Commit ea17556c authored by shunbo's avatar shunbo
Browse files

Initial commit

parents
#!/bin/sh
cd "${0%/*}" || exit # Run from this directory
. ${WM_PROJECT_DIR:?}/wmake/scripts/AllwmakeParseArguments
#------------------------------------------------------------------------------
wmake $targetType compressibleTwoPhaseMixtureTurbulenceModels
wmake $targetType
#------------------------------------------------------------------------------
/*---------------------------------------------------------------------------*\
========= |
\\ / F ield | OpenFOAM: The Open Source CFD Toolbox
\\ / O peration |
\\ / A nd | www.openfoam.com
\\/ M anipulation |
-------------------------------------------------------------------------------
Copyright (C) 2016-2020 OpenCFD Ltd.
-------------------------------------------------------------------------------
License
This file is part of OpenFOAM.
OpenFOAM is free software: you can redistribute it and/or modify it
under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
OpenFOAM is distributed in the hope that it will be useful, but WITHOUT
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
for more details.
You should have received a copy of the GNU General Public License
along with OpenFOAM. If not, see <http://www.gnu.org/licenses/>.
Application
MPPICInterFoam
Description
Solver for two incompressible, isothermal immiscible fluids using a VOF
(volume of fluid) phase-fraction based interface capturing approach.
The momentum and other fluid properties are of the "mixture" and a single
momentum equation is solved.
It includes MRF and an MPPIC cloud.
Turbulence modelling is generic, i.e. laminar, RAS or LES may be selected.
\*---------------------------------------------------------------------------*/
#include "fvCFD.H"
#include "CMULES.H"
#include "EulerDdtScheme.H"
#include "localEulerDdtScheme.H"
#include "CrankNicolsonDdtScheme.H"
#include "subCycle.H"
#include "immiscibleIncompressibleTwoPhaseMixture.H"
#include "PhaseCompressibleTurbulenceModel.H"
#include "pimpleControl.H"
#include "fvOptions.H"
#include "CorrectPhi.H"
#include "fvcSmooth.H"
#include "basicKinematicCloud.H"
// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * //
int main(int argc, char *argv[])
{
argList::addNote
(
"Solver for two incompressible, isothermal immiscible fluids using"
" VOF phase-fraction based interface capturing.\n"
"Includes MRF and an MPPIC cloud."
);
#include "postProcess.H"
#include "addCheckCaseOptions.H"
#include "setRootCaseLists.H"
#include "createTime.H"
#include "createMesh.H"
#include "createControl.H"
#include "createTimeControls.H"
#include "initContinuityErrs.H"
#include "createFields.H"
#include "createAlphaFluxes.H"
#include "createFvOptions.H"
#include "correctPhi.H"
turbulence->validate();
if (!LTS)
{
#include "readTimeControls.H"
#include "CourantNo.H"
#include "setInitialDeltaT.H"
}
// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * //
Info<< "\nStarting time loop\n" << endl;
while (runTime.run())
{
#include "readTimeControls.H"
if (LTS)
{
#include "setRDeltaT.H"
}
else
{
#include "CourantNo.H"
#include "alphaCourantNo.H"
#include "setDeltaT.H"
}
++runTime;
Info<< "Time = " << runTime.timeName() << nl << endl;
Info<< "Evolving " << kinematicCloud.name() << endl;
kinematicCloud.evolve();
// Update continuous phase volume fraction field
alphac = max(1.0 - kinematicCloud.theta(), alphacMin);
alphac.correctBoundaryConditions();
Info<< "Continuous phase-1 volume fraction = "
<< alphac.weightedAverage(mesh.Vsc()).value()
<< " Min(alphac) = " << min(alphac).value()
<< " Max(alphac) = " << max(alphac).value()
<< endl;
alphacf = fvc::interpolate(alphac);
alphaRhoPhic = alphacf*rhoPhi;
alphaPhic = alphacf*phi;
alphacRho = alphac*rho;
fvVectorMatrix cloudSU(kinematicCloud.SU(U));
volVectorField cloudVolSUSu
(
IOobject
(
"cloudVolSUSu",
runTime.timeName(),
mesh
),
mesh,
dimensionedVector(cloudSU.dimensions()/dimVolume, Zero),
zeroGradientFvPatchVectorField::typeName
);
cloudVolSUSu.primitiveFieldRef() = -cloudSU.source()/mesh.V();
cloudVolSUSu.correctBoundaryConditions();
cloudSU.source() = vector::zero;
// --- Pressure-velocity PIMPLE corrector loop
while (pimple.loop())
{
#include "alphaControls.H"
#include "alphaEqnSubCycle.H"
mixture.correct();
#include "UEqn.H"
// --- Pressure corrector loop
while (pimple.correct())
{
#include "pEqn.H"
}
if (pimple.turbCorr())
{
turbulence->correct();
}
}
runTime.write();
runTime.printExecutionTime(Info);
}
Info<< "End\n" << endl;
return 0;
}
// ************************************************************************* //
MPPICInterFoam.C
EXE = $(FOAM_APPBIN)/MPPICInterFoam
EXE_INC = \
-I../VoF \
-I$(FOAM_SOLVERS)/multiphase/interFoam \
-I$(LIB_SRC)/finiteVolume/lnInclude \
-I$(LIB_SRC)/finiteArea/lnInclude \
-I$(LIB_SRC)/fvOptions/lnInclude \
-I$(LIB_SRC)/meshTools/lnInclude \
-I$(LIB_SRC)/sampling/lnInclude \
-I$(LIB_SRC)/lagrangian/basic/lnInclude \
-I$(LIB_SRC)/lagrangian/intermediate/lnInclude \
-I$(LIB_SRC)/thermophysicalModels/specie/lnInclude \
-I$(LIB_SRC)/thermophysicalModels/basic/lnInclude \
-I$(LIB_SRC)/thermophysicalModels/reactionThermo/lnInclude \
-I$(LIB_SRC)/thermophysicalModels/radiation/lnInclude \
-I$(LIB_SRC)/transportModels \
-I$(LIB_SRC)/transportModels/immiscibleIncompressibleTwoPhaseMixture/lnInclude \
-I$(LIB_SRC)/transportModels/twoPhaseMixture/lnInclude \
-I$(LIB_SRC)/transportModels/incompressible/lnInclude \
-I$(LIB_SRC)/transportModels/interfaceProperties/lnInclude \
-I$(LIB_SRC)/TurbulenceModels/turbulenceModels/lnInclude \
-I$(LIB_SRC)/TurbulenceModels/compressible/lnInclude \
-I$(LIB_SRC)/TurbulenceModels/phaseCompressible/lnInclude \
-I$(LIB_SRC)/regionModels/regionModel/lnInclude \
-I$(LIB_SRC)/regionModels/surfaceFilmModels/lnInclude \
-I$(LIB_SRC)/regionFaModels/lnInclude \
-I$(LIB_SRC)/faOptions/lnInclude
EXE_LIBS = \
-lfiniteVolume \
-lfvOptions \
-lmeshTools \
-llagrangian \
-llagrangianIntermediate \
-lthermophysicalProperties \
-lspecie \
-lincompressibleTransportModels \
-limmiscibleIncompressibleTwoPhaseMixture \
-linterfaceProperties \
-lturbulenceModels \
-lsampling \
-lregionModels \
-lsurfaceFilmModels \
-lcompressibleTwoPhaseMixtureTurbulenceModels
MRF.correctBoundaryVelocity(U);
fvVectorMatrix UEqn
(
fvm::ddt(alphacRho, U)
+ MRF.DDt(alphacRho, U)
- fvm::Sp(fvc::ddt(rho) + fvc::div(rhoPhi), U)
+ fvm::div(rhoPhi, U)
+ turbulence->divDevRhoReff(U)
==
fvOptions(rho, U)
+ cloudSU
);
UEqn.relax();
fvOptions.constrain(UEqn);
volScalarField rAUc(1.0/UEqn.A());
surfaceScalarField rAUcf(fvc::interpolate(rAUc));
surfaceScalarField phicForces
(
(fvc::interpolate(rAUc*cloudVolSUSu) & mesh.Sf())
);
if (pimple.momentumPredictor())
{
solve
(
UEqn
==
fvc::reconstruct
(
phicForces/rAUcf
+
(
fvc::interpolate
(
mixture.sigmaK()
)*fvc::snGrad(alpha1)
- ghf*fvc::snGrad(rho)
- fvc::snGrad(p_rgh)
) * mesh.magSf()
)
);
fvOptions.correct(U);
}
{
word alphaScheme("div(phi,alpha)");
word alpharScheme("div(phirb,alpha)");
// Set the off-centering coefficient according to ddt scheme
scalar ocCoeff = 0;
{
tmp<fv::ddtScheme<scalar>> tddtAlpha
(
fv::ddtScheme<scalar>::New
(
mesh,
mesh.ddtScheme("ddt(alpha)")
)
);
const fv::ddtScheme<scalar>& ddtAlpha = tddtAlpha();
if
(
isType<fv::EulerDdtScheme<scalar>>(ddtAlpha)
|| isType<fv::localEulerDdtScheme<scalar>>(ddtAlpha)
)
{
ocCoeff = 0;
}
else if (isType<fv::CrankNicolsonDdtScheme<scalar>>(ddtAlpha))
{
if (nAlphaSubCycles > 1)
{
FatalErrorInFunction
<< "Sub-cycling is not supported "
"with the CrankNicolson ddt scheme"
<< exit(FatalError);
}
if
(
alphaRestart
|| mesh.time().timeIndex() > mesh.time().startTimeIndex() + 1
)
{
ocCoeff =
refCast<const fv::CrankNicolsonDdtScheme<scalar>>(ddtAlpha)
.ocCoeff();
}
}
else
{
FatalErrorInFunction
<< "Only Euler and CrankNicolson ddt schemes are supported"
<< exit(FatalError);
}
}
// Set the time blending factor, 1 for Euler
scalar cnCoeff = 1.0/(1.0 + ocCoeff);
// Standard face-flux compression coefficient
surfaceScalarField phic(mixture.cAlpha()*mag(alphaPhic/mesh.magSf()));
// Add the optional isotropic compression contribution
if (icAlpha > 0)
{
phic *= (1.0 - icAlpha);
phic += (mixture.cAlpha()*icAlpha)*fvc::interpolate(mag(U));
}
// Add the optional shear compression contribution
if (scAlpha > 0)
{
phic +=
scAlpha*mag(mesh.delta() & fvc::interpolate(symm(fvc::grad(U))));
}
surfaceScalarField::Boundary& phicBf = phic.boundaryFieldRef();
// Do not compress interface at non-coupled boundary faces
// (inlets, outlets etc.)
forAll(phic.boundaryField(), patchi)
{
fvsPatchScalarField& phicp = phicBf[patchi];
if (!phicp.coupled())
{
phicp == 0;
}
}
tmp<surfaceScalarField> phiCN(alphaPhic);
// Calculate the Crank-Nicolson off-centred volumetric flux
if (ocCoeff > 0)
{
phiCN = cnCoeff*alphaPhic + (1.0 - cnCoeff)*alphaPhic.oldTime();
}
if (MULESCorr)
{
#include "alphaSuSp.H"
fvScalarMatrix alpha1Eqn
(
(
LTS
? fv::localEulerDdtScheme<scalar>(mesh).fvmDdt(alphac, alpha1)
: fv::EulerDdtScheme<scalar>(mesh).fvmDdt(alpha1)
)
+ fv::gaussConvectionScheme<scalar>
(
mesh,
phiCN,
upwind<scalar>(mesh, phiCN)
).fvmDiv(phiCN, alpha1)
- fvm::Sp(fvc::ddt(alphac) + fvc::div(phiCN), alpha1)
==
Su + fvm::Sp(Sp + divU, alpha1)
);
alpha1Eqn.solve();
Info<< "Phase-1 volume fraction = "
<< alpha1.weightedAverage(mesh.Vsc()).value()
<< " Min(" << alpha1.name() << ") = " << min(alpha1).value()
<< " Max(" << alpha1.name() << ") = " << max(alpha1).value()
<< endl;
tmp<surfaceScalarField> talphaPhi1UD(alpha1Eqn.flux());
alphaPhi10 = talphaPhi1UD();
if (alphaApplyPrevCorr && talphaPhi1Corr0.valid())
{
Info<< "Applying the previous iteration compression flux" << endl;
MULES::correct
(
alphac,
alpha1,
alphaPhi10,
talphaPhi1Corr0.ref(),
zeroField(), zeroField(),
oneField(),
zeroField()
);
alphaPhi10 += talphaPhi1Corr0();
}
// Cache the upwind-flux
talphaPhi1Corr0 = talphaPhi1UD;
alpha2 = 1.0 - alpha1;
mixture.correct();
}
for (int aCorr=0; aCorr<nAlphaCorr; aCorr++)
{
#include "alphaSuSp.H"
surfaceScalarField phir(phic*mixture.nHatf());
tmp<surfaceScalarField> talphaPhi1Un
(
fvc::flux
(
phiCN(),
cnCoeff*alpha1 + (1.0 - cnCoeff)*alpha1.oldTime(),
alphaScheme
)
+ fvc::flux
(
-fvc::flux(-phir, alpha2, alpharScheme),
alpha1,
alpharScheme
)
);
if (MULESCorr)
{
tmp<surfaceScalarField> talphaPhi1Corr(talphaPhi1Un() - alphaPhi10);
volScalarField alpha10("alpha10", alpha1);
MULES::correct
(
alphac,
alpha1,
talphaPhi1Un(),
talphaPhi1Corr.ref(),
Sp,
(-Sp*alpha1)(),
oneField(),
zeroField()
);
// Under-relax the correction for all but the 1st corrector
if (aCorr == 0)
{
alphaPhi10 += talphaPhi1Corr();
}
else
{
alpha1 = 0.5*alpha1 + 0.5*alpha10;
alphaPhi10 += 0.5*talphaPhi1Corr();
}
}
else
{
alphaPhi10 = talphaPhi1Un;
MULES::explicitSolve
(
alphac,
alpha1,
phiCN,
alphaPhi10,
Sp,
(Su + divU*min(alpha1(), scalar(1)))(),
oneField(),
zeroField()
);
}
alpha2 = 1.0 - alpha1;
mixture.correct();
}
if (alphaApplyPrevCorr && MULESCorr)
{
talphaPhi1Corr0 = alphaPhi10 - talphaPhi1Corr0;
talphaPhi1Corr0.ref().rename("alphaPhi1Corr0");
}
else
{
talphaPhi1Corr0.clear();
}
if
(
word(mesh.ddtScheme("ddt(rho,U)"))
== fv::EulerDdtScheme<vector>::typeName
)
{
#include "rhofs.H"
rhoPhi = alphaPhi10*(rho1f - rho2f) + phiCN*rho2f;
}
else
{
if (ocCoeff > 0)
{
// Calculate the end-of-time-step alpha flux
alphaPhi10 =
(alphaPhi10 - (1.0 - cnCoeff)*alphaPhi10.oldTime())/cnCoeff;
}
// Calculate the end-of-time-step mass flux
#include "rhofs.H"
rhoPhi = alphaPhi10*(rho1f - rho2f) + alphaPhic*rho2f;
}
Info<< "Phase-1 volume fraction = "
<< alpha1.weightedAverage(mesh.Vsc()).value()
<< " Min(" << alpha1.name() << ") = " << min(alpha1).value()
<< " Max(" << alpha1.name() << ") = " << max(alpha1).value()
<< endl;
}
if (nAlphaSubCycles > 1)
{
dimensionedScalar totalDeltaT = runTime.deltaT();
surfaceScalarField rhoPhiSum
(
IOobject
(
"rhoPhiSum",
runTime.timeName(),
mesh
),
mesh,
dimensionedScalar(rhoPhi.dimensions(), Zero)
);
tmp<volScalarField> trSubDeltaT;
if (LTS)
{
trSubDeltaT =
fv::localEulerDdt::localRSubDeltaT(mesh, nAlphaSubCycles);
}
for
(
subCycle<volScalarField> alphaSubCycle(alpha1, nAlphaSubCycles);
!(++alphaSubCycle).end();
)
{
#include "alphaEqn.H"
rhoPhiSum += (runTime.deltaT()/totalDeltaT)*rhoPhi;
}
rhoPhi = rhoPhiSum;
}
else
{
#include "alphaEqn.H"
}
rho == alpha1*rho1 + alpha2*rho2;
mu = mixture.mu();
compressibleTwoPhaseMixtureTurbulenceModels.C
LIB = $(FOAM_LIBBIN)/libcompressibleTwoPhaseMixtureTurbulenceModels
EXE_INC = \
-I$(LIB_SRC)/finiteVolume/lnInclude \
-I$(LIB_SRC)/meshTools/lnInclude \
-I$(LIB_SRC)/thermophysicalModels/basic/lnInclude \
-I$(LIB_SRC)/transportModels \
-I$(LIB_SRC)/transportModels/compressible/lnInclude \
-I$(LIB_SRC)/transportModels/twoPhaseMixture/lnInclude \
-I$(LIB_SRC)/transportModels/incompressible/lnInclude \
-I$(LIB_SRC)/transportModels/interfaceProperties/lnInclude \
-I$(LIB_SRC)/transportModels/immiscibleIncompressibleTwoPhaseMixture/lnInclude \
-I$(LIB_SRC)/TurbulenceModels/turbulenceModels/lnInclude \
-I$(LIB_SRC)/TurbulenceModels/incompressible/lnInclude \
-I$(LIB_SRC)/TurbulenceModels/compressible/lnInclude \
-I$(LIB_SRC)/TurbulenceModels/phaseCompressible/lnInclude \
-I$(LIB_SRC)/TurbulenceModels/phaseIncompressible/lnInclude
LIB_LIBS = \
-lfiniteVolume \
-lmeshTools \
-lincompressibleTransportModels \
-limmiscibleIncompressibleTwoPhaseMixture \
-linterfaceProperties \
-lturbulenceModels \
-lincompressibleTurbulenceModels \
-lcompressibleTurbulenceModels
/*---------------------------------------------------------------------------*\
========= |
\\ / F ield | OpenFOAM: The Open Source CFD Toolbox
\\ / O peration |
\\ / A nd | www.openfoam.com
\\/ M anipulation |
-------------------------------------------------------------------------------
Copyright (C) 2016 OpenCFD Ltd.
-------------------------------------------------------------------------------
License
This file is part of OpenFOAM.
OpenFOAM is free software: you can redistribute it and/or modify it
under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
OpenFOAM is distributed in the hope that it will be useful, but WITHOUT
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
for more details.
You should have received a copy of the GNU General Public License
along with OpenFOAM. If not, see <http://www.gnu.org/licenses/>.
\*---------------------------------------------------------------------------*/
#include "PhaseCompressibleTurbulenceModel.H"
#include "immiscibleIncompressibleTwoPhaseMixture.H"
#include "addToRunTimeSelectionTable.H"
#include "makeTurbulenceModel.H"
#include "turbulentTransportModel.H"
#include "LESModel.H"
// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * //
defineTurbulenceModelTypes
(
volScalarField,
geometricOneField,
incompressibleTurbulenceModel,
PhaseCompressibleTurbulenceModel,
immiscibleIncompressibleTwoPhaseMixture
);
makeBaseTurbulenceModel
(
volScalarField,
volScalarField,
compressibleTurbulenceModel,
PhaseCompressibleTurbulenceModel,
immiscibleIncompressibleTwoPhaseMixture
);
#define makeLaminarModel(Type) \
makeTemplatedTurbulenceModel \
( \
immiscibleIncompressibleTwoPhaseMixturePhaseCompressibleTurbulenceModel,\
laminar, \
Type \
)
#define makeRASModel(Type) \
makeTemplatedTurbulenceModel \
( \
immiscibleIncompressibleTwoPhaseMixturePhaseCompressibleTurbulenceModel,\
RAS, \
Type \
)
#define makeLESModel(Type) \
makeTemplatedTurbulenceModel \
( \
immiscibleIncompressibleTwoPhaseMixturePhaseCompressibleTurbulenceModel,\
LES, \
Type \
)
#include "Stokes.H"
makeLaminarModel(Stokes);
#include "kEpsilon.H"
makeRASModel(kEpsilon);
#include "Smagorinsky.H"
makeLESModel(Smagorinsky);
#include "kEqn.H"
makeLESModel(kEqn);
#include "kOmega.H"
makeRASModel(kOmega);
// ************************************************************************* //
/*---------------------------------------------------------------------------*\
========= |
\\ / F ield | OpenFOAM: The Open Source CFD Toolbox
\\ / O peration |
\\ / A nd | www.openfoam.com
\\/ M anipulation |
-------------------------------------------------------------------------------
Copyright (C) 2015 OpenFOAM Foundation
-------------------------------------------------------------------------------
License
This file is part of OpenFOAM.
OpenFOAM is free software: you can redistribute it and/or modify it
under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
OpenFOAM is distributed in the hope that it will be useful, but WITHOUT
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
for more details.
You should have received a copy of the GNU General Public License
along with OpenFOAM. If not, see <http://www.gnu.org/licenses/>.
Global
continuityErrs
Description
Calculates and prints the continuity errors.
\*---------------------------------------------------------------------------*/
{
volScalarField contErr(fvc::ddt(alphac) + fvc::div(alphacf*phi));
scalar sumLocalContErr = runTime.deltaTValue()*
mag(contErr)().weightedAverage(mesh.V()).value();
scalar globalContErr = runTime.deltaTValue()*
contErr.weightedAverage(mesh.V()).value();
cumulativeContErr += globalContErr;
Info<< "time step continuity errors : sum local = " << sumLocalContErr
<< ", global = " << globalContErr
<< ", cumulative = " << cumulativeContErr
<< endl;
}
// ************************************************************************* //
CorrectPhi
(
U,
phi,
p_rgh,
dimensionedScalar("rAUf", dimTime/rho.dimensions(), 1),
geometricZeroField(),
pimple
);
#include "continuityErrs.H"
#include "createRDeltaT.H"
Info<< "Reading field p_rgh\n" << endl;
volScalarField p_rgh
(
IOobject
(
"p_rgh",
runTime.timeName(),
mesh,
IOobject::MUST_READ,
IOobject::AUTO_WRITE
),
mesh
);
Info<< "Reading field U\n" << endl;
volVectorField U
(
IOobject
(
"U",
runTime.timeName(),
mesh,
IOobject::MUST_READ,
IOobject::AUTO_WRITE
),
mesh
);
#include "createPhi.H"
Info<< "Reading transportProperties\n" << endl;
immiscibleIncompressibleTwoPhaseMixture mixture(U, phi);
volScalarField& alpha1(mixture.alpha1());
volScalarField& alpha2(mixture.alpha2());
const dimensionedScalar& rho1 = mixture.rho1();
const dimensionedScalar& rho2 = mixture.rho2();
// Need to store rho for ddt(rho, U)
volScalarField rho
(
IOobject
(
"rho",
runTime.timeName(),
mesh,
IOobject::READ_IF_PRESENT,
IOobject::AUTO_WRITE
),
alpha1*rho1 + alpha2*rho2
);
rho.oldTime();
// Need to store mu as incompressibleTwoPhaseMixture does not store it
volScalarField mu
(
IOobject
(
"mu",
runTime.timeName(),
mesh,
IOobject::READ_IF_PRESENT
),
mixture.mu(),
calculatedFvPatchScalarField::typeName
);
// Mass flux
surfaceScalarField rhoPhi
(
IOobject
(
"rhoPhi",
runTime.timeName(),
mesh,
IOobject::NO_READ,
IOobject::NO_WRITE
),
fvc::interpolate(rho)*phi
);
#include "readGravitationalAcceleration.H"
#include "readhRef.H"
#include "gh.H"
volScalarField p
(
IOobject
(
"p",
runTime.timeName(),
mesh,
IOobject::NO_READ,
IOobject::AUTO_WRITE
),
p_rgh + rho*gh
);
label pRefCell = 0;
scalar pRefValue = 0.0;
setRefCell
(
p,
p_rgh,
mesh.solutionDict().subDict("PIMPLE"),
pRefCell,
pRefValue
);
if (p_rgh.needReference())
{
p += dimensionedScalar
(
"p",
p.dimensions(),
pRefValue - getRefCellValue(p, pRefCell)
);
p_rgh = p - rho*gh;
}
mesh.setFluxRequired(p_rgh.name());
mesh.setFluxRequired(alpha1.name());
// alphac must be constructed before the cloud
// so that the drag-models can find it
volScalarField alphac
(
IOobject
(
"alphac",
runTime.timeName(),
mesh,
IOobject::READ_IF_PRESENT,
IOobject::AUTO_WRITE
),
mesh,
dimensionedScalar(dimless, Zero),
zeroGradientFvPatchScalarField::typeName
);
alphac.oldTime();
volScalarField alphacRho(alphac*rho);
alphacRho.oldTime();
Info<< "Constructing kinematicCloud " << endl;
basicKinematicCloud kinematicCloud
(
"kinematicCloud",
rho,
U,
mu,
g
);
// Particle fraction upper limit
scalar alphacMin
(
1.0
- (
kinematicCloud.particleProperties().subDict("constantProperties")
.get<scalar>("alphaMax")
)
);
// Update alphac from the particle locations
alphac = max(1.0 - kinematicCloud.theta(), alphacMin);
alphac.correctBoundaryConditions();
surfaceScalarField alphacf("alphacf", fvc::interpolate(alphac));
// Phase mass flux
surfaceScalarField alphaRhoPhic("alphaRhoPhic", alphacf*rhoPhi);
// Volumetric phase flux
surfaceScalarField alphaPhic("alphaPhic", alphacf*phi);
autoPtr
<
PhaseCompressibleTurbulenceModel
<
immiscibleIncompressibleTwoPhaseMixture
>
>turbulence
(
PhaseCompressibleTurbulenceModel
<
immiscibleIncompressibleTwoPhaseMixture
>::New
(
alphac,
rho,
U,
alphaRhoPhic,
rhoPhi,
mixture
)
);
#include "createMRF.H"
{
volVectorField HbyA(constrainHbyA(rAUc*UEqn.H(), U, p_rgh));
surfaceScalarField phiHbyA
(
"phiHbyA",
fvc::flux(HbyA)
+ alphacf*fvc::interpolate(rho*rAUc)*fvc::ddtCorr(U, phi)
);
MRF.makeRelative(phiHbyA);
adjustPhi(phiHbyA, U, p_rgh);
surfaceScalarField phig
(
phicForces +
(
fvc::interpolate(mixture.sigmaK())*fvc::snGrad(alpha1)
- ghf*fvc::snGrad(rho)
)*rAUcf*mesh.magSf()
);
phiHbyA += phig;
// Update the pressure BCs to ensure flux consistency
constrainPressure(p_rgh, U, phiHbyA, rAUcf, MRF);
while (pimple.correctNonOrthogonal())
{
surfaceScalarField Dp("Dp", alphacf*rAUcf);
fvScalarMatrix p_rghEqn
(
fvm::laplacian(Dp, p_rgh)
==
fvc::ddt(alphac) + fvc::div(alphacf*phiHbyA)
);
p_rghEqn.setReference(pRefCell, getRefCellValue(p_rgh, pRefCell));
p_rghEqn.solve(mesh.solver(p_rgh.select(pimple.finalInnerIter())));
if (pimple.finalNonOrthogonalIter())
{
phi = phiHbyA - p_rghEqn.flux()/alphacf;
p_rgh.relax();
U =
HbyA
+ rAUc*fvc::reconstruct((phig - p_rghEqn.flux()/alphacf)/rAUcf);
U.correctBoundaryConditions();
fvOptions.correct(U);
}
}
#include "continuityErrs.H"
p == p_rgh + rho*gh;
if (p_rgh.needReference())
{
p += dimensionedScalar
(
"p",
p.dimensions(),
pRefValue - getRefCellValue(p, pRefCell)
);
p_rgh = p - rho*gh;
}
}
/*---------------------------------------------------------------------------*\
========= |
\\ / F ield | OpenFOAM: The Open Source CFD Toolbox
\\ / O peration |
\\ / A nd | www.openfoam.com
\\/ M anipulation |
-------------------------------------------------------------------------------
Copyright (C) 2011-2017 OpenFOAM Foundation
-------------------------------------------------------------------------------
License
This file is part of OpenFOAM.
OpenFOAM is free software: you can redistribute it and/or modify it
under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
OpenFOAM is distributed in the hope that it will be useful, but WITHOUT
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
for more details.
You should have received a copy of the GNU General Public License
along with OpenFOAM. If not, see <http://www.gnu.org/licenses/>.
Global
alphaCourantNo
Description
Calculates and outputs the mean and maximum Courant Numbers.
\*---------------------------------------------------------------------------*/
scalar maxAlphaCo
(
runTime.controlDict().get<scalar>("maxAlphaCo")
);
scalar alphaCoNum = 0.0;
scalar meanAlphaCoNum = 0.0;
if (mesh.nInternalFaces())
{
scalarField sumPhi
(
mixture.nearInterface()().primitiveField()
*fvc::surfaceSum(mag(phi))().primitiveField()
);
alphaCoNum = 0.5*gMax(sumPhi/mesh.V().field())*runTime.deltaTValue();
meanAlphaCoNum =
0.5*(gSum(sumPhi)/gSum(mesh.V().field()))*runTime.deltaTValue();
}
Info<< "Interface Courant Number mean: " << meanAlphaCoNum
<< " max: " << alphaCoNum << endl;
// ************************************************************************* //
{
word alphaScheme("div(phi,alpha)");
word alpharScheme("div(phirb,alpha)");
// Set the off-centering coefficient according to ddt scheme
scalar ocCoeff = 0;
{
tmp<fv::ddtScheme<scalar>> tddtAlpha
(
fv::ddtScheme<scalar>::New
(
mesh,
mesh.ddtScheme("ddt(alpha)")
)
);
const fv::ddtScheme<scalar>& ddtAlpha = tddtAlpha();
if
(
isType<fv::EulerDdtScheme<scalar>>(ddtAlpha)
|| isType<fv::localEulerDdtScheme<scalar>>(ddtAlpha)
)
{
ocCoeff = 0;
}
else if (isType<fv::CrankNicolsonDdtScheme<scalar>>(ddtAlpha))
{
if (nAlphaSubCycles > 1)
{
FatalErrorInFunction
<< "Sub-cycling is not supported "
"with the CrankNicolson ddt scheme"
<< exit(FatalError);
}
if
(
alphaRestart
|| mesh.time().timeIndex() > mesh.time().startTimeIndex() + 1
)
{
ocCoeff =
refCast<const fv::CrankNicolsonDdtScheme<scalar>>(ddtAlpha)
.ocCoeff();
}
}
else
{
FatalErrorInFunction
<< "Only Euler and CrankNicolson ddt schemes are supported"
<< exit(FatalError);
}
}
// Set the time blending factor, 1 for Euler
scalar cnCoeff = 1.0/(1.0 + ocCoeff);
// Standard face-flux compression coefficient
surfaceScalarField phic(mixture.cAlpha()*mag(phi/mesh.magSf()));
// Add the optional isotropic compression contribution
if (icAlpha > 0)
{
phic *= (1.0 - icAlpha);
phic += (mixture.cAlpha()*icAlpha)*fvc::interpolate(mag(U));
}
// Add the optional shear compression contribution
if (scAlpha > 0)
{
phic +=
scAlpha*mag(mesh.delta() & fvc::interpolate(symm(fvc::grad(U))));
}
surfaceScalarField::Boundary& phicBf =
phic.boundaryFieldRef();
// Do not compress interface at non-coupled boundary faces
// (inlets, outlets etc.)
forAll(phic.boundaryField(), patchi)
{
fvsPatchScalarField& phicp = phicBf[patchi];
if (!phicp.coupled())
{
phicp == 0;
}
}
tmp<surfaceScalarField> phiCN(phi);
// Calculate the Crank-Nicolson off-centred volumetric flux
if (ocCoeff > 0)
{
phiCN = cnCoeff*phi + (1.0 - cnCoeff)*phi.oldTime();
}
if (MULESCorr)
{
#include "alphaSuSp.H"
fvScalarMatrix alpha1Eqn
(
(
LTS
? fv::localEulerDdtScheme<scalar>(mesh).fvmDdt(alpha1)
: fv::EulerDdtScheme<scalar>(mesh).fvmDdt(alpha1)
)
+ fv::gaussConvectionScheme<scalar>
(
mesh,
phiCN,
upwind<scalar>(mesh, phiCN)
).fvmDiv(phiCN, alpha1)
// - fvm::Sp(fvc::ddt(dimensionedScalar("1", dimless, 1), mesh)
// + fvc::div(phiCN), alpha1)
==
Su + fvm::Sp(Sp + divU, alpha1)
);
alpha1Eqn.solve();
Info<< "Phase-1 volume fraction = "
<< alpha1.weightedAverage(mesh.Vsc()).value()
<< " Min(" << alpha1.name() << ") = " << min(alpha1).value()
<< " Max(" << alpha1.name() << ") = " << max(alpha1).value()
<< endl;
tmp<surfaceScalarField> talphaPhi1UD(alpha1Eqn.flux());
alphaPhi10 = talphaPhi1UD();
if (alphaApplyPrevCorr && talphaPhi1Corr0.valid())
{
Info<< "Applying the previous iteration compression flux" << endl;
MULES::correct
(
geometricOneField(),
alpha1,
alphaPhi10,
talphaPhi1Corr0.ref(),
oneField(),
zeroField()
);
alphaPhi10 += talphaPhi1Corr0();
}
// Cache the upwind-flux
talphaPhi1Corr0 = talphaPhi1UD;
alpha2 = 1.0 - alpha1;
mixture.correct();
}
for (int aCorr=0; aCorr<nAlphaCorr; aCorr++)
{
#include "alphaSuSp.H"
surfaceScalarField phir(phic*mixture.nHatf());
alphaPhiUn =
fvc::flux
(
phi,
alpha1,
alphaScheme
)
+ fvc::flux
(
-fvc::flux(-phir, alpha2, alpharScheme),
alpha1,
alpharScheme
);
if (MULESCorr)
{
tmp<surfaceScalarField> talphaPhi1Corr(alphaPhiUn - alphaPhi10);
volScalarField alpha10("alpha10", alpha1);
MULES::correct
(
geometricOneField(),
alpha1,
alphaPhiUn,
talphaPhi1Corr.ref(),
Sp,
(-Sp*alpha1)(),
oneField(),
zeroField()
);
// Under-relax the correction for all but the 1st corrector
if (aCorr == 0)
{
alphaPhi10 += talphaPhi1Corr();
}
else
{
alpha1 = 0.5*alpha1 + 0.5*alpha10;
alphaPhi10 += 0.5*talphaPhi1Corr();
}
}
else
{
alphaPhi10 = alphaPhiUn;
MULES::explicitSolve
(
geometricOneField(),
alpha1,
phiCN,
alphaPhi10,
Sp,
(Su + divU*min(alpha1(), scalar(1)))(),
oneField(),
zeroField()
);
}
alpha2 = 1.0 - alpha1;
mixture.correct();
}
if (alphaApplyPrevCorr && MULESCorr)
{
talphaPhi1Corr0 = alphaPhi10 - talphaPhi1Corr0;
talphaPhi1Corr0.ref().rename("alphaPhi1Corr0");
}
else
{
talphaPhi1Corr0.clear();
}
#include "rhofs.H"
if
(
word(mesh.ddtScheme("ddt(rho,U)"))
== fv::EulerDdtScheme<vector>::typeName
|| word(mesh.ddtScheme("ddt(rho,U)"))
== fv::localEulerDdtScheme<vector>::typeName
)
{
rhoPhi = alphaPhi10*(rho1f - rho2f) + phiCN*rho2f;
}
else
{
if (ocCoeff > 0)
{
// Calculate the end-of-time-step alpha flux
alphaPhi10 =
(alphaPhi10 - (1.0 - cnCoeff)*alphaPhi10.oldTime())/cnCoeff;
}
// Calculate the end-of-time-step mass flux
rhoPhi = alphaPhi10*(rho1f - rho2f) + phi*rho2f;
}
Info<< "Phase-1 volume fraction = "
<< alpha1.weightedAverage(mesh.Vsc()).value()
<< " Min(" << alpha1.name() << ") = " << min(alpha1).value()
<< " Max(" << alpha1.name() << ") = " << max(alpha1).value()
<< endl;
}
if (nAlphaSubCycles > 1)
{
dimensionedScalar totalDeltaT = runTime.deltaT();
surfaceScalarField rhoPhiSum
(
IOobject
(
"rhoPhiSum",
runTime.timeName(),
mesh
),
mesh,
dimensionedScalar(rhoPhi.dimensions(), Zero)
);
tmp<volScalarField> trSubDeltaT;
if (LTS)
{
trSubDeltaT =
fv::localEulerDdt::localRSubDeltaT(mesh, nAlphaSubCycles);
}
for
(
subCycle<volScalarField> alphaSubCycle(alpha1, nAlphaSubCycles);
!(++alphaSubCycle).end();
)
{
#include "alphaEqn.H"
rhoPhiSum += (runTime.deltaT()/totalDeltaT)*rhoPhi;
}
rhoPhi = rhoPhiSum;
}
else
{
#include "alphaEqn.H"
}
rho == alpha1*rho1 + alpha2*rho2;
IOobject alphaPhi10Header
(
IOobject::groupName("alphaPhi0", alpha1.group()),
runTime.timeName(),
mesh,
IOobject::READ_IF_PRESENT,
IOobject::AUTO_WRITE
);
const bool alphaRestart =
alphaPhi10Header.typeHeaderOk<surfaceScalarField>(true);
if (alphaRestart)
{
Info << "Restarting alpha" << endl;
}
// MULES flux from previous time-step
surfaceScalarField alphaPhi10
(
alphaPhi10Header,
phi*fvc::interpolate(alpha1)
);
// MULES Correction
tmp<surfaceScalarField> talphaPhi1Corr0;
// MULES compressed flux is registered in case scalarTransport FO needs it.
surfaceScalarField alphaPhiUn
(
IOobject
(
"alphaPhiUn",
runTime.timeName(),
mesh,
IOobject::NO_READ,
IOobject::NO_WRITE
),
mesh,
dimensionedScalar(phi.dimensions(), Zero)
);
/*---------------------------------------------------------------------------*\
========= |
\\ / F ield | OpenFOAM: The Open Source CFD Toolbox
\\ / O peration |
\\ / A nd | www.openfoam.com
\\/ M anipulation |
-------------------------------------------------------------------------------
Copyright (C) 2011-2017 OpenFOAM Foundation
-------------------------------------------------------------------------------
License
This file is part of OpenFOAM.
OpenFOAM is free software: you can redistribute it and/or modify it
under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
OpenFOAM is distributed in the hope that it will be useful, but WITHOUT
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
for more details.
You should have received a copy of the GNU General Public License
along with OpenFOAM. If not, see <http://www.gnu.org/licenses/>.
Global
setDeltaT
Description
Reset the timestep to maintain a constant maximum courant Number.
Reduction of time-step is immediate, but increase is damped to avoid
unstable oscillations.
\*---------------------------------------------------------------------------*/
if (adjustTimeStep)
{
scalar maxDeltaTFact =
min(maxCo/(CoNum + SMALL), maxAlphaCo/(alphaCoNum + SMALL));
scalar deltaTFact = min(min(maxDeltaTFact, 1.0 + 0.1*maxDeltaTFact), 1.2);
runTime.setDeltaT
(
min
(
deltaTFact*runTime.deltaTValue(),
maxDeltaT
)
);
Info<< "deltaT = " << runTime.deltaTValue() << endl;
}
// ************************************************************************* //
{
volScalarField& rDeltaT = trDeltaT.ref();
const dictionary& pimpleDict = pimple.dict();
scalar maxCo
(
pimpleDict.getOrDefault<scalar>("maxCo", 0.9)
);
scalar maxAlphaCo
(
pimpleDict.getOrDefault<scalar>("maxAlphaCo", 0.2)
);
scalar rDeltaTSmoothingCoeff
(
pimpleDict.getOrDefault<scalar>("rDeltaTSmoothingCoeff", 0.1)
);
label nAlphaSpreadIter
(
pimpleDict.getOrDefault<label>("nAlphaSpreadIter", 1)
);
scalar alphaSpreadDiff
(
pimpleDict.getOrDefault<scalar>("alphaSpreadDiff", 0.2)
);
scalar alphaSpreadMax
(
pimpleDict.getOrDefault<scalar>("alphaSpreadMax", 0.99)
);
scalar alphaSpreadMin
(
pimpleDict.getOrDefault<scalar>("alphaSpreadMin", 0.01)
);
label nAlphaSweepIter
(
pimpleDict.getOrDefault<label>("nAlphaSweepIter", 5)
);
scalar rDeltaTDampingCoeff
(
pimpleDict.getOrDefault<scalar>("rDeltaTDampingCoeff", 1.0)
);
scalar maxDeltaT
(
pimpleDict.getOrDefault<scalar>("maxDeltaT", GREAT)
);
volScalarField rDeltaT0("rDeltaT0", rDeltaT);
// Set the reciprocal time-step from the local Courant number
rDeltaT.ref() = max
(
1/dimensionedScalar("maxDeltaT", dimTime, maxDeltaT),
fvc::surfaceSum(mag(rhoPhi))()()
/((2*maxCo)*mesh.V()*rho())
);
if (maxAlphaCo < maxCo)
{
// Further limit the reciprocal time-step
// in the vicinity of the interface
volScalarField alpha1Bar(fvc::average(alpha1));
rDeltaT.ref() = max
(
rDeltaT(),
pos0(alpha1Bar() - alphaSpreadMin)
*pos0(alphaSpreadMax - alpha1Bar())
*fvc::surfaceSum(mag(phi))()()
/((2*maxAlphaCo)*mesh.V())
);
}
// Update tho boundary values of the reciprocal time-step
rDeltaT.correctBoundaryConditions();
Info<< "Flow time scale min/max = "
<< gMin(1/rDeltaT.primitiveField())
<< ", " << gMax(1/rDeltaT.primitiveField()) << endl;
if (rDeltaTSmoothingCoeff < 1.0)
{
fvc::smooth(rDeltaT, rDeltaTSmoothingCoeff);
}
if (nAlphaSpreadIter > 0)
{
fvc::spread
(
rDeltaT,
alpha1,
nAlphaSpreadIter,
alphaSpreadDiff,
alphaSpreadMax,
alphaSpreadMin
);
}
if (nAlphaSweepIter > 0)
{
fvc::sweep(rDeltaT, alpha1, nAlphaSweepIter, alphaSpreadDiff);
}
Info<< "Smoothed flow time scale min/max = "
<< gMin(1/rDeltaT.primitiveField())
<< ", " << gMax(1/rDeltaT.primitiveField()) << endl;
// Limit rate of change of time scale
// - reduce as much as required
// - only increase at a fraction of old time scale
if
(
rDeltaTDampingCoeff < 1.0
&& runTime.timeIndex() > runTime.startTimeIndex() + 1
)
{
rDeltaT = max
(
rDeltaT,
(scalar(1) - rDeltaTDampingCoeff)*rDeltaT0
);
Info<< "Damped flow time scale min/max = "
<< gMin(1/rDeltaT.primitiveField())
<< ", " << gMax(1/rDeltaT.primitiveField()) << endl;
}
}
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment