"docs/vscode:/vscode.git/clone" did not exist on "7b470f07bc27645a26d0dac334739e8945ef519c"
Commit ea17556c authored by shunbo's avatar shunbo
Browse files

Initial commit

parents
// Solve the Momentum equation
MRF.correctBoundaryVelocity(U);
tmp<gpufvVectorMatrix> tUEqn
(
fvm::ddt(U) + fvm::div(phi, U)
+ MRF.DDt(U)
+ turbulence->divDevReff(U)
==
fvOptions(U)
);
gpufvVectorMatrix& UEqn = tUEqn.ref();
UEqn.relax();
fvOptions.constrain(UEqn);
if (pimple.momentumPredictor())
{
solve(UEqn == -fvc::grad(p));
fvOptions.correct(U);
}
CorrectPhi
(
U,
phi,
p,
dimensionedScalar("rAUf", dimTime, 1),
geometricZeroField(),
pimple
);
#include "gpucontinuityErrs.H"
#include "gpucreateRDeltaT.H"
Info<< "Reading field p\n" << endl;
volScalargpuField p
(
IOobject
(
"p",
runTime.timeName(),
mesh,
IOobject::MUST_READ,
IOobject::AUTO_WRITE
),
devicemesh
);
Info<< "Reading field U\n" << endl;
volVectorgpuField U
(
IOobject
(
"U",
runTime.timeName(),
mesh,
IOobject::MUST_READ,
IOobject::AUTO_WRITE
),
devicemesh
);
#include "gpucreatePhi.H"
label pRefCell = 0;
scalar pRefValue = 0.0;
setRefCell(p, pimple.dict(), pRefCell, pRefValue);
mesh.setFluxRequired(p.name());
singlePhaseTransportModel laminarTransport(U, phi);
autoPtr<incompressible::turbulenceModel> turbulence
(
incompressible::turbulenceModel::New(U, phi, laminarTransport)
);
#include "gpucreateMRF.H"
#include "gpucreateFvOptions.H"
/*---------------------------------------------------------------------------*\
========= |
\\ / F ield | OpenFOAM: The Open Source CFD Toolbox
\\ / O peration |
\\ / A nd | www.openfoam.com
\\/ M anipulation |
-------------------------------------------------------------------------------
Copyright (C) 2011-2017 OpenFOAM Foundation
-------------------------------------------------------------------------------
License
This file is part of OpenFOAM.
OpenFOAM is free software: you can redistribute it and/or modify it
under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
OpenFOAM is distributed in the hope that it will be useful, but WITHOUT
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
for more details.
You should have received a copy of the GNU General Public License
along with OpenFOAM. If not, see <http://www.gnu.org/licenses/>.
Global
meshCourantNo
Description
Calculates and outputs the mean and maximum Courant Numbers.
\*---------------------------------------------------------------------------*/
scalar meshCoNum = 0.0;
scalar meanMeshCoNum = 0.0;
{
scalargpuField sumPhi
(
fvc::surfaceSum(mag(devicemesh.phi()))().primitiveField()
);
meshCoNum = 0.5*gMax(sumPhi/devicemesh.V().field())*runTime.deltaTValue();
meanMeshCoNum =
0.5*(gSum(sumPhi)/gSum(devicemesh.V().field()))*runTime.deltaTValue();
}
Info<< "Mesh Courant Number mean: " << meanMeshCoNum
<< " max: " << meshCoNum << endl;
// ************************************************************************* //
volScalargpuField rAU(1.0/UEqn.A());
volVectorgpuField HbyA(constrainHbyA(rAU*UEqn.H(), U, p));
surfaceScalargpuField phiHbyA("phiHbyA", fvc::flux(HbyA));
if (pimple.ddtCorr())
{
phiHbyA += MRF.zeroFilter(fvc::interpolate(rAU)*fvc::ddtCorr(U, phi, Uf));
}
MRF.makeRelative(phiHbyA);
if (p.needReference())
{
fvc::makeRelative(phiHbyA, U);
adjustPhi(phiHbyA, U, p);
fvc::makeAbsolute(phiHbyA, U);
}
tmp<volScalargpuField> rAtU(rAU);
if (pimple.consistent())
{
rAtU = 1.0/max(1.0/rAU - UEqn.H1(), 0.1/rAU);
phiHbyA +=
fvc::interpolate(rAtU() - rAU)*fvc::snGrad(p)*devicemesh.magSf(); //todo?devicemesh
HbyA -= (rAU - rAtU())*fvc::grad(p);
}
if (pimple.nCorrPISO() <= 1)
{
tUEqn.clear();
}
// Update the pressure BCs to ensure flux consistency
constrainPressure(p, U, phiHbyA, rAtU(), MRF);
// Non-orthogonal pressure corrector loop
while (pimple.correctNonOrthogonal())
{
gpufvScalarMatrix pEqn
(
fvm::laplacian(rAtU(), p) == fvc::div(phiHbyA)
);
pEqn.setReference(pRefCell, pRefValue);
pEqn.solve(mesh.solver(p.select(pimple.finalInnerIter())));
if (pimple.finalNonOrthogonalIter())
{
phi = phiHbyA - pEqn.flux();
}
}
#include "gpucontinuityErrs.H"
// Explicitly relax pressure for momentum corrector
p.relax();
U = HbyA - rAtU*fvc::grad(p);
U.correctBoundaryConditions();
fvOptions.correct(U);
// Correct Uf if the mesh is moving
fvc::correctUf(Uf, U, phi);
// Make the fluxes relative to the mesh motion
fvc::makeRelative(phi, U);
/*---------------------------------------------------------------------------*\
========= |
\\ / F ield | OpenFOAM: The Open Source CFD Toolbox
\\ / O peration |
\\ / A nd | www.openfoam.com
\\/ M anipulation |
-------------------------------------------------------------------------------
Copyright (C) 2011-2017 OpenFOAM Foundation
Copyright (C) 2019 OpenCFD Ltd.
-------------------------------------------------------------------------------
License
This file is part of OpenFOAM.
OpenFOAM is free software: you can redistribute it and/or modify it
under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
OpenFOAM is distributed in the hope that it will be useful, but WITHOUT
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
for more details.
You should have received a copy of the GNU General Public License
along with OpenFOAM. If not, see <http://www.gnu.org/licenses/>.
Application
pimpleFoam.C
Group
grpIncompressibleSolvers
Description
Transient solver for incompressible, turbulent flow of Newtonian fluids
on a moving mesh.
\heading Solver details
The solver uses the PIMPLE (merged PISO-SIMPLE) algorithm to solve the
continuity equation:
\f[
\div \vec{U} = 0
\f]
and momentum equation:
\f[
\ddt{\vec{U}} + \div \left( \vec{U} \vec{U} \right) - \div \gvec{R}
= - \grad p + \vec{S}_U
\f]
Where:
\vartable
\vec{U} | Velocity
p | Pressure
\vec{R} | Stress tensor
\vec{S}_U | Momentum source
\endvartable
Sub-models include:
- turbulence modelling, i.e. laminar, RAS or LES
- run-time selectable MRF and finite volume options, e.g. explicit porosity
\heading Required fields
\plaintable
U | Velocity [m/s]
p | Kinematic pressure, p/rho [m2/s2]
\<turbulence fields\> | As required by user selection
\endplaintable
Note
The motion frequency of this solver can be influenced by the presence
of "updateControl" and "updateInterval" in the dynamicMeshDict.
\*---------------------------------------------------------------------------*/
#include "gpufvCFD.H"
#include "dynamicFvMesh.H"
#include "singlePhaseTransportModel.H"
#include "turbulentTransportModel.H"
#include "pimpleControl.H"
#include "gpuCorrectPhi.H"
#include "gpufvOptions.H"
#include "gpulocalEulerDdtScheme.H"
#include "gpufvcSmooth.H"
// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * //
int main(int argc, char *argv[])
{
argList::addNote
(
"Transient solver for incompressible, turbulent flow"
" of Newtonian fluids on a moving mesh."
);
#include "gpupostProcess.H"
#include "addCheckCaseOptions.H"
#include "setRootCaseLists.H"
#include "createTime.H"
#include "createDynamicFvMesh.H"
Foam::gpufvMesh devicemesh(mesh);
#include "initContinuityErrs.H"
#include "createDyMControls.H"
#include "createFields.H"
#include "gpucreateUfIfPresent.H"
#include "gpuCourantNo.H"
#include "setInitialDeltaT.H"
turbulence->validate();
if (!LTS)
{
#include "gpuCourantNo.H"
#include "setInitialDeltaT.H"
}
// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * //
Info<< "\nStarting time loop\n" << endl;
while (runTime.run())
{
#include "readDyMControls.H"
if (LTS)
{
#include "setRDeltaT.H"
}
else
{
#include "gpuCourantNo.H"
#include "setDeltaT.H"
}
++runTime;
Info<< "Time = " << runTime.timeName() << nl << endl;
// --- Pressure-velocity PIMPLE corrector loop
while (pimple.loop())
{
// todo in loop
if (pimple.firstIter() || moveMeshOuterCorrectors)
{
// Do any mesh changes
mesh.controlledUpdate();
if (mesh.changing())
{
//update mesh geometry
devicemesh.updateGpuGeom();
U.correctBoundaryConditions();
MRF.update();
if (correctPhi)
{
// Calculate absolute flux
// from the mapped surface velocity
phi = devicemesh.Sf() & Uf();
#include "correctPhi.H"
// Make the flux relative to the mesh motion
fvc::makeRelative(phi, U);
}
if (checkMeshCourantNo)
{
#include "gpumeshCourantNo.H" //todo
}
}
}
#include "UEqn.H"
// --- Pressure corrector loop
while (pimple.correct())
{
#include "pEqn.H"
}
if (pimple.turbCorr())
{
laminarTransport.correct();
turbulence->correct();
}
}
runTime.write();
runTime.printExecutionTime(Info);
}
Info<< "End\n" << endl;
return 0;
}
// ************************************************************************* //
{
volScalargpuField& rDeltaT = trDeltaT.ref();
const dictionary& pimpleDict = pimple.dict();
scalar maxCo
(
pimpleDict.getOrDefault<scalar>("maxCo", 0.8)
);
scalar rDeltaTSmoothingCoeff
(
pimpleDict.getOrDefault<scalar>("rDeltaTSmoothingCoeff", 0.02)
);
scalar rDeltaTDampingCoeff
(
pimpleDict.getOrDefault<scalar>("rDeltaTDampingCoeff", 1.0)
);
scalar maxDeltaT
(
pimpleDict.getOrDefault<scalar>("maxDeltaT", GREAT)
);
volScalargpuField rDeltaT0("rDeltaT0", rDeltaT);
// Set the reciprocal time-step from the local Courant number
rDeltaT.ref() = max
(
1/dimensionedScalar("maxDeltaT", dimTime, maxDeltaT),
fvc::surfaceSum(mag(phi))()()
/((2*maxCo)*devicemesh.V())
);
// Update the boundary values of the reciprocal time-step
rDeltaT.correctBoundaryConditions();
Info<< "Flow time scale min/max = "
<< gMin(1/rDeltaT.primitiveField())
<< ", " << gMax(1/rDeltaT.primitiveField()) << endl;
if (rDeltaTSmoothingCoeff < 1.0)
{
fvc::smooth(rDeltaT, rDeltaTSmoothingCoeff);
}
Info<< "Smoothed flow time scale min/max = "
<< gMin(1/rDeltaT.primitiveField())
<< ", " << gMax(1/rDeltaT.primitiveField()) << endl;
// Limit rate of change of time scale
// - reduce as much as required
// - only increase at a fraction of old time scale
if
(
rDeltaTDampingCoeff < 1.0
&& runTime.timeIndex() > runTime.startTimeIndex() + 1
)
{
rDeltaT =
rDeltaT0
*max(rDeltaT/rDeltaT0, scalar(1) - rDeltaTDampingCoeff);
Info<< "Damped flow time scale min/max = "
<< gMin(1/rDeltaT.primitiveField())
<< ", " << gMax(1/rDeltaT.primitiveField()) << endl;
}
}
pimpleFoam.C
EXE = $(FOAM_APPBIN)/pimpleFoam
EXE_INC = \
-I$(LIB_SRC)/finiteVolume/lnInclude \
-I$(LIB_SRC)/meshTools/lnInclude \
-I$(LIB_SRC)/sampling/lnInclude \
-I$(LIB_SRC)/TurbulenceModels/turbulenceModels/lnInclude \
-I$(LIB_SRC)/TurbulenceModels/incompressible/lnInclude \
-I$(LIB_SRC)/transportModels \
-I$(LIB_SRC)/transportModels/incompressible/singlePhaseTransportModel \
-I$(LIB_SRC)/dynamicMesh/lnInclude \
-I$(LIB_SRC)/dynamicFvMesh/lnInclude \
-I$(LIB_SRC)/regionFaModels\lnInclude
EXE_LIBS = \
-lfiniteVolume \
-lfvOptions \
-lmeshTools \
-lsampling \
-lturbulenceModels \
-lincompressibleTurbulenceModels \
-lincompressibleTransportModels \
-ldynamicMesh \
-ldynamicFvMesh \
-ltopoChangerFvMesh \
-latmosphericModels \
-lregionFaModels
SRFPimpleFoam.C
EXE = $(FOAM_APPBIN)/SRFPimpleFoam
EXE_INC = \
-I.. \
-I$(LIB_SRC)/finiteVolume/lnInclude \
-I$(LIB_SRC)/meshTools/lnInclude \
-I$(LIB_SRC)/sampling/lnInclude \
-I$(LIB_SRC)/TurbulenceModels/turbulenceModels/lnInclude \
-I$(LIB_SRC)/TurbulenceModels/incompressible/lnInclude \
-I$(LIB_SRC)/transportModels \
-I$(LIB_SRC)/transportModels/incompressible/singlePhaseTransportModel
EXE_LIBS = \
-lfiniteVolume \
-lfvOptions \
-lmeshTools \
-lsampling \
-lturbulenceModels \
-lincompressibleTurbulenceModels \
-lincompressibleTransportModels
/*---------------------------------------------------------------------------*\
========= |
\\ / F ield | OpenFOAM: The Open Source CFD Toolbox
\\ / O peration |
\\ / A nd | www.openfoam.com
\\/ M anipulation |
-------------------------------------------------------------------------------
Copyright (C) 2011-2017 OpenFOAM Foundation
-------------------------------------------------------------------------------
License
This file is part of OpenFOAM.
OpenFOAM is free software: you can redistribute it and/or modify it
under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
OpenFOAM is distributed in the hope that it will be useful, but WITHOUT
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
for more details.
You should have received a copy of the GNU General Public License
along with OpenFOAM. If not, see <http://www.gnu.org/licenses/>.
Application
SRFPimpleFoam
Group
grpIncompressibleSolvers
Description
Large time-step transient solver for incompressible flow
in a single rotating frame.
Turbulence modelling is generic, i.e. laminar, RAS or LES may be selected.
\*---------------------------------------------------------------------------*/
#include "fvCFD.H"
#include "singlePhaseTransportModel.H"
#include "turbulentTransportModel.H"
#include "pimpleControl.H"
#include "SRFModel.H"
#include "fvOptions.H"
// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * //
int main(int argc, char *argv[])
{
argList::addNote
(
"Large time-step transient solver for incompressible flow"
" in a single rotating frame."
);
#include "postProcess.H"
#include "addCheckCaseOptions.H"
#include "setRootCaseLists.H"
#include "createTime.H"
#include "createMesh.H"
#include "createControl.H"
#include "createTimeControls.H"
#include "createFields.H"
#include "initContinuityErrs.H"
turbulence->validate();
// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * //
Info<< "\nStarting time loop\n" << endl;
while (runTime.run())
{
#include "readTimeControls.H"
#include "CourantNo.H"
#include "setDeltaT.H"
++runTime;
Info<< "Time = " << runTime.timeName() << nl << endl;
// --- Pressure-velocity PIMPLE corrector loop
while (pimple.loop())
{
#include "UrelEqn.H"
// --- Pressure corrector loop
while (pimple.correct())
{
#include "pEqn.H"
}
// Update the absolute velocity
U = Urel + SRF->U();
if (pimple.turbCorr())
{
laminarTransport.correct();
turbulence->correct();
}
}
runTime.write();
runTime.printExecutionTime(Info);
}
Info<< "End\n" << endl;
return 0;
}
// ************************************************************************* //
// Relative momentum predictor
tmp<fvVectorMatrix> tUrelEqn
(
fvm::ddt(Urel)
+ fvm::div(phi, Urel)
+ turbulence->divDevReff(Urel)
+ SRF->Su()
==
fvOptions(Urel)
);
fvVectorMatrix& UrelEqn = tUrelEqn.ref();
UrelEqn.relax();
fvOptions.constrain(UrelEqn);
solve(UrelEqn == -fvc::grad(p));
fvOptions.correct(Urel);
Info<< "Reading field p\n" << endl;
volScalarField p
(
IOobject
(
"p",
runTime.timeName(),
mesh,
IOobject::MUST_READ,
IOobject::AUTO_WRITE
),
mesh
);
Info<< "Reading field Urel\n" << endl;
volVectorField Urel
(
IOobject
(
"Urel",
runTime.timeName(),
mesh,
IOobject::MUST_READ,
IOobject::AUTO_WRITE
),
mesh
);
Info<< "Reading/calculating face flux field phi\n" << endl;
surfaceScalarField phi
(
IOobject
(
"phi",
runTime.timeName(),
mesh,
IOobject::READ_IF_PRESENT,
IOobject::AUTO_WRITE
),
linearInterpolate(Urel) & mesh.Sf()
);
label pRefCell = 0;
scalar pRefValue = 0.0;
setRefCell(p, pimple.dict(), pRefCell, pRefValue);
mesh.setFluxRequired(p.name());
Info<< "Creating SRF model\n" << endl;
autoPtr<SRF::SRFModel> SRF
(
SRF::SRFModel::New(Urel)
);
// Create the absolute velocity
volVectorField U
(
IOobject
(
"U",
runTime.timeName(),
mesh,
IOobject::NO_READ,
IOobject::AUTO_WRITE
),
Urel + SRF->U()
);
singlePhaseTransportModel laminarTransport(U, phi);
autoPtr<incompressible::turbulenceModel> turbulence
(
incompressible::turbulenceModel::New(U, phi, laminarTransport)
);
#include "createFvOptions.H"
volScalarField rAUrel(1.0/UrelEqn.A());
volVectorField HbyA("HbyA", Urel);
HbyA = rAUrel*UrelEqn.H();
surfaceScalarField phiHbyA
(
"phiHbyA",
fvc::flux(HbyA)
+ fvc::interpolate(rAUrel)*fvc::ddtCorr(Urel, phi)
);
adjustPhi(phiHbyA, Urel, p);
tmp<volScalarField> rAtUrel(rAUrel);
if (pimple.consistent())
{
rAtUrel = 1.0/max(1.0/rAUrel - UrelEqn.H1(), 0.1/rAUrel);
phiHbyA +=
fvc::interpolate(rAtUrel() - rAUrel)*fvc::snGrad(p)*mesh.magSf();
HbyA -= (rAUrel - rAtUrel())*fvc::grad(p);
}
if (pimple.nCorrPISO() <= 1)
{
tUrelEqn.clear();
}
// Update the pressure BCs to ensure flux consistency
constrainPressure(p, Urel, phiHbyA, rAtUrel());
// Non-orthogonal pressure corrector loop
while (pimple.correctNonOrthogonal())
{
// Pressure corrector
fvScalarMatrix pEqn
(
fvm::laplacian(rAtUrel(), p) == fvc::div(phiHbyA)
);
pEqn.setReference(pRefCell, pRefValue);
pEqn.solve(mesh.solver(p.select(pimple.finalInnerIter())));
if (pimple.finalNonOrthogonalIter())
{
phi = phiHbyA - pEqn.flux();
}
}
#include "continuityErrs.H"
p.relax();
// Momentum corrector
Urel = HbyA - rAtUrel()*fvc::grad(p);
Urel.correctBoundaryConditions();
fvOptions.correct(Urel);
// Solve the Momentum equation
MRF.correctBoundaryVelocity(U);
tmp<fvVectorMatrix> tUEqn
(
fvm::ddt(U) + fvm::div(phi, U)
+ MRF.DDt(U)
+ turbulence->divDevReff(U)
==
fvOptions(U)
);
fvVectorMatrix& UEqn = tUEqn.ref();
UEqn.relax();
fvOptions.constrain(UEqn);
if (pimple.momentumPredictor())
{
solve(UEqn == -fvc::grad(p));
fvOptions.correct(U);
}
CorrectPhi
(
U,
phi,
p,
dimensionedScalar("rAUf", dimTime, 1),
geometricZeroField(),
pimple
);
#include "continuityErrs.H"
#include "createRDeltaT.H"
Info<< "Reading field p\n" << endl;
volScalarField p
(
IOobject
(
"p",
runTime.timeName(),
mesh,
IOobject::MUST_READ,
IOobject::AUTO_WRITE
),
mesh
);
Info<< "Reading field U\n" << endl;
volVectorField U
(
IOobject
(
"U",
runTime.timeName(),
mesh,
IOobject::MUST_READ,
IOobject::AUTO_WRITE
),
mesh
);
#include "createPhi.H"
label pRefCell = 0;
scalar pRefValue = 0.0;
setRefCell(p, pimple.dict(), pRefCell, pRefValue);
mesh.setFluxRequired(p.name());
singlePhaseTransportModel laminarTransport(U, phi);
autoPtr<incompressible::turbulenceModel> turbulence
(
incompressible::turbulenceModel::New(U, phi, laminarTransport)
);
#include "createMRF.H"
#include "createFvOptions.H"
/*---------------------------------------------------------------------------*\
========= |
\\ / F ield | OpenFOAM: The Open Source CFD Toolbox
\\ / O peration |
\\ / A nd | www.openfoam.com
\\/ M anipulation |
-------------------------------------------------------------------------------
Copyright (C) 2011 OpenFOAM Foundation
Copyright (C) 2016 OpenCFD Ltd.
-------------------------------------------------------------------------------
License
This file is part of OpenFOAM.
OpenFOAM is free software: you can redistribute it and/or modify it
under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
OpenFOAM is distributed in the hope that it will be useful, but WITHOUT
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
for more details.
You should have received a copy of the GNU General Public License
along with OpenFOAM. If not, see <http://www.gnu.org/licenses/>.
Global
CourantNo
Description
Calculates and outputs the mean and maximum Courant Numbers.
\*---------------------------------------------------------------------------*/
scalar CoNum = 0.0;
scalar meanCoNum = 0.0;
if (mesh.nInternalFaces())
{
surfaceScalarField phiMask(localMin<scalar>(mesh).interpolate(cellMask));
scalarField sumPhi(fvc::surfaceSum(mag(phiMask*phi))().internalField());
CoNum = 0.5*gMax(sumPhi/mesh.V().field())*runTime.deltaTValue();
meanCoNum =
0.5*(gSum(sumPhi)/gSum(mesh.V().field()))*runTime.deltaTValue();
}
Info<< "Courant Number mean: " << meanCoNum
<< " max: " << CoNum << endl;
// ************************************************************************* //
overPimpleDyMFoam.C
EXE = $(FOAM_APPBIN)/overPimpleDyMFoam
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment