"magic_pdf/model/vscode:/vscode.git/clone" did not exist on "5252c46e4c04d927aefe881299de2c2190aee37e"
Commit ea17556c authored by shunbo's avatar shunbo
Browse files

Initial commit

parents
simpleCoalParcelFoam.C
EXE = $(FOAM_APPBIN)/simpleCoalParcelFoam
EXE_INC = \
-I$(LIB_SRC)/finiteVolume/lnInclude \
-I$(LIB_SRC)/finiteArea/lnInclude \
-I$(LIB_SRC)/fvOptions/lnInclude \
-I${LIB_SRC}/meshTools/lnInclude \
-I$(LIB_SRC)/TurbulenceModels/turbulenceModels/lnInclude \
-I$(LIB_SRC)/TurbulenceModels/compressible/lnInclude \
-I$(LIB_SRC)/lagrangian/basic/lnInclude \
-I$(LIB_SRC)/lagrangian/intermediate/lnInclude \
-I$(LIB_SRC)/lagrangian/coalCombustion/lnInclude \
-I$(LIB_SRC)/lagrangian/distributionModels/lnInclude \
-I$(LIB_SRC)/thermophysicalModels/specie/lnInclude \
-I$(LIB_SRC)/transportModels/compressible/lnInclude \
-I$(LIB_SRC)/thermophysicalModels/basic/lnInclude \
-I$(LIB_SRC)/thermophysicalModels/thermophysicalProperties/lnInclude \
-I$(LIB_SRC)/thermophysicalModels/reactionThermo/lnInclude \
-I$(LIB_SRC)/thermophysicalModels/SLGThermo/lnInclude \
-I$(LIB_SRC)/thermophysicalModels/chemistryModel/lnInclude \
-I$(LIB_SRC)/thermophysicalModels/radiation/lnInclude \
-I$(LIB_SRC)/ODE/lnInclude \
-I$(LIB_SRC)/regionModels/regionModel/lnInclude \
-I$(LIB_SRC)/regionModels/surfaceFilmModels/lnInclude \
-I$(LIB_SRC)/combustionModels/lnInclude \
-I$(LIB_SRC)/sampling/lnInclude \
-I$(LIB_SRC)/regionFaModels/lnInclude \
-I$(LIB_SRC)/faOptions/lnInclude
EXE_LIBS = \
-lfiniteVolume \
-lfvOptions \
-lmeshTools \
-lturbulenceModels \
-lcompressibleTurbulenceModels \
-llagrangian \
-llagrangianIntermediate \
-llagrangianTurbulence \
-lspecie \
-lfluidThermophysicalModels \
-lreactionThermophysicalModels \
-lthermophysicalProperties \
-lSLGThermo \
-lchemistryModel \
-lradiationModels \
-lODE \
-lregionModels \
-lsurfaceFilmModels \
-lcombustionModels \
-lsampling \
-lcoalCombustion \
-lregionFaModels \
-lfiniteArea \
-lfaOptions
MRF.correctBoundaryVelocity(U);
tmp<fvVectorMatrix> tUEqn
(
fvm::div(phi, U)
+ MRF.DDt(rho, U)
+ turbulence->divDevRhoReff(U)
==
rho()*g
+ parcels.SU(U)
+ fvOptions(rho, U)
);
fvVectorMatrix& UEqn = tUEqn.ref();
UEqn.relax();
fvOptions.constrain(UEqn);
solve(UEqn == -fvc::grad(p));
fvOptions.correct(U);
tmp<fv::convectionScheme<scalar>> mvConvection
(
fv::convectionScheme<scalar>::New
(
mesh,
fields,
phi,
mesh.divScheme("div(phi,Yi_h)")
)
);
{
reaction->correct();
Qdot = reaction->Qdot();
volScalarField Yt(0.0*Y[0]);
forAll(Y, i)
{
if (i != inertIndex && composition.active(i))
{
volScalarField& Yi = Y[i];
fvScalarMatrix YEqn
(
mvConvection->fvmDiv(phi, Yi)
- fvm::laplacian(turbulence->muEff(), Yi)
==
parcels.SYi(i, Yi)
+ reaction->R(Yi)
+ fvOptions(rho, Yi)
);
YEqn.relax();
fvOptions.constrain(YEqn);
YEqn.solve(mesh.solver("Yi"));
fvOptions.correct(Yi);
Yi.max(0.0);
Yt += Yi;
}
}
Y[inertIndex] = scalar(1) - Yt;
Y[inertIndex].max(0.0);
}
Info<< "\nConstructing coal cloud" << endl;
coalCloud parcels
(
"reactingCloud1",
rho,
U,
g,
slgThermo
);
const volScalarField& psi = thermo.psi();
const volScalarField& T = thermo.T();
const label inertIndex(composition.species()[inertSpecie]);
#include "readGravitationalAcceleration.H"
Info<< "Reading thermophysical properties\n" << endl;
autoPtr<rhoReactionThermo> pThermo(rhoReactionThermo::New(mesh));
rhoReactionThermo& thermo = pThermo();
thermo.validate(args.executable(), "h", "e");
SLGThermo slgThermo(mesh, thermo);
basicSpecieMixture& composition = thermo.composition();
PtrList<volScalarField>& Y = composition.Y();
const word inertSpecie(thermo.get<word>("inertSpecie"));
if (!composition.species().found(inertSpecie))
{
FatalIOErrorIn(args.executable().c_str(), thermo)
<< "Inert specie " << inertSpecie << " not found in available species "
<< composition.species()
<< exit(FatalIOError);
}
volScalarField& p = thermo.p();
volScalarField rho
(
IOobject
(
"rho",
runTime.timeName(),
mesh,
IOobject::NO_READ,
IOobject::AUTO_WRITE
),
thermo.rho()
);
Info<< "\nReading field U\n" << endl;
volVectorField U
(
IOobject
(
"U",
runTime.timeName(),
mesh,
IOobject::MUST_READ,
IOobject::AUTO_WRITE
),
mesh
);
#include "compressibleCreatePhi.H"
mesh.setFluxRequired(p.name());
const dimensionedScalar rhoMax("rhoMax", dimDensity, GREAT, simple.dict());
const dimensionedScalar rhoMin("rhoMin", dimDensity, Zero, simple.dict());
Info<< "Creating turbulence model\n" << endl;
autoPtr<compressible::turbulenceModel> turbulence
(
compressible::turbulenceModel::New
(
rho,
U,
phi,
thermo
)
);
Info<< "Creating reaction model\n" << endl;
autoPtr<CombustionModel<rhoReactionThermo>> reaction
(
CombustionModel<rhoReactionThermo>::New(thermo, turbulence())
);
Info<< "Creating multi-variate interpolation scheme\n" << endl;
multivariateSurfaceInterpolationScheme<scalar>::fieldTable fields;
forAll(Y, i)
{
fields.add(Y[i]);
}
fields.add(thermo.he());
volScalarField Qdot
(
IOobject
(
"Qdot",
runTime.timeName(),
mesh,
IOobject::NO_READ,
IOobject::AUTO_WRITE
),
mesh,
dimensionedScalar(dimEnergy/dimVolume/dimTime, Zero)
);
#include "createMRF.H"
#include "createRadiationModel.H"
#include "createClouds.H"
{
// Thermodynamic density needs to be updated by psi*d(p) after the
// pressure solution - done in 2 parts. Part 1:
thermo.rho() -= psi*p;
volScalarField rAU(1.0/UEqn.A());
surfaceScalarField rhorAUf("rhorAUf", fvc::interpolate(rho*rAU));
volVectorField HbyA(constrainHbyA(rAU*UEqn.H(), U, p));
tUEqn.clear();
surfaceScalarField phiHbyA
(
"phiHbyA",
fvc::interpolate(rho)*fvc::flux(HbyA)
);
MRF.makeRelative(fvc::interpolate(rho), phiHbyA);
// Update the pressure BCs to ensure flux consistency
constrainPressure(p, rho, U, phiHbyA, rhorAUf, MRF);
while (simple.correctNonOrthogonal())
{
fvScalarMatrix pEqn
(
fvc::div(phiHbyA)
- fvm::laplacian(rhorAUf, p)
==
parcels.Srho()
+ fvOptions(psi, p, rho.name())
);
pEqn.solve();
if (simple.finalNonOrthogonalIter())
{
phi = phiHbyA + pEqn.flux();
}
}
p.relax();
// Second part of thermodynamic density update
thermo.rho() += psi*p;
#include "compressibleContinuityErrs.H"
U = HbyA - rAU*fvc::grad(p);
U.correctBoundaryConditions();
fvOptions.correct(U);
rho = thermo.rho();
rho = max(rho, rhoMin);
rho = min(rho, rhoMax);
rho.relax();
Info<< "p min/max = " << min(p).value() << ", " << max(p).value() << endl;
}
/*---------------------------------------------------------------------------*\
========= |
\\ / F ield | OpenFOAM: The Open Source CFD Toolbox
\\ / O peration |
\\ / A nd | www.openfoam.com
\\/ M anipulation |
-------------------------------------------------------------------------------
Copyright (C) 2015-2016 OpenCFD Ltd.
-------------------------------------------------------------------------------
License
This file is part of OpenFOAM.
OpenFOAM is free software: you can redistribute it and/or modify it
under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
OpenFOAM is distributed in the hope that it will be useful, but WITHOUT
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
for more details.
You should have received a copy of the GNU General Public License
along with OpenFOAM. If not, see <http://www.gnu.org/licenses/>.
Application
simpleReactingParcelFoam
Group
grpLagrangianSolvers
Description
Steady-state solver for compressible, turbulent flow with coal particle
clouds and optional sources/constraints.
\*---------------------------------------------------------------------------*/
#include "fvCFD.H"
#include "turbulentFluidThermoModel.H"
#include "coalCloud.H"
#include "rhoReactionThermo.H"
#include "CombustionModel.H"
#include "radiationModel.H"
#include "IOporosityModelList.H"
#include "fvOptions.H"
#include "SLGThermo.H"
#include "simpleControl.H"
// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * //
int main(int argc, char *argv[])
{
argList::addNote
(
"Steady-state solver for compressible, turbulent flow"
" with coal particle clouds and optional sources/constraints."
);
#include "postProcess.H"
#include "addCheckCaseOptions.H"
#include "setRootCaseLists.H"
#include "createTime.H"
#include "createMesh.H"
#include "createControl.H"
#include "createFields.H"
#include "createFieldRefs.H"
#include "createFvOptions.H"
#include "initContinuityErrs.H"
turbulence->validate();
// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * //
Info<< "\nStarting time loop\n" << endl;
while (simple.loop())
{
Info<< "Time = " << runTime.timeName() << nl << endl;
parcels.evolve();
// --- Pressure-velocity SIMPLE corrector loop
{
#include "UEqn.H"
#include "YEqn.H"
#include "EEqn.H"
#include "pEqn.H"
}
turbulence->correct();
runTime.write();
runTime.printExecutionTime(Info);
}
Info<< "End\n" << endl;
return 0;
}
// ************************************************************************* //
{
volScalarField& he = thermo.he();
fvScalarMatrix EEqn
(
fvm::ddt(rho, he) + mvConvection->fvmDiv(phi, he)
+ fvc::ddt(rho, K) + fvc::div(phi, K)
+ (
he.name() == "e"
? fvc::div
(
fvc::absolute(phi/fvc::interpolate(rho), U),
p,
"div(phiv,p)"
)
: -dpdt
)
- fvm::laplacian(turbulence->alphaEff(), he)
==
rho*(U&g)
+ parcels.Sh(he)
+ radiation->Sh(thermo, he)
+ Qdot
+ fvOptions(rho, he)
);
EEqn.relax();
fvOptions.constrain(EEqn);
EEqn.solve();
fvOptions.correct(he);
thermo.correct();
radiation->correct();
Info<< "T gas min/max " << min(T).value() << ", "
<< max(T).value() << endl;
}
sprayFoam.C
EXE = $(FOAM_APPBIN)/sprayFoam
EXE_INC = \
-I../reactingParcelFoam \
-I$(LIB_SRC)/finiteVolume/lnInclude \
-I$(LIB_SRC)/finiteArea/lnInclude \
-I${LIB_SRC}/meshTools/lnInclude \
-I${LIB_SRC}/sampling/lnInclude \
-I$(LIB_SRC)/TurbulenceModels/turbulenceModels/lnInclude \
-I$(LIB_SRC)/TurbulenceModels/compressible/lnInclude \
-I$(LIB_SRC)/lagrangian/basic/lnInclude \
-I$(LIB_SRC)/lagrangian/intermediate/lnInclude \
-I$(LIB_SRC)/lagrangian/spray/lnInclude \
-I$(LIB_SRC)/lagrangian/distributionModels/lnInclude \
-I$(LIB_SRC)/thermophysicalModels/specie/lnInclude \
-I$(LIB_SRC)/transportModels/compressible/lnInclude \
-I$(LIB_SRC)/thermophysicalModels/basic/lnInclude \
-I$(LIB_SRC)/thermophysicalModels/thermophysicalProperties/lnInclude \
-I$(LIB_SRC)/thermophysicalModels/reactionThermo/lnInclude \
-I$(LIB_SRC)/thermophysicalModels/SLGThermo/lnInclude \
-I$(LIB_SRC)/thermophysicalModels/chemistryModel/lnInclude \
-I$(LIB_SRC)/thermophysicalModels/radiation/lnInclude \
-I$(LIB_SRC)/ODE/lnInclude \
-I$(LIB_SRC)/regionModels/regionModel/lnInclude \
-I$(LIB_SRC)/regionModels/surfaceFilmModels/lnInclude \
-I$(LIB_SRC)/regionFaModels/lnInclude \
-I$(LIB_SRC)/faOptions/lnInclude \
-I$(LIB_SRC)/combustionModels/lnInclude
EXE_LIBS = \
-lfiniteVolume \
-lfvOptions \
-lmeshTools \
-lturbulenceModels \
-lcompressibleTurbulenceModels \
-llagrangian \
-llagrangianIntermediate \
-llagrangianTurbulence \
-llagrangianSpray \
-lspecie \
-lcompressibleTransportModels \
-lfluidThermophysicalModels \
-lreactionThermophysicalModels \
-lthermophysicalProperties \
-lSLGThermo \
-lchemistryModel \
-lradiationModels \
-lODE \
-lregionModels \
-lsurfaceFilmModels \
-lcombustionModels \
-lsampling \
-lregionFaModels \
-lfiniteArea \
-lfaOptions
// Solve the Momentum equation
MRF.correctBoundaryVelocity(U);
tmp<fvVectorMatrix> tUEqn
(
fvm::ddt(rho, U) + fvm::div(phi, U)
+ MRF.DDt(rho, U)
+ turbulence->divDevRhoReff(U)
==
rho()*g
+ parcels.SU(U)
+ fvOptions(rho, U)
);
fvVectorMatrix& UEqn = tUEqn.ref();
UEqn.relax();
fvOptions.constrain(UEqn);
if (pimple.momentumPredictor())
{
solve(UEqn == -fvc::grad(p));
fvOptions.correct(U);
K = 0.5*magSqr(U);
}
tmp<fv::convectionScheme<scalar>> mvConvection
(
fv::convectionScheme<scalar>::New
(
mesh,
fields,
phi,
mesh.divScheme("div(phi,Yi_h)")
)
);
{
combustion->correct();
Qdot = combustion->Qdot();
volScalarField Yt(0.0*Y[0]);
forAll(Y, i)
{
if (i != inertIndex && composition.active(i))
{
volScalarField& Yi = Y[i];
fvScalarMatrix YEqn
(
fvm::ddt(rho, Yi)
+ mvConvection->fvmDiv(phi, Yi)
- fvm::laplacian(turbulence->muEff(), Yi)
==
parcels.SYi(i, Yi)
+ combustion->R(Yi)
+ fvOptions(rho, Yi)
);
YEqn.relax();
fvOptions.constrain(YEqn);
YEqn.solve(mesh.solver("Yi"));
fvOptions.correct(Yi);
Yi.max(0.0);
Yt += Yi;
}
}
Y[inertIndex] = scalar(1) - Yt;
Y[inertIndex].max(0.0);
}
Info<< "\nConstructing reacting cloud" << endl;
basicSprayCloud parcels
(
"sprayCloud",
rho,
U,
g,
slgThermo
);
const volScalarField& T = thermo.T();
const volScalarField& psi = thermo.psi();
const label inertIndex(composition.species()[inertSpecie]);
#include "readGravitationalAcceleration.H"
Info<< "Reading thermophysical properties\n" << endl;
autoPtr<psiReactionThermo> pThermo(psiReactionThermo::New(mesh));
psiReactionThermo& thermo = pThermo();
thermo.validate(args.executable(), "h", "e");
SLGThermo slgThermo(mesh, thermo);
basicSpecieMixture& composition = thermo.composition();
PtrList<volScalarField>& Y = composition.Y();
const word inertSpecie(thermo.get<word>("inertSpecie"));
if (!composition.species().found(inertSpecie))
{
FatalIOErrorIn(args.executable().c_str(), thermo)
<< "Inert specie " << inertSpecie << " not found in available species "
<< composition.species()
<< exit(FatalIOError);
}
volScalarField& p = thermo.p();
volScalarField rho
(
IOobject
(
"rho",
runTime.timeName(),
mesh,
IOobject::READ_IF_PRESENT,
IOobject::AUTO_WRITE
),
thermo.rho()
);
Info<< "\nReading field U\n" << endl;
volVectorField U
(
IOobject
(
"U",
runTime.timeName(),
mesh,
IOobject::MUST_READ,
IOobject::AUTO_WRITE
),
mesh
);
#include "compressibleCreatePhi.H"
mesh.setFluxRequired(p.name());
const dimensionedScalar rhoMax("rhoMax", dimDensity, GREAT, pimple.dict());
const dimensionedScalar rhoMin("rhoMin", dimDensity, Zero, pimple.dict());
Info<< "Creating turbulence model\n" << endl;
autoPtr<compressible::turbulenceModel> turbulence
(
compressible::turbulenceModel::New
(
rho,
U,
phi,
thermo
)
);
Info<< "Creating combustion model\n" << endl;
autoPtr<CombustionModel<psiReactionThermo>> combustion
(
CombustionModel<psiReactionThermo>::New(thermo, turbulence())
);
multivariateSurfaceInterpolationScheme<scalar>::fieldTable fields;
forAll(Y, i)
{
fields.add(Y[i]);
}
fields.add(thermo.he());
volScalarField Qdot
(
IOobject
(
"Qdot",
runTime.timeName(),
mesh,
IOobject::NO_READ,
IOobject::AUTO_WRITE
),
mesh,
dimensionedScalar(dimEnergy/dimVolume/dimTime, Zero)
);
#include "createDpdt.H"
#include "createK.H"
#include "createMRF.H"
#include "createClouds.H"
#include "createRadiationModel.H"
#include "createFvOptions.H"
engineFoam.C
EXE = $(FOAM_APPBIN)/engineFoam
EXE_INC = \
-I../sprayDyMFoam \
-I.. \
-I../../reactingParcelFoam \
-I$(LIB_SRC)/finiteVolume/lnInclude \
-I$(LIB_SRC)/finiteArea/lnInclude \
-I${LIB_SRC}/meshTools/lnInclude \
-I${LIB_SRC}/sampling/lnInclude \
-I$(LIB_SRC)/TurbulenceModels/turbulenceModels/lnInclude \
-I$(LIB_SRC)/TurbulenceModels/compressible/lnInclude \
-I$(LIB_SRC)/lagrangian/basic/lnInclude \
-I$(LIB_SRC)/lagrangian/intermediate/lnInclude \
-I$(LIB_SRC)/lagrangian/spray/lnInclude \
-I$(LIB_SRC)/lagrangian/distributionModels/lnInclude \
-I$(LIB_SRC)/thermophysicalModels/specie/lnInclude \
-I$(LIB_SRC)/transportModels/compressible/lnInclude \
-I$(LIB_SRC)/thermophysicalModels/basic/lnInclude \
-I$(LIB_SRC)/thermophysicalModels/thermophysicalProperties/lnInclude \
-I$(LIB_SRC)/thermophysicalModels/reactionThermo/lnInclude \
-I$(LIB_SRC)/thermophysicalModels/SLGThermo/lnInclude \
-I$(LIB_SRC)/thermophysicalModels/chemistryModel/lnInclude \
-I$(LIB_SRC)/thermophysicalModels/radiation/lnInclude \
-I$(LIB_SRC)/ODE/lnInclude \
-I$(LIB_SRC)/engine/lnInclude \
-I$(LIB_SRC)/regionModels/regionModel/lnInclude \
-I$(LIB_SRC)/regionModels/surfaceFilmModels/lnInclude \
-I$(LIB_SRC)/combustionModels/lnInclude \
-I$(LIB_SRC)/regionFaModels/lnInclude \
-I$(LIB_SRC)/faOptions/lnInclude
EXE_LIBS = \
-lfiniteVolume \
-lfvOptions \
-lmeshTools \
-lsampling \
-lturbulenceModels \
-lcompressibleTurbulenceModels \
-llagrangian \
-llagrangianIntermediate \
-llagrangianTurbulence \
-llagrangianSpray \
-lspecie \
-lcompressibleTransportModels \
-lfluidThermophysicalModels \
-lthermophysicalProperties \
-lreactionThermophysicalModels \
-lSLGThermo \
-lchemistryModel \
-lradiationModels \
-lODE \
-lengine \
-lregionModels \
-lsurfaceFilmModels \
-lcombustionModels \
-lregionFaModels \
-lfiniteArea \
-lfaOptions
/*---------------------------------------------------------------------------*\
========= |
\\ / F ield | OpenFOAM: The Open Source CFD Toolbox
\\ / O peration |
\\ / A nd | www.openfoam.com
\\/ M anipulation |
-------------------------------------------------------------------------------
Copyright (C) 2011-2017 OpenFOAM Foundation
Copyright (C) 2020 OpenCFD Ltd.
-------------------------------------------------------------------------------
License
This file is part of OpenFOAM.
OpenFOAM is free software: you can redistribute it and/or modify it
under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
OpenFOAM is distributed in the hope that it will be useful, but WITHOUT
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
for more details.
You should have received a copy of the GNU General Public License
along with OpenFOAM. If not, see <http://www.gnu.org/licenses/>.
Application
engineFoam
Description
Transient solver for compressible, turbulent engine flow with a spray
particle cloud.
\*---------------------------------------------------------------------------*/
#include "fvCFD.H"
#include "engineTime.H"
#include "engineMesh.H"
#include "turbulentFluidThermoModel.H"
#include "basicSprayCloud.H"
#include "psiReactionThermo.H"
#include "CombustionModel.H"
#include "radiationModel.H"
#include "SLGThermo.H"
#include "pimpleControl.H"
#include "fvOptions.H"
// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * //
int main(int argc, char *argv[])
{
argList::addNote
(
"Transient solver for compressible, turbulent engine flow"
" with a spray particle cloud."
);
#define CREATE_TIME createEngineTime.H
#define CREATE_MESH createEngineMesh.H
#include "postProcess.H"
#include "setRootCaseLists.H"
#include "createEngineTime.H"
#include "createEngineMesh.H"
#include "createControl.H"
#include "readEngineTimeControls.H"
#include "createFields.H"
#include "createFieldRefs.H"
#include "createRhoUf.H"
#include "compressibleCourantNo.H"
#include "setInitialDeltaT.H"
#include "initContinuityErrs.H"
#include "startSummary.H"
turbulence->validate();
// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * //
Info<< "\nStarting time loop\n" << endl;
while (runTime.run())
{
#include "readEngineTimeControls.H"
#include "compressibleCourantNo.H"
#include "setDeltaT.H"
++runTime;
Info<< "Engine time = " << runTime.theta() << runTime.unit() << endl;
mesh.move();
parcels.evolve();
#include "rhoEqn.H"
// --- Pressure-velocity PIMPLE corrector loop
while (pimple.loop())
{
#include "UEqn.H"
#include "YEqn.H"
#include "EEqn.H"
// --- Pressure corrector loop
while (pimple.correct())
{
#include "pEqn.H"
}
if (pimple.turbCorr())
{
turbulence->correct();
}
}
#include "logSummary.H"
rho = thermo.rho();
if (runTime.write())
{
combustion->Qdot()().write();
}
runTime.printExecutionTime(Info);
}
Info<< "End\n" << endl;
return 0;
}
// ************************************************************************* //
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment