based interface capturing.\n"
"With optional mesh motion and mesh topology changes including"
" adaptive re-meshing."
);
#include "postProcess.H"
#include "setRootCaseLists.H"
#include "createTime.H"
#include "createDynamicFvMesh.H"
#include "initContinuityErrs.H"
#include "createDyMControls.H"
#include "createFields.H"
#include "createUf.H"
#include "CourantNo.H"
#include "setInitialDeltaT.H"
volScalarField& p = mixture.p();
volScalarField& T = mixture.T();
const volScalarField& psi1 = mixture.thermo1().psi();
const volScalarField& psi2 = mixture.thermo2().psi();
// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * //
Info<< "\nStarting time loop\n" << endl;
while (runTime.run())
{
#include "readDyMControls.H"
// Store divU and divUp from the previous mesh so that it can be mapped
// and used in correctPhi to ensure the corrected phi has the
// same divergence
volScalarField divU("divU0", fvc::div(fvc::absolute(phi, U)));
volScalarField divUp("divUp", fvc::div(fvc::absolute(phi, U), p));
if (LTS)
{
#include "setRDeltaT.H"
}
else
{
#include "CourantNo.H"
#include "alphaCourantNo.H"
#include "setDeltaT.H"
}
++runTime;
Info<< "Time = " << runTime.timeName() << nl << endl;
// --- Pressure-velocity PIMPLE corrector loop
while (pimple.loop())
{
if (pimple.firstIter() || moveMeshOuterCorrectors)
{
scalar timeBeforeMeshUpdate = runTime.elapsedCpuTime();
mesh.update();
if (mesh.changing())
{
MRF.update();
Info<< "Execution time for mesh.update() = "
<< runTime.elapsedCpuTime() - timeBeforeMeshUpdate
<< " s" << endl;
gh = (g & mesh.C()) - ghRef;
ghf = (g & mesh.Cf()) - ghRef;
}
if ((mesh.changing() && correctPhi))
{
// Calculate absolute flux from the mapped surface velocity
phi = mesh.Sf() & Uf;
#include "correctPhi.H"
// Make the fluxes relative to the mesh motion
fvc::makeRelative(phi, U);
mixture.correct();
}
if (mesh.changing() && checkMeshCourantNo)
{
#include "meshCourantNo.H"
}
}
#include "alphaControls.H"
#include "compressibleAlphaEqnSubCycle.H"
turbulence.correctPhasePhi();
#include "UEqn.H"
#include "TEqn.H"
// --- Pressure corrector loop
while (pimple.correct())
{
#include "pEqn.H"
}
if (pimple.turbCorr())
{
turbulence.correct();
}
}
rho = alpha1*rho1 + alpha2*rho2;
// Correct p_rgh for consistency with p and the updated densities
p_rgh = p - rho*gh;
p_rgh.correctBoundaryConditions();
runTime.write();
runTime.printExecutionTime(Info);
}
Info<< "End\n" << endl;
return 0;
}
// ************************************************************************* //
CorrectPhi
(
U,
phi,
p,
dimensionedScalar("rAUf", dimTime/rho.dimensions(), 1),
divU,
pimple
);
//***HGW phi.oldTime() = phi;
#include "continuityErrs.H"
{
volScalarField rAU("rAU", 1.0/UEqn.A());
surfaceScalarField rAUf("rAUf", fvc::interpolate(rAU));
volVectorField HbyA(constrainHbyA(rAU*UEqn.H(), U, p_rgh));
surfaceScalarField phiHbyA
(
"phiHbyA",
fvc::flux(HbyA)
+ MRF.zeroFilter(fvc::interpolate(rho*rAU)*fvc::ddtCorr(U, Uf))
);
MRF.makeRelative(phiHbyA);
surfaceScalarField phig
(
(
mixture.surfaceTensionForce()
- ghf*fvc::snGrad(rho)
)*rAUf*mesh.magSf()
);
phiHbyA += phig;
// Update the pressure BCs to ensure flux consistency
constrainPressure(p_rgh, U, phiHbyA, rAUf, MRF);
// Make the fluxes relative to the mesh motion
fvc::makeRelative(phiHbyA, U);
tmp<fvScalarMatrix> p_rghEqnComp1;
tmp<fvScalarMatrix> p_rghEqnComp2;
if (pimple.transonic())
{
#include "rhofs.H"
surfaceScalarField phid1("phid1", fvc::interpolate(psi1)*phi);
surfaceScalarField phid2("phid2", fvc::interpolate(psi2)*phi);
p_rghEqnComp1 =
pos(alpha1)
*(
(
fvc::ddt(alpha1, rho1) + fvc::div(alphaPhi1*rho1f)
- (fvOptions(alpha1, mixture.thermo1().rho())&rho1)
)/rho1
- fvc::ddt(alpha1) - fvc::div(alphaPhi1)
+ (alpha1/rho1)
*correction
(
psi1*fvm::ddt(p_rgh)
+ fvm::div(phid1, p_rgh) - fvm::Sp(fvc::div(phid1), p_rgh)
)
);
p_rghEqnComp1.ref().relax();
p_rghEqnComp2 =
pos(alpha2)
*(
(
fvc::ddt(alpha2, rho2) + fvc::div(alphaPhi2*rho2f)
- (fvOptions(alpha2, mixture.thermo2().rho())&rho2)
)/rho2
- fvc::ddt(alpha2) - fvc::div(alphaPhi2)
+ (alpha2/rho2)
*correction
(
psi2*fvm::ddt(p_rgh)
+ fvm::div(phid2, p_rgh) - fvm::Sp(fvc::div(phid2), p_rgh)
)
);
p_rghEqnComp2.ref().relax();
}
else
{
p_rghEqnComp1 =
fvc::ddt(rho1) + psi1*correction(fvm::ddt(p_rgh))
+ fvc::div(phi, rho1) - fvc::Sp(fvc::div(phi), rho1);
p_rghEqnComp2 =
fvc::ddt(rho2) + psi2*correction(fvm::ddt(p_rgh))
+ fvc::div(phi, rho2) - fvc::Sp(fvc::div(phi), rho2);
}
// Cache p_rgh prior to solve for density update
volScalarField p_rgh_0(p_rgh);
while (pimple.correctNonOrthogonal())
{
fvScalarMatrix p_rghEqnIncomp
(
fvc::div(phiHbyA)
- fvm::laplacian(rAUf, p_rgh)
);
solve
(
(
(max(alpha1, scalar(0))/rho1)*p_rghEqnComp1()
+ (max(alpha2, scalar(0))/rho2)*p_rghEqnComp2()
)
+ p_rghEqnIncomp,
mesh.solver(p_rgh.select(pimple.finalInnerIter()))
);
if (pimple.finalNonOrthogonalIter())
{
p = max(p_rgh + (alpha1*rho1 + alpha2*rho2)*gh, pMin);
p_rgh = p - (alpha1*rho1 + alpha2*rho2)*gh;
dgdt =
(
pos(alpha2)*(p_rghEqnComp2 & p_rgh)/rho2
- pos(alpha1)*(p_rghEqnComp1 & p_rgh)/rho1
);
phi = phiHbyA + p_rghEqnIncomp.flux();
U = HbyA
+ rAU*fvc::reconstruct((phig + p_rghEqnIncomp.flux())/rAUf);
U.correctBoundaryConditions();
fvOptions.correct(U);
}
}
{
Uf = fvc::interpolate(U);
surfaceVectorField n(mesh.Sf()/mesh.magSf());
Uf += n*(fvc::absolute(phi, U)/mesh.magSf() - (n & Uf));
}
// Update densities from change in p_rgh
mixture.thermo1().correctRho(psi1*(p_rgh - p_rgh_0));
mixture.thermo2().correctRho(psi2*(p_rgh - p_rgh_0));
rho = alpha1*rho1 + alpha2*rho2;
// Correct p_rgh for consistency with p and the updated densities
p = max(p_rgh + rho*gh, pMin);
p_rgh = p - rho*gh;
p_rgh.correctBoundaryConditions();
K = 0.5*magSqr(U);
}
VoFPatchTransfer/VoFPatchTransfer.C
VoFSolidificationMeltingSource/VoFSolidificationMeltingSource.C
VoFSolidificationMeltingSource/VoFSolidificationMeltingSourceIO.C
compressibleInterFilmFoam.C
EXE = $(FOAM_APPBIN)/compressibleInterFilmFoam
EXE_INC = \
-I.. \
-I../../VoF \
-I../twoPhaseMixtureThermo \
-I../VoFphaseCompressibleTurbulenceModels/lnInclude \
-I$(LIB_SRC)/finiteVolume/lnInclude \
-I$(LIB_SRC)/fvOptions/lnInclude \
-I$(LIB_SRC)/meshTools/lnInclude \
-I$(LIB_SRC)/transportModels/compressible/lnInclude \
-I$(LIB_SRC)/transportModels/twoPhaseMixture/lnInclude \
-I$(LIB_SRC)/transportModels/interfaceProperties/lnInclude \
-I$(LIB_SRC)/TurbulenceModels/turbulenceModels/lnInclude \
-I$(LIB_SRC)/TurbulenceModels/compressible/lnInclude \
-I$(LIB_SRC)/TurbulenceModels/phaseCompressible/lnInclude \
-I$(LIB_SRC)/thermophysicalModels/basic/lnInclude \
-I$(LIB_SRC)/thermophysicalModels/thermophysicalProperties/lnInclude \
-I$(LIB_SRC)/thermophysicalModels/reactionThermo/lnInclude \
-I$(LIB_SRC)/thermophysicalModels/specie/lnInclude \
-I$(LIB_SRC)/thermophysicalModels/SLGThermo/lnInclude \
-I$(LIB_SRC)/regionModels/regionModel/lnInclude \
-I$(LIB_SRC)/regionModels/surfaceFilmModels/lnInclude \
-I$(LIB_SRC)/dynamicMesh/lnInclude \
-I$(LIB_SRC)/dynamicFvMesh/lnInclude
EXE_LIBS = \
-lfiniteVolume \
-lfvOptions \
-lmeshTools \
-ltwoPhaseMixtureThermo \
-ltwoPhaseSurfaceTension \
-lcompressibleTransportModels \
-lfluidThermophysicalModels \
-lspecie \
-ltwoPhaseMixture \
-ltwoPhaseProperties \
-linterfaceProperties \
-lturbulenceModels \
-lcompressibleTurbulenceModels \
-lVoFphaseCompressibleTurbulenceModels \
-lSLGThermo \
-lsurfaceFilmModels \
-lsurfaceFilmDerivedFvPatchFields \
-ldynamicMesh \
-ldynamicFvMesh
{
fvScalarMatrix TEqn
(
fvm::ddt(rho, T) + fvm::div(rhoPhi, T)
- fvm::Sp(contErr, T)
- fvm::laplacian(turbulence.alphaEff(), T)
+ (
(
fvc::div(fvc::absolute(phi, U), p)
+ fvc::ddt(rho, K) + fvc::div(rhoPhi, K)
)()() - contErr*K
)
*(
alpha1/mixture.thermo1().Cv()
+ alpha2/mixture.thermo2().Cv()
)()()
==
fvOptions(rho, T)
+ pos(Srho)
*(
surfaceFilm.Sh()()/mixture.thermo1().Cp()()
+ surfaceFilm.Tref*Srho
)
);
TEqn.relax();
fvOptions.constrain(TEqn);
TEqn.solve();
fvOptions.correct(T);
mixture.correctThermo();
mixture.correct();
}
/*---------------------------------------------------------------------------*\
========= |
\\ / F ield | OpenFOAM: The Open Source CFD Toolbox
\\ / O peration |
\\ / A nd | www.openfoam.com
\\/ M anipulation |
-------------------------------------------------------------------------------
Copyright (C) 2017 OpenFOAM Foundation
Copyright (C) 2018-2021 OpenCFD Ltd.
-------------------------------------------------------------------------------
License
This file is part of OpenFOAM.
OpenFOAM is free software: you can redistribute it and/or modify it
under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
OpenFOAM is distributed in the hope that it will be useful, but WITHOUT
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
for more details.
You should have received a copy of the GNU General Public License
along with OpenFOAM. If not, see <http://www.gnu.org/licenses/>.
\*---------------------------------------------------------------------------*/
#include "VoFPatchTransfer.H"
#include "twoPhaseMixtureThermo.H"
#include "addToRunTimeSelectionTable.H"
// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * //
namespace Foam
{
namespace regionModels
{
namespace surfaceFilmModels
{
// * * * * * * * * * * * * * * Static Data Members * * * * * * * * * * * * * //
defineTypeNameAndDebug(VoFPatchTransfer, 0);
addToRunTimeSelectionTable(transferModel, VoFPatchTransfer, dictionary);
// * * * * * * * * * * * * * * * * Constructors * * * * * * * * * * * * * * //
VoFPatchTransfer::VoFPatchTransfer
(
surfaceFilmRegionModel& film,
const dictionary& dict
)
:
transferModel(type(), film, dict),
deltaFactorToVoF_
(
coeffDict_.getOrDefault<scalar>("deltaFactorToVoF", 1.0)
),
deltaFactorToFilm_
(
coeffDict_.getOrDefault<scalar>("deltaFactorToFilm", 0.5)
),
alphaToVoF_
(
coeffDict_.getOrDefault<scalar>("alphaToVoF", 0.5)
),
alphaToFilm_
(
coeffDict_.getOrDefault<scalar>("alphaToFilm", 0.1)
),
transferRateCoeff_
(
coeffDict_.getOrDefault<scalar>("transferRateCoeff", 0.1)
),
patchIDs_(),
patchTransferredMasses_()
{
const polyBoundaryMesh& pbm = film.regionMesh().boundaryMesh();
const label nPatches
(
pbm.size() - film.regionMesh().globalData().processorPatches().size()
);
wordRes patchNames;
if (coeffDict_.readIfPresent("patches", patchNames))
{
patchIDs_ = pbm.patchSet(patchNames).sortedToc();
Info<< " applying to " << patchIDs_.size() << " patches:" << nl;
for (const label patchi : patchIDs_)
{
Info<< " " << pbm[patchi].name() << endl;
}
}
else
{
Info<< " applying to all patches" << endl;
patchIDs_ = identity(nPatches);
}
patchTransferredMasses_.resize(patchIDs_.size(), Zero);
if (patchIDs_.empty())
{
FatalErrorInFunction
<< "No patches selected"
<< exit(FatalError);
}
}
// * * * * * * * * * * * * * * * * Destructor * * * * * * * * * * * * * * * //
VoFPatchTransfer::~VoFPatchTransfer()
{}
// * * * * * * * * * * * * * * Member Functions * * * * * * * * * * * * * * //
void VoFPatchTransfer::correct
(
scalarField& availableMass,
scalarField& massToTransfer
)
{
NotImplemented;
}
void VoFPatchTransfer::correct
(
scalarField& availableMass,
scalarField& massToTransfer,
scalarField& energyToTransfer
)
{
// Do not correct if no patches selected
if (!patchIDs_.size()) return;
const scalarField& delta = film().delta();
const scalarField& rho = film().rho();
const scalarField& magSf = film().magSf();
const polyBoundaryMesh& pbm = film().regionMesh().boundaryMesh();
const twoPhaseMixtureThermo& thermo
(
film().primaryMesh().lookupObject<twoPhaseMixtureThermo>
(
twoPhaseMixtureThermo::dictName
)
);
const volScalarField& heVoF = thermo.thermo1().he();
const volScalarField& TVoF = thermo.thermo1().T();
const volScalarField CpVoF(thermo.thermo1().Cp());
const volScalarField& rhoVoF = thermo.thermo1().rho()();
const volScalarField& alphaVoF = thermo.alpha1();
forAll(patchIDs_, pidi)
{
const label patchi = patchIDs_[pidi];
label primaryPatchi = -1;
forAll(film().intCoupledPatchIDs(), i)
{
const label filmPatchi = film().intCoupledPatchIDs()[i];
if (filmPatchi == patchi)
{
primaryPatchi = film().primaryPatchIDs()[i];
}
}
if (primaryPatchi != -1)
{
scalarField deltaCoeffs
(
film().primaryMesh().boundary()[primaryPatchi].deltaCoeffs()
);
film().toRegion(patchi, deltaCoeffs);
scalarField hp(heVoF.boundaryField()[primaryPatchi]);
film().toRegion(patchi, hp);
scalarField Tp(TVoF.boundaryField()[primaryPatchi]);
film().toRegion(patchi, Tp);
scalarField Cpp(CpVoF.boundaryField()[primaryPatchi]);
film().toRegion(patchi, Cpp);
scalarField rhop(rhoVoF.boundaryField()[primaryPatchi]);
film().toRegion(patchi, rhop);
scalarField alphap(alphaVoF.boundaryField()[primaryPatchi]);
film().toRegion(patchi, alphap);
scalarField Vp
(
film().primaryMesh().boundary()[primaryPatchi]
.patchInternalField(film().primaryMesh().V())
);
film().toRegion(patchi, Vp);
const polyPatch& pp = pbm[patchi];
const labelList& faceCells = pp.faceCells();
// Accumulate the total mass removed from patch
scalar dMassPatch = 0;
forAll(faceCells, facei)
{
const label celli = faceCells[facei];
scalar dMass = 0;
if
(
delta[celli] > 2*deltaFactorToVoF_/deltaCoeffs[facei]
|| alphap[facei] > alphaToVoF_
)
{
dMass =
transferRateCoeff_*delta[celli]*rho[celli]*magSf[celli];
massToTransfer[celli] += dMass;
energyToTransfer[celli] += dMass*film().hs()[celli];
}
if
(
alphap[facei] > 0
&& delta[celli] > 0
&& delta[celli] < 2*deltaFactorToFilm_/deltaCoeffs[facei]
&& alphap[facei] < alphaToFilm_
)
{
dMass =
-transferRateCoeff_*alphap[facei]*rhop[facei]*Vp[facei];
massToTransfer[celli] += dMass;
energyToTransfer[celli] += dMass*hp[facei];
}
availableMass[celli] -= dMass;
dMassPatch += dMass;
}
patchTransferredMasses_[pidi] += dMassPatch;
addToTransferredMass(dMassPatch);
}
}
transferModel::correct();
if (writeTime())
{
scalarField patchTransferredMasses0
(
getModelProperty<scalarField>
(
"patchTransferredMasses",
scalarField(patchTransferredMasses_.size(), Zero)
)
);
scalarField patchTransferredMassTotals(patchTransferredMasses_);
Pstream::listCombineGather
(
patchTransferredMassTotals,
plusEqOp<scalar>()
);
patchTransferredMasses0 += patchTransferredMassTotals;
setModelProperty<scalarField>
(
"patchTransferredMasses",
patchTransferredMasses0
);
patchTransferredMasses_ = 0;
}
}
void VoFPatchTransfer::patchTransferredMassTotals
(
scalarField& patchMasses
) const
{
// Do not correct if no patches selected
if (!patchIDs_.size()) return;
scalarField patchTransferredMasses
(
getModelProperty<scalarField>
(
"patchTransferredMasses",
scalarField(patchTransferredMasses_.size(), Zero)
)
);
scalarField patchTransferredMassTotals(patchTransferredMasses_);
Pstream::listCombineGather(patchTransferredMassTotals, plusEqOp<scalar>());
forAll(patchIDs_, pidi)
{
const label patchi = patchIDs_[pidi];
patchMasses[patchi] +=
patchTransferredMasses[pidi] + patchTransferredMassTotals[pidi];
}
}
// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * //
} // End namespace surfaceFilmModels
} // End namespace regionModels
} // End namespace Foam
// ************************************************************************* //
/*---------------------------------------------------------------------------*\
========= |
\\ / F ield | OpenFOAM: The Open Source CFD Toolbox
\\ / O peration |
\\ / A nd | www.openfoam.com
\\/ M anipulation |
-------------------------------------------------------------------------------
Copyright (C) 2017 OpenFOAM Foundation
-------------------------------------------------------------------------------
License
This file is part of OpenFOAM.
OpenFOAM is free software: you can redistribute it and/or modify it
under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
OpenFOAM is distributed in the hope that it will be useful, but WITHOUT
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
for more details.
You should have received a copy of the GNU General Public License
along with OpenFOAM. If not, see <http://www.gnu.org/licenses/>.
Class
Foam::regionModels::surfaceFilmModels::VoFPatchTransfer
Description
Transfer mass between the film and the VoF in the continuous phase.
SourceFiles
VoFPatchTransfer.C
\*---------------------------------------------------------------------------*/
#ifndef VoFPatchTransfer_H
#define VoFPatchTransfer_H
#include "transferModel.H"
// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * //
namespace Foam
{
namespace regionModels
{
namespace surfaceFilmModels
{
/*---------------------------------------------------------------------------*\
Class VoFPatchTransfer Declaration
\*---------------------------------------------------------------------------*/
class VoFPatchTransfer
:
public transferModel
{
// Private member functions
//- No copy construct
VoFPatchTransfer(const VoFPatchTransfer&) = delete;
//- No copy assignment
void operator=(const VoFPatchTransfer&) = delete;
protected:
//- Factor of the cell height above which the film is transferred
// to the VoF
scalar deltaFactorToVoF_;
//- Factor of the cell height below which the VoF may be transferred
// to the film
scalar deltaFactorToFilm_;
//- VoF limit above which all of the film is transferred to the VoF
scalar alphaToVoF_;
//- VoF limit below which the VoF may be transferred to the film
scalar alphaToFilm_;
//- Transfer rate coefficient
scalar transferRateCoeff_;
//- List of patch IDs at which the film is removed
labelList patchIDs_;
//- Transferred mass for each patch at which the film is removed
scalarField patchTransferredMasses_;
public:
//- Runtime type information
TypeName("VoFPatchTransfer");
// Constructors
//- Construct from surface film model
VoFPatchTransfer(surfaceFilmRegionModel& film, const dictionary& dict);
//- Destructor
virtual ~VoFPatchTransfer();
// Member Functions
//- Correct
virtual void correct
(
scalarField& availableMass,
scalarField& massToTransfer
);
//- Correct kinematic and thermodynamic transfers
virtual void correct
(
scalarField& availableMass,
scalarField& massToTransfer,
scalarField& energyToTransfer
);
//- Accumulate the total mass injected for the patches into the
// scalarField provided
virtual void patchTransferredMassTotals
(
scalarField& patchMasses
) const;
};
// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * //
} // End namespace surfaceFilmModels
} // End namespace regionModels
} // End namespace Foam
// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * //
#endif
// ************************************************************************* //
/*---------------------------------------------------------------------------*\
========= |
\\ / F ield | OpenFOAM: The Open Source CFD Toolbox
\\ / O peration |
\\ / A nd | www.openfoam.com
\\/ M anipulation |
-------------------------------------------------------------------------------
Copyright (C) 2017 OpenFOAM Foundation
Copyright (C) 2020-2021 OpenCFD Ltd.
-------------------------------------------------------------------------------
License
This file is part of OpenFOAM.
OpenFOAM is free software: you can redistribute it and/or modify it
under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
OpenFOAM is distributed in the hope that it will be useful, but WITHOUT
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
for more details.
You should have received a copy of the GNU General Public License
along with OpenFOAM. If not, see <http://www.gnu.org/licenses/>.
\*---------------------------------------------------------------------------*/
#include "VoFSolidificationMeltingSource.H"
#include "twoPhaseMixtureThermo.H"
#include "zeroGradientFvPatchFields.H"
#include "addToRunTimeSelectionTable.H"
// * * * * * * * * * * * * * Static Member Functions * * * * * * * * * * * * //
namespace Foam
{
namespace fv
{
defineTypeNameAndDebug(VoFSolidificationMeltingSource, 0);
addToRunTimeSelectionTable
(
option,
VoFSolidificationMeltingSource,
dictionary
);
}
}
// * * * * * * * * * * * * * Private Member Functions * * * * * * * * * * * //
void Foam::fv::VoFSolidificationMeltingSource::update()
{
if (curTimeIndex_ == mesh_.time().timeIndex())
{
return;
}
if (debug)
{
Info<< type() << ": " << name_
<< " - updating solid phase fraction" << endl;
}
alphaSolid_.oldTime();
const twoPhaseMixtureThermo& thermo
(
mesh_.lookupObject<twoPhaseMixtureThermo>
(
twoPhaseMixtureThermo::dictName
)
);
const volScalarField& TVoF = thermo.thermo1().T();
const volScalarField CpVoF(thermo.thermo1().Cp());
const volScalarField& alphaVoF = thermo.alpha1();
forAll(cells_, i)
{
const label celli = cells_[i];
alphaSolid_[celli] = min
(
relax_*alphaVoF[celli]*alphaSolidT_->value(TVoF[celli])
+ (1 - relax_)*alphaSolid_[celli],
alphaVoF[celli]
);
}
alphaSolid_.correctBoundaryConditions();
curTimeIndex_ = mesh_.time().timeIndex();
}
Foam::word Foam::fv::VoFSolidificationMeltingSource::alphaSolidName() const
{
const twoPhaseMixtureThermo& thermo
(
mesh_.lookupObject<twoPhaseMixtureThermo>
(
twoPhaseMixtureThermo::dictName
)
);
const volScalarField& alphaVoF = thermo.alpha1();
return IOobject::groupName(alphaVoF.name(), "solid");
}
// * * * * * * * * * * * * * * * * Constructors * * * * * * * * * * * * * * //
Foam::fv::VoFSolidificationMeltingSource::VoFSolidificationMeltingSource
(
const word& sourceName,
const word& modelType,
const dictionary& dict,
const fvMesh& mesh
)
:
fv::cellSetOption(sourceName, modelType, dict, mesh),
alphaSolidT_(Function1<scalar>::New("alphaSolidT", coeffs_, &mesh)),
L_("L", dimEnergy/dimMass, coeffs_),
relax_(coeffs_.getOrDefault("relax", 0.9)),
Cu_(coeffs_.getOrDefault<scalar>("Cu", 100000)),
q_(coeffs_.getOrDefault<scalar>("q", 0.001)),
alphaSolid_
(
IOobject
(
alphaSolidName(),
mesh.time().timeName(),
mesh,
IOobject::READ_IF_PRESENT,
IOobject::AUTO_WRITE
),
mesh,
dimensionedScalar(dimless, Zero),
zeroGradientFvPatchScalarField::typeName
),
curTimeIndex_(-1)
{
fieldNames_.resize(2);
fieldNames_[0] = "U";
fieldNames_[1] = "T";
fv::option::resetApplied();
}
// * * * * * * * * * * * * * * * Member Functions * * * * * * * * * * * * * //
void Foam::fv::VoFSolidificationMeltingSource::addSup
(
fvMatrix<scalar>& eqn,
const label fieldi
)
{
apply(geometricOneField(), eqn);
}
void Foam::fv::VoFSolidificationMeltingSource::addSup
(
const volScalarField& rho,
fvMatrix<scalar>& eqn,
const label fieldi
)
{
apply(rho, eqn);
}
void Foam::fv::VoFSolidificationMeltingSource::addSup
(
fvMatrix<vector>& eqn,
const label fieldi
)
{
if (debug)
{
Info<< type() << ": applying source to " << eqn.psi().name() << endl;
}
update();
scalarField& Sp = eqn.diag();
const scalarField& V = mesh_.V();
forAll(cells_, i)
{
const label celli = cells_[i];
const scalar Vc = V[celli];
const scalar alphaFluid = 1 - alphaSolid_[celli];
const scalar S = Cu_*sqr(1 - alphaFluid)/(pow3(alphaFluid) + q_);
Sp[celli] -= Vc*S;
}
}
void Foam::fv::VoFSolidificationMeltingSource::addSup
(
const volScalarField& rho,
fvMatrix<vector>& eqn,
const label fieldi
)
{
// Momentum source uses a Boussinesq approximation - redirect
addSup(eqn, fieldi);
}
// ************************************************************************* //
/*---------------------------------------------------------------------------*\
========= |
\\ / F ield | OpenFOAM: The Open Source CFD Toolbox
\\ / O peration |
\\ / A nd | www.openfoam.com
\\/ M anipulation |
-------------------------------------------------------------------------------
Copyright (C) 2017 OpenFOAM Foundation
-------------------------------------------------------------------------------
License
This file is part of OpenFOAM.
OpenFOAM is free software: you can redistribute it and/or modify it
under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
OpenFOAM is distributed in the hope that it will be useful, but WITHOUT
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
for more details.
You should have received a copy of the GNU General Public License
along with OpenFOAM. If not, see <http://www.gnu.org/licenses/>.
Class
Foam::fv::VoFSolidificationMeltingSource
Description
Solidification and melting model for VoF simulations.
The presence of the solid phase in the flow field is incorporated into the
model as a momentum porosity contribution; the energy associated with the
phase change is added as an enthalpy contribution. The solid fraction as a
function of temperature \c alphaSolidT is specified as a Foam::Function1.
The model writes the field \c alpha[01].solid which can be visualised to to
show the solid distribution.
Usage
Example usage:
\verbatim
VoFSolidificationMeltingSource1
{
type VoFSolidificationMeltingSource;
active yes;
selectionMode cellZone;
cellZone solidZone;
alphaSolidT table
(
(330 1)
(335 0)
);
L 334000;
}
\endverbatim
Where:
\table
Property | Description | Required | Default value
alphaSolidT | Solid fraction as function of temperature | yes |
L | Latent heat of fusion [J/kg] | yes |
relax | Relaxation coefficient [0-1] | no | 0.9
Cu | Model coefficient | no | 100000
q | Model coefficient | no | 0.001
\endtable
See also
Foam::fv::solidificationMeltingSource
Foam::Function1
SourceFiles
VoFSolidificationMeltingSource.C
VoFSolidificationMeltingSourceIO.C
\*---------------------------------------------------------------------------*/
#ifndef VoFSolidificationMeltingSource_H
#define VoFSolidificationMeltingSource_H
#include "fvMesh.H"
#include "volFields.H"
#include "cellSetOption.H"
#include "Function1.H"
// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * //
namespace Foam
{
namespace fv
{
/*---------------------------------------------------------------------------*\
Class VoFSolidificationMeltingSource Declaration
\*---------------------------------------------------------------------------*/
class VoFSolidificationMeltingSource
:
public fv::cellSetOption
{
// Private data
//- Solid fraction as a function of temperature
autoPtr<Function1<scalar>> alphaSolidT_;
//- Latent heat of fusion [J/kg]
dimensionedScalar L_;
//- Phase fraction under-relaxation coefficient
scalar relax_;
//- Mushy region momentum sink coefficient [1/s]; default = 10^5
scalar Cu_;
//- Coefficient used in porosity calc - default = 0.001
scalar q_;
//- Solid phase fraction
volScalarField alphaSolid_;
//- Current time index (used for updating)
label curTimeIndex_;
// Private Member Functions
//- Return the name of the solid phase fraction
word alphaSolidName() const;
//- Update the model
void update();
//- Helper function to apply to the energy equation
template<class RhoFieldType>
void apply(const RhoFieldType& rho, fvMatrix<scalar>& eqn);
//- No copy construct
VoFSolidificationMeltingSource
(
const VoFSolidificationMeltingSource&
) = delete;
//- No copy assignment
void operator=(const VoFSolidificationMeltingSource&) = delete;
public:
//- Runtime type information
TypeName("VoFSolidificationMeltingSource");
// Constructors
//- Construct from explicit source name and mesh
VoFSolidificationMeltingSource
(
const word& sourceName,
const word& modelType,
const dictionary& dict,
const fvMesh& mesh
);
// Member Functions
// Add explicit and implicit contributions
//- Add explicit contribution to enthalpy equation
virtual void addSup(fvMatrix<scalar>& eqn, const label fieldi);
//- Add implicit contribution to momentum equation
virtual void addSup(fvMatrix<vector>& eqn, const label fieldi);
// Add explicit and implicit contributions to compressible equation
//- Add explicit contribution to compressible enthalpy equation
virtual void addSup
(
const volScalarField& rho,
fvMatrix<scalar>& eqn,
const label fieldi
);
//- Add implicit contribution to compressible momentum equation
virtual void addSup
(
const volScalarField& rho,
fvMatrix<vector>& eqn,
const label fieldi
);
// IO
//- Read source dictionary
virtual bool read(const dictionary& dict);
};
// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * //
} // End namespace fv
} // End namespace Foam
// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * //
#ifdef NoRepository
#include "VoFSolidificationMeltingSourceTemplates.C"
#endif
// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * //
#endif
// ************************************************************************* //
/*---------------------------------------------------------------------------*\
========= |
\\ / F ield | OpenFOAM: The Open Source CFD Toolbox
\\ / O peration |
\\ / A nd | www.openfoam.com
\\/ M anipulation |
-------------------------------------------------------------------------------
Copyright (C) 2017 OpenFOAM Foundation
-------------------------------------------------------------------------------
License
This file is part of OpenFOAM.
OpenFOAM is free software: you can redistribute it and/or modify it
under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
OpenFOAM is distributed in the hope that it will be useful, but WITHOUT
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
for more details.
You should have received a copy of the GNU General Public License
along with OpenFOAM. If not, see <http://www.gnu.org/licenses/>.
\*---------------------------------------------------------------------------*/
#include "VoFSolidificationMeltingSource.H"
// * * * * * * * * * * * * * Private Member Functions * * * * * * * * * * * //
bool Foam::fv::VoFSolidificationMeltingSource::read(const dictionary& dict)
{
if (fv::cellSetOption::read(dict))
{
alphaSolidT_ = Function1<scalar>::New("alphaSolidT", coeffs_, &mesh_);
coeffs_.readEntry("L", L_);
coeffs_.readIfPresent("relax", relax_);
coeffs_.readIfPresent("Cu", Cu_);
coeffs_.readIfPresent("q", q_);
return true;
}
return false;
}
// ************************************************************************* //
/*---------------------------------------------------------------------------*\
========= |
\\ / F ield | OpenFOAM: The Open Source CFD Toolbox
\\ / O peration |
\\ / A nd | www.openfoam.com
\\/ M anipulation |
-------------------------------------------------------------------------------
Copyright (C) 2017 OpenFOAM Foundation
-------------------------------------------------------------------------------
License
This file is part of OpenFOAM.
OpenFOAM is free software: you can redistribute it and/or modify it
under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
OpenFOAM is distributed in the hope that it will be useful, but WITHOUT
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
for more details.
You should have received a copy of the GNU General Public License
along with OpenFOAM. If not, see <http://www.gnu.org/licenses/>.
\*---------------------------------------------------------------------------*/
#include "fvcDdt.H"
#include "twoPhaseMixtureThermo.H"
// * * * * * * * * * * * * * Private Member Functions * * * * * * * * * * * //
template<class RhoFieldType>
void Foam::fv::VoFSolidificationMeltingSource::apply
(
const RhoFieldType& rho,
fvMatrix<scalar>& eqn
)
{
if (debug)
{
Info<< type() << ": applying source to " << eqn.psi().name() << endl;
}
update();
const twoPhaseMixtureThermo& thermo
(
mesh_.lookupObject<twoPhaseMixtureThermo>
(
twoPhaseMixtureThermo::dictName
)
);
const volScalarField CpVoF(thermo.thermo1().Cp());
if (eqn.psi().dimensions() == dimTemperature)
{
eqn += L_/CpVoF*(fvc::ddt(rho, alphaSolid_));
}
else
{
eqn += L_*(fvc::ddt(rho, alphaSolid_));
}
}
// ************************************************************************* //
/*---------------------------------------------------------------------------*\
========= |
\\ / F ield | OpenFOAM: The Open Source CFD Toolbox
\\ / O peration |
\\ / A nd | www.openfoam.com
\\/ M anipulation |
-------------------------------------------------------------------------------
Copyright (C) 2011-2017 OpenFOAM Foundation
-------------------------------------------------------------------------------
License
This file is part of OpenFOAM.
OpenFOAM is free software: you can redistribute it and/or modify it
under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
OpenFOAM is distributed in the hope that it will be useful, but WITHOUT
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
for more details.
You should have received a copy of the GNU General Public License
along with OpenFOAM. If not, see <http://www.gnu.org/licenses/>.
Application
compressibleInterFoam
Description
Solver for two compressible, non-isothermal immiscible fluids using a VOF
(volume of fluid) phase-fraction based interface capturing approach.
The momentum and other fluid properties are of the "mixture" and a single
momentum equation is solved.
Turbulence modelling is generic, i.e. laminar, RAS or LES may be selected.
\*---------------------------------------------------------------------------*/
#include "fvCFD.H"
#include "CMULES.H"
#include "EulerDdtScheme.H"
#include "localEulerDdtScheme.H"
#include "CrankNicolsonDdtScheme.H"
#include "subCycle.H"
#include "compressibleInterPhaseTransportModel.H"
#include "pimpleControl.H"
#include "SLGThermo.H"
#include "surfaceFilmModel.H"
#include "pimpleControl.H"
#include "fvOptions.H"
#include "fvcSmooth.H"
// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * //
int main(int argc, char *argv[])
{
argList::addNote
(
"Solver for two compressible, non-isothermal immiscible fluids"
" using VOF phase-fraction based interface capturing."
);
#include "postProcess.H"
#include "addCheckCaseOptions.H"
#include "setRootCaseLists.H"
#include "createTime.H"
#include "createMesh.H"
#include "createControl.H"
#include "createTimeControls.H"
#include "createFields.H"
#include "createSurfaceFilmModel.H"
volScalarField& p = mixture.p();
volScalarField& T = mixture.T();
const volScalarField& psi1 = mixture.thermo1().psi();
const volScalarField& psi2 = mixture.thermo2().psi();
regionModels::surfaceFilmModel& surfaceFilm = tsurfaceFilm();
if (!LTS)
{
#include "readTimeControls.H"
#include "CourantNo.H"
#include "setInitialDeltaT.H"
}
// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * //
Info<< "\nStarting time loop\n" << endl;
while (runTime.run())
{
#include "readTimeControls.H"
if (LTS)
{
#include "setRDeltaT.H"
}
else
{
#include "CourantNo.H"
#include "alphaCourantNo.H"
#include "setDeltaT.H"
}
++runTime;
Info<< "Time = " << runTime.timeName() << nl << endl;
surfaceFilm.evolve();
// --- Pressure-velocity PIMPLE corrector loop
while (pimple.loop())
{
#include "alphaControls.H"
#include "compressibleAlphaEqnSubCycle.H"
turbulence.correctPhasePhi();
volScalarField::Internal Srho(surfaceFilm.Srho());
contErr -= posPart(Srho);
#include "UEqn.H"
#include "TEqn.H"
// --- Pressure corrector loop
while (pimple.correct())
{
#include "pEqn.H"
}
if (pimple.turbCorr())
{
turbulence.correct();
}
}
runTime.write();
runTime.printExecutionTime(Info);
}
Info<< "End\n" << endl;
return 0;
}
// ************************************************************************* //
Info<< "\nConstructing surface film model" << endl;
SLGThermo slgThermo(mesh, mixture.thermo1());
autoPtr<regionModels::surfaceFilmModel> tsurfaceFilm
(
regionModels::surfaceFilmModel::New(mesh, g)
);
{
volScalarField rAU("rAU", 1.0/UEqn.A());
surfaceScalarField rAUf("rAUf", fvc::interpolate(rAU));
volVectorField HbyA(constrainHbyA(rAU*UEqn.H(), U, p_rgh));
surfaceScalarField phiHbyA
(
"phiHbyA",
fvc::flux(HbyA)
+ MRF.zeroFilter(fvc::interpolate(rho*rAU)*fvc::ddtCorr(U, phi))
);
MRF.makeRelative(phiHbyA);
surfaceScalarField phig
(
(
mixture.surfaceTensionForce()
- ghf*fvc::snGrad(rho)
)*rAUf*mesh.magSf()
);
phiHbyA += phig;
// Update the pressure BCs to ensure flux consistency
constrainPressure(p_rgh, U, phiHbyA, rAUf, MRF);
tmp<fvScalarMatrix> p_rghEqnComp1;
tmp<fvScalarMatrix> p_rghEqnComp2;
if (pimple.transonic())
{
#include "rhofs.H"
surfaceScalarField phid1("phid1", fvc::interpolate(psi1)*phi);
surfaceScalarField phid2("phid2", fvc::interpolate(psi2)*phi);
p_rghEqnComp1 =
pos(alpha1)
*(
(
fvc::ddt(alpha1, rho1) + fvc::div(alphaPhi1*rho1f)
- (fvOptions(alpha1, mixture.thermo1().rho())&rho1)
)/rho1
- fvc::ddt(alpha1) - fvc::div(alphaPhi1)
+ (alpha1/rho1)
*correction
(
psi1*fvm::ddt(p_rgh)
+ fvm::div(phid1, p_rgh) - fvm::Sp(fvc::div(phid1), p_rgh)
)
);
p_rghEqnComp1.ref().relax();
p_rghEqnComp2 =
pos(alpha2)
*(
(
fvc::ddt(alpha2, rho2) + fvc::div(alphaPhi2*rho2f)
- (fvOptions(alpha2, mixture.thermo2().rho())&rho2)
)/rho2
- fvc::ddt(alpha2) - fvc::div(alphaPhi2)
+ (alpha2/rho2)
*correction
(
psi2*fvm::ddt(p_rgh)
+ fvm::div(phid2, p_rgh) - fvm::Sp(fvc::div(phid2), p_rgh)
)
);
p_rghEqnComp2.ref().relax();
}
else
{
#include "rhofs.H"
p_rghEqnComp1 =
pos(alpha1)
*(
(
fvc::ddt(alpha1, rho1) + fvc::div(alphaPhi1*rho1f)
- (fvOptions(alpha1, mixture.thermo1().rho())&rho1)
)/rho1
- fvc::ddt(alpha1) - fvc::div(alphaPhi1)
+ (alpha1*psi1/rho1)*correction(fvm::ddt(p_rgh))
) - surfaceFilm.Srho()/rho1;
p_rghEqnComp2 =
pos(alpha2)
*(
(
fvc::ddt(alpha2, rho2) + fvc::div(alphaPhi2*rho2f)
- (fvOptions(alpha2, mixture.thermo2().rho())&rho2)
)/rho2
- fvc::ddt(alpha2) - fvc::div(alphaPhi2)
+ (alpha2*psi2/rho2)*correction(fvm::ddt(p_rgh))
);
}
// Cache p_rgh prior to solve for density update
volScalarField p_rgh_0(p_rgh);
while (pimple.correctNonOrthogonal())
{
fvScalarMatrix p_rghEqnIncomp
(
fvc::div(phiHbyA)
- fvm::laplacian(rAUf, p_rgh)
);
solve
(
p_rghEqnComp1() + p_rghEqnComp2() + p_rghEqnIncomp,
mesh.solver(p_rgh.select(pimple.finalInnerIter()))
);
if (pimple.finalNonOrthogonalIter())
{
p = max(p_rgh + (alpha1*rho1 + alpha2*rho2)*gh, pMin);
p_rgh = p - (alpha1*rho1 + alpha2*rho2)*gh;
dgdt =
(
alpha1*(p_rghEqnComp2 & p_rgh)
- alpha2*(p_rghEqnComp1 & p_rgh)
);
phi = phiHbyA + p_rghEqnIncomp.flux();
U = HbyA
+ rAU*fvc::reconstruct((phig + p_rghEqnIncomp.flux())/rAUf);
U.correctBoundaryConditions();
fvOptions.correct(U);
}
}
// Update densities from change in p_rgh
mixture.thermo1().correctRho(psi1*(p_rgh - p_rgh_0));
mixture.thermo2().correctRho(psi2*(p_rgh - p_rgh_0));
rho = alpha1*rho1 + alpha2*rho2;
// Correct p_rgh for consistency with p and the updated densities
p_rgh = p - rho*gh;
p_rgh.correctBoundaryConditions();
K = 0.5*magSqr(U);
}
/*---------------------------------------------------------------------------*\
========= |
\\ / F ield | OpenFOAM: The Open Source CFD Toolbox
\\ / O peration |
\\ / A nd | www.openfoam.com
\\/ M anipulation |
-------------------------------------------------------------------------------
Copyright (C) 2011-2017 OpenFOAM Foundation
Copyright (C) OpenCFD OpenCFD Ltd.
-------------------------------------------------------------------------------
License
This file is part of OpenFOAM.
OpenFOAM is free software: you can redistribute it and/or modify it
under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
OpenFOAM is distributed in the hope that it will be useful, but WITHOUT
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
for more details.
You should have received a copy of the GNU General Public License
along with OpenFOAM. If not, see <http://www.gnu.org/licenses/>.
Application
compressibleInterFoam
Group
grpMultiphaseSolvers
Description
Solver for two compressible, non-isothermal immiscible fluids using a VOF
(volume of fluid) phase-fraction based interface capturing approach.
The momentum and other fluid properties are of the "mixture" and a single
momentum equation is solved.
Either mixture or two-phase transport modelling may be selected. In the
mixture approach a single laminar, RAS or LES model is selected to model the
momentum stress. In the Euler-Euler two-phase approach separate laminar,
RAS or LES selected models are selected for each of the phases.
\*---------------------------------------------------------------------------*/
#include "fvCFD.H"
#include "CMULES.H"
#include "EulerDdtScheme.H"
#include "localEulerDdtScheme.H"
#include "CrankNicolsonDdtScheme.H"
#include "subCycle.H"
#include "compressibleInterPhaseTransportModel.H"
#include "pimpleControl.H"
#include "fvOptions.H"
#include "fvcSmooth.H"
// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * //
int main(int argc, char *argv[])
{
argList::addNote
(
"Solver for two compressible, non-isothermal immiscible fluids"
" using VOF phase-fraction based interface capturing."
);
#include "postProcess.H"
#include "addCheckCaseOptions.H"
#include "setRootCaseLists.H"
#include "createTime.H"
#include "createMesh.H"
#include "createControl.H"
#include "createTimeControls.H"
#include "createFields.H"
volScalarField& p = mixture.p();
volScalarField& T = mixture.T();
const volScalarField& psi1 = mixture.thermo1().psi();
const volScalarField& psi2 = mixture.thermo2().psi();
if (!LTS)
{
#include "readTimeControls.H"
#include "CourantNo.H"
#include "setInitialDeltaT.H"
}
// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * //
Info<< "\nStarting time loop\n" << endl;
while (runTime.run())
{
#include "readTimeControls.H"
if (LTS)
{
#include "setRDeltaT.H"
}
else
{
#include "CourantNo.H"
#include "alphaCourantNo.H"
#include "setDeltaT.H"
}
++runTime;
Info<< "Time = " << runTime.timeName() << nl << endl;
// --- Pressure-velocity PIMPLE corrector loop
while (pimple.loop())
{
#include "alphaControls.H"
#include "compressibleAlphaEqnSubCycle.H"
turbulence.correctPhasePhi();
#include "UEqn.H"
volScalarField divUp("divUp", fvc::div(fvc::absolute(phi, U), p));
#include "TEqn.H"
// --- Pressure corrector loop
while (pimple.correct())
{
#include "pEqn.H"
}
if (pimple.turbCorr())
{
turbulence.correct();
}
}
runTime.write();
runTime.printExecutionTime(Info);
}
Info<< "End\n" << endl;
return 0;
}
// ************************************************************************* //
compressibleInterIsoFoam.C
EXE = $(FOAM_APPBIN)/compressibleInterIsoFoam
EXE_INC = \
-I.. \
-I../../VoF \
-I../twoPhaseMixtureThermo \
-I../VoFphaseCompressibleTurbulenceModels \
-I$(LIB_SRC)/finiteVolume/lnInclude \
-I$(LIB_SRC)/fvOptions/lnInclude \
-I$(LIB_SRC)/surfMesh/lnInclude \
-I$(LIB_SRC)/meshTools/lnInclude \
-I$(LIB_SRC)/dynamicMesh/lnInclude \
-I$(LIB_SRC)/dynamicFvMesh/lnInclude \
-I$(LIB_SRC)/transportModels/compressible/lnInclude \
-I$(LIB_SRC)/thermophysicalModels/basic/lnInclude \
-I$(LIB_SRC)/transportModels/twoPhaseMixture/lnInclude \
-I$(LIB_SRC)/transportModels/interfaceProperties/lnInclude \
-I$(LIB_SRC)/TurbulenceModels/turbulenceModels/lnInclude \
-I$(LIB_SRC)/TurbulenceModels/compressible/lnInclude \
-I$(LIB_SRC)/TurbulenceModels/phaseCompressible/lnInclude \
-I$(LIB_SRC)/transportModels/geometricVoF/lnInclude
EXE_LIBS = \
-lfiniteVolume \
-lfvOptions \
-lsurfMesh \
-lmeshTools \
-ldynamicMesh \
-ldynamicFvMesh \
-ltwoPhaseMixtureThermo \
-ltwoPhaseSurfaceTension \
-lcompressibleTransportModels \
-lfluidThermophysicalModels \
-lspecie \
-ltwoPhaseMixture \
-ltwoPhaseProperties \
-linterfaceProperties \
-lturbulenceModels \
-lcompressibleTurbulenceModels \
-lVoFphaseCompressibleTurbulenceModels \
-lgeometricVoF
const dictionary& alphaControls = mesh.solverDict(alpha1.name());
label nAlphaSubCycles(alphaControls.get<label>("nAlphaSubCycles"));
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment